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Abstract
The community lockdown measures implemented in the United States, during late March to end of May of
2020, resulted in a significant reduction in the community transmission of the COVID-19 pandemic throughout
the country. However, a number of US states are currently experiencing an alarming post-lockdown resurgence
of the pandemic, triggering the fear for a possible severe second wave of the pandemic in some US jurisdictions.
We designed a mathematical model for addressing the key question of whether or not the universal use of face
masks can halt or curtail such resurgence (and possibly avert a second wave, without having to undergo another
cycle of major community lockdown) in the states of Arizona, Florida, New York and the entire US. The model
was parametrized and fitted using cumulative mortality data from the four jurisdictions. Our study highlights
the importance of early implementation of the community lockdown measures. In particular, a sizable reduction
in the burden of the pandemic would have been recorded in each of the four jurisdictions if the community
lockdown measures were implemented a week or two earlier. These reductions are greatly augmented if the
early implementation of the lockdown measures is complemented with a public face masks use strategy. It is
shown that the pandemic would have been almost completely suppressed from significantly taking off if the
lockdown measures were implemented two weeks earlier, and if a sizable percentage of the residents of the
four jurisdictions wore face masks during the respective lockdown periods. If the level of lifting of community
lockdown is high (which entails allowing for greater community contacts and re-opening of businesses and
social activities, in comparison to what was allowed during the community lockdown period), the states of
Arizona and Florida will record a devastating second wave of the pandemic by the end of 2020, while the state
of New York and the entire US will record milder second waves. If the level of lifting for the community
lockdown was mild (i.e., only allowing very limited community contacts and business activities, in comparison
to the lockdown period), only the state of Florida will experience a second wave. The severity of the projected
second wave depends on the level of lifting of the community lockdown. For instance, the projected second
wave for Arizona and Florida, associated with moderate and high level of lifting of lockdown, will be more
severe than their respective first wave. For high level of lifting of lockdown measures, the increased use of face
masks after the lockdown period greatly reduces the burden of the pandemic. In particular, for this high lifting
scenario, none of the four jurisdictions will experience a second wave if half of their residents wear face masks
consistently after their respective lockdown period). A testing strategy that increases the maximum detection
rate of asymptomatic infected individuals (followed by contact tracing and self-isolation of the detected cases)
greatly reduces the burden of the pandemic in all four jurisdictions, particularly if also combined with universal
face mask use strategy. Universal use of face masks in public, with at least moderate level of compliance, could
halt the post-lockdown resurgence of COVID-19, in addition to averting the potential for (or severity of) a second
wave of the pandemic in each of the four jurisdictions.
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1 Introduction

The novel coronavirus (COVID-19) pandemic that emerged in December 2019 is, undoubtedly, the most important
public health challenge facing mankind since the 1918 pandemic of influenza. The rampaging pandemic (which
spread to all countries on earth), caused by a new Severe Acute Respiratory syndrome (SARS-CoV-2), continues
to cause devastating public health and socio-economic impact in many parts of the world, including the US [1, 2].
The pandemic accounted for over 10.5 million confirmed cases and 513,000 deaths by the end of June 2020 [3, 4].
Although the pandemic emerged from China, the US and Brazil bore the brunt of its public health burden (with
over 2.7 million cases and 130,122 deaths for the US; and over 1.4 million cases and 59,656 deaths for Brazil, as of
June 30, 2020). In particular, the US state of New York (alone) recorded about 417,836 confirmed cases and 32,129
COVID-induced mortality as of June 30, 2020. Owing to the effective and sustained control measures implemented
in New York state, the state (which was once the global epicenter of the pandemic) is now recording low daily new
cases and COVID-related mortality (in fact, the mortality numbers now recorded in New York state is among the
lowest in the US). Although many US states have been witnessing declines in disease incidence (since the lifting
of lockdown measures), a number of states (notably Arizona, California, Florida and Texas) have recently started
experiencing a dramatic increase in the number of cases and hospitalizations. In particular, Arizona and Florida
recorded 4, 877 (on July 1, 2020) and 10, 109 (on July 2, 2020), respectively (these staggering numbers are the
highest daily case count for both states since the pandemic started) [5]. Furthermore, ICU admissions at the Texas
Medical Center in Houston City was at 97% bed capacity as of June 24, 2020 [6]. The current trend suggests
that Arizona and Florida may be the next epicenters of the pandemic in the US. As of July 2, 2020, the two states
accounted for about 79, 215 and 152, 434 confirmed cases, and 1, 632 and 3, 505 cumulative deaths, respectively).
A total of 57, 232 new confirmed cases was reported nationwide on the same day.

The main COVID-19 transmission pathways are person-to-person transmission through respiratory droplets,
and transmission through contaminated surfaces [7]. Studies have shown that some individuals infected with the
novel coronavirus can be asymptomatic or symptomatic with mild, moderate, severe, or critical symptoms [8–15].
Asymptomatic individuals exhibit no COVID-19 symptoms, although they contribute in disease transmission [8].
They include pre-symptomatic individuals who start shedding the virus before the onset of symptoms [16] and
infectious individuals who do not show clinical disease symptoms after the incubation period. Those with mild
clinical symptoms suffer from light fever, sneezing, cough, discomfort, etc., but no pneumonia, acute respiratory
distress syndrome (ARDS). These individuals do not require Intensive Care Unit (ICU) admission [8, 9]. Some
of the individuals with moderate symptoms, particularly the elderly (those aged 65+) and those with pre-existing
health conditions, might experience a mild form of pneumonia that require self-isolation or hospitalization, but
not ARDS or ICU admission [10–13]. Clinically severe cases of COVID-19 develop symptoms that include acute
respiratory distress and failure, which might damage the lungs, as well as complications requiring hospitalization
and possible ventilation [9, 14]. Critical cases require ICU admission and ARDS ventilators for survival. They are
at high mortality risk and generally include the elderly (those above 65 years) and people with underlying health
conditions [11]. It is known that about 81% of COVID-19 confirmed cases show mild to moderate or no symptoms,
14% show severe clinical symptoms, and approximately 5% of the cases are clinically ill [8, 14]. In addition to
transmission by the clinically symptomatic, pre-symptomatic and asymptomatic individuals contribute significantly
to disease transmission [17–19]. This complicates control efforts, especially when they are focused only on the
severely or critically ill cases. When infectious individuals show only mild to moderate or no symptoms, it is
likely that they have no urge to seek medical aid or adhere to preventive measures, thereby causing negative impact
on disease mitigation or containment efforts. Hence, distinguishing between various forms of disease severity
is important not only in reducing community transmission (and socio-economic burden), but also contribute in
lowering the risk of infection health care workers face.

Although concerted global efforts are exerted towards developing a safe and effective vaccine against COVID-
19 [20–22], no such vaccine is expected to be ready for use in humans within the next three months. Furthermore,
there is currently no safe and effective antiviral against the virus. Consequently, control and mitigation efforts
against COVID-19 are restricted to the implementation of non-pharmaceutical interventions (NPIs). These inter-
ventions include community lockdowns, maintaining social (or physical)-distancing in public, wearing face masks
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in public, quarantine of suspected cases, isolation of confirmed cases, contact-tracing and testing. Community
lockdowns and social-distancing have been widely implemented in most US states (they entailed asking people to
shelter at home, closing large gathering places, such as schools, malls and non-essential businesses). The use of
face masks in public is also encouraged by many state and local governments [23]. The success of any of these
measures relies on a number of factors. For example, the success of lockdown, social-distancing and face mask use
measures relies on the willingness of the members of the general population to comply with the prescribed mea-
sures and the effectiveness of the measures (e.g., face mask effectiveness to prevent the transmission or acquisition
of infection) [23–26]. Diagnostic (surveillance) testing relies on the ability to test as many people as possible and
how sensitive the test is in identifying cases, especially people at the early stage of the COVID-19 infection.

By April 7, 2020, mandatory lockdown measures were put in place in over 42 US states [27]. While these
lockdown measures and other NPIs (such as social-distancing, the use of face masks in public, personal hygiene,
testing, etc.) have been effective in curtailing the spread of COVID-19 in many US states, especially the state of
New York, the late implementation and early relaxation of these lockdown measures seem to be having negative
effects on the effort to effectively curtail the pandemic in some US states. It should be recalled that the US White
House Coronavirus Task Force announced a four-phase guidelines, on April 16, 2020, for states to meet before
considering relaxing the community lockdowns they implemented [28]. Specifically, Phase 1 of the guidelines
requires states to consider lifting lockdown measures if they (i) achieve two weeks of continuous decline in the
number of COVID-19 cases, (ii) have enough testing capacity for at-risk health care workers, and (iii) have enough
hospital capacity. Relaxation of strict lockdown measures should rely heavily on the ability of states in particular,
and the nation in general, to test and contact trace as many people as possible, encourage a sizable population to
use face masks consistently in public and socially (or physically)-distance (stay 6 feet apart). Although no US state
has met all four phases as of May 20, 2020 (in fact, it is doubtful if any state has met even the first phase [29, 30]),
almost all the US states started relaxing the community lockdown measures by this time. This premature relaxation
or lifting of the community lockdown measures (in an effort to re-open the economy) is clearly responsible for
the post-lockdown resurgence of COVID-19 in a number of states (associated with spikes in confirmed cases and
hospitalizations), including in the aforementioned states of Arizona, California, Florida and Texas [29, 30]. A
natural question to ask, based on the current trends, is whether or not the post-lockdown resurgence would trigger
a severe second wave of the pandemic in some US states, or in the entire country (and how severe the second wave
might be, in comparison to the first). It is notable that some US states have started taking important measures to
help halt the post-lockdown resurgence, such as pausing the re-opening phases, re-locking down some businesses,
and enacting mandatory mask usage ordinances. In fact, some counties have implemented, or are contemplating,
re-imposing stay-at-home orders [31–34].

In this study, we develop and use a mathematical model to address the important question of whether or not
masks could curtail the post-lockdown resurgence of COVID-19 in the US. Specifically, we use the model to assess
the impact of (1) early implementation of lockdown measures, combined with increased mask usage; (2) varying
levels of lifting of community lockdown measures (and how increases in face mask compliance affect the impact)
and (3) detection (including tracing, testing and self-isolation) of asymptomatic infected individuals on control
and mitigating the burden of the pandemic in the chosen jurisdictions. The model will also be used to predict the
likelihood (and severity) of a second wave of the pandemic in the US. The model is designed and calibrated, using
cumulative mortality data from the four jurisdictions, in Section 2. Theoretical analyses of the model, with respect
to the asymptotic stability of its associated continuum of disease-free equilibria, is carried out in Section 3. An
expression for the final size of the pandemic is also derived analytically. Numerical simulations of the model are
reported in Section 4.

2 Materials and Methods

2.1 Model Formulation

The objectives of this study will be achieved via the design, analysis, parametrization and simulations of a Kermack-
McKendrick-type SEIR (susceptible-exposed-infectious-recovered) epidemic (no human demograhy) model for the
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transmission dynamics and control of COVID-19 in a population. In addition to incorporating pertinent aspects of
the epidemiology of the disease, the model to be developed will allow for the assessment of the non-pharmaceutical
interventions being implemented in the US, notably social-distancing, face mask usage and contact-tracing and
testing. The model to be developed is based on stratifying the total human population at time t, denoted by
N(t), into mutually exclusive compartments based on disease status. Specifically, we split N(t) into the sub-
populations of individuals who are susceptible (S(t); i.e., uninfected individuals who may contract the disease at a
later time), exposed (E(t); i.e., individuals who are newly-infected but are not yet infectious), pre-symptomatic ex-
posed (Ep(t); i.e., newly-infected individuals who start shedding the virus before the end of the incubation period),
asymptomatically-infectious (Ia(t); i.e., who do not show clinical symptoms of the disease at the end of the end
of the incubation period), infectious with mild symptoms (Im(t)), infectious with severe symptoms (Is(t)), infec-
tious in self-isolation (Ii(t)), hospitalized or isolated at a health care facility (Ih(t)), in intensive care units (Ic(t)),
recovered but not tested (Ru(t)) and tested recovered (Rt(t)). Further serologic (antibody) testing of recovered
humans is important for determining the level of immunity to COVID-19. Thus,

N(t) = S(t) + E(t) + Ep(t) + Ia(t) + Im(t) + Is(t) + Ih(t) + Ic(t) +Ru(t) +Rt(t).

The model is given by the following deterministic system of nonlinear differential equations (where a dot represents
differentiation with respect to time t):

Ṡ = −λS,

Ė = λS − (σe + τd)E,

Ėp = σeE − (σp + τd)Ep,

İa = rσpEp − (γa + τd)Ia,

İm = (1− r)gσpEp − ρmIm,

İs = (1− r)(1− g)σpEp − (δs + γs + ρs)Is,

İi = τd(E + Ep + Ia) + ρmIm + (1− f)ρsIs − (γi + ξi + δi)Ii,

İh = fρsIs + ξiIi − (γh + ψh + δh)Ih,

İc = ψhIh − (γc + δc)Ic,

Ṙu = γaIa + γsIs + γiIi − τsRu,

Ṙt = γhIh + γcIc + τsRu,

(2.1)

where the force of infection λ is defined as:

λ = (1− εmcm)
βpEp + βaIa + βmIm + βsIs

N − θ(Ii + Ih + Ic)
. (2.2)

In the model (2.1), susceptible individuals acquire COVID-19 following effective contact with individuals in the
pre-symptomatic (Ep), asymptomatically-infectious (Ia), mildly-symptomatic (Im) and severely-symptomatic (Is)
classes, at a rate λ (defined in (2.2) below). Newly-infected individuals (in the E class) progress to the pre-
symptomatic class at a rate σe. At the end of the incubation period, a proportion, 0 < r ≤ 1, of humans in the Ep

class progress to the asymptomatically-infectious class (Ia), at a rate rσp (where 0 < r < 1 is the proportion of
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pre-symptomatic humans who do not show clinical symptoms of COVID-19 at the end of the incubation period).
The remaining proportion, 1 − r, who show clinical symptoms of COVID-19 at the end of the incubation period,
are split into those who show mild symptoms (at a rate g(1−r), where 0 < g ≤ 1 is the proportion of the fraction),
1− r, that shows mild symptoms of COVID-19) and those who show severe symptoms (at a rate (1− g)(1− r)).

Asymptomatic individuals in the E, Ep and Ia classes are detected, via random diagnostic/surveillance testing,
at a rate τd. Similarly, serology testing is administered to untested recovered individuals (i.e., those in Ru class)
at a rate τs. Recovery in Ik (k = a, i, c) class occurs at a rate γk. Individuals with mild and severe symptoms are
self-isolated at a rate ρm and (1 − f)ρs (where 0 < f ≤ 1 is the proportion of individuals with severe symptoms
that are hospitalized), respectively. Self-isolated individuals are hospitalized at a rate ξi. COVID-induced mortality
occurs in Ik (k = s, i, h, c) at a rate δk. Hospitalized individuals are admitted into ICU at a rate ψh.

In (2.2), the term 1 − εmcm represents a measure of the reduction in community contacts due to face mask
use in the community. In particular, 0 ≤ εm ≤ 1 is face mask efficacy in preventing the spread (i.e., outward
efficacy) or acquisition (i.e., inward efficacy) of the disease and 0 ≤ cm ≤ 1 is the community-wide compliance in
face mask usage. The parameters βp, βa, βm and βs represent, respectively, the effective contact rates of infected
individuals in the pre-symptomatic (Ep), asymptomatically-infectious (Ia), symptomatically-infectious with mild
symptoms (Im) and symptomatically-infectious with severe symptoms (Is) class. The parameter 0 ≤ θ ≤ 1 is a
major of the effectiveness of hospitalization, self-isolation and ICU admission to prevent COVID-19 transmission
by individuals in the Ii, Ih and Ic classes.

Diagnostic and serology testing are universally considered to be highly crucial to slowing community trans-
mission of COVID-19. In particular, diagnostic testing allows for the detection, rapid isolation and contact tracing
of cases, thereby breaking the chain of community transmission that would have otherwise ensued. In the model
(2.1), diagnostic testing is accounted for by way of detecting asymptomatic infected individuals, in the E, Ep and
Ia classes (at the rate τd). We use the following functional form for τd:

τd = τdmax

(
Tn

1 + Tn

)
, (2.3)

where τdmax is the maximum detection rate via diagnostic testing and Tn is the average total number of tests
administered in the community per day. It should be noted that Tn can also be interpreted as a function of the
number of available test kits in the community. During the 7-day period from April 30 to May 6, 2020, the average
number of tests per day for the US was 264, 249. The maximum number of tests for the States of Arizona, Florida
and New York, for the same time period, were 3, 275 (with 10.9% of these positive), 12, 223 (with 4.5% of these
positive) and 22, 345 (with 13.8% of these positive), respectively [35]. These numbers are below the minimum
levels recommended by the World Health Organization (WHO) (10, 743 for Arizona; 23,937 for Florida; 112,802
for New York and 917, 450 for the whole of US). The positive test ratio benchmark recommended by the WHO is
10% or less [35]. Similarly, we use the following definition for τs:

τs = τsmax

(
Tn

1 + Tn

)
, (2.4)

where τsmax is the maximum detection rate for the serology (antibody) testing in the community.
The model (2.1) monitors human population. Hence, all its state variables are non-negative for all time t (further,
all parameters of the model are non-negative). For housekeeping purposes, we introduce an equation for the rate of
change of the population of COVID-deceased individuals (denoted by D(t)), given by:

Ḋ = δsIs + δiIi + δhIh + δcIc. (2.5)

A flow diagram of the model (2.1) is depicted in Figure 1, and the state variables and parameters of the model are
described in Tables A.1 and A.2 (in Appendix A), respectively.
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Figure 1: Flow diagram of the model (2.1), showing the transition of individuals between mutually-exclusive
compartments based on disease status. Notation: σa = rσp, σm = (1 − r)gσp, σs = (1 − r)(1 − g)σp. The state
variables and parameters are described in Table A.2.

2.2 Data Fitting and Parameter Estimation

The model (2.1) has 24 parameters, and realistic values for 12 of these parameters are available in the literature
(Table A.3). Estimates of the values of the remaining 12 (unknown) parameters are obtained by fitting the model
to the observed cumulative deaths data for the states of Arizona, Florida, New York and the entire US. Specifically,
we fit the cumulative death profile generated from the model (2.1), given by

∫ T
0 D(t)dt) (where T is the prescribed

future time), to the observed cumulative mortality data. Cumulative mortality data for the pre-lockdown periods for
these jurisdictions (March 6 to March 31, 2020 for Arizona, March 1 to April 3, 2020 for Florida, March 1 to March
22, 2020 for New York and January 22 to April 7, 2020 for the whole of US) and the lockdown periods (March 31 to
May 15, 2020 for Arizona, April 3 to May 4, 2020 for Florida, March 22 to May 28, 2020 for New York and April7
to May 28, 2020 for most of the US) was obtained from various publicly-available sources, such as the World
Health Organization, the John Hopkins’ Center for Systems Science and Engineering COVID-19 Dashboard and
Worldometer [5, 36–38]. The model was fitted to the data using the standard nonlinear least squares approach. This
entails determining the best parameter set that minimizes the sum of the squares of the differences between Model
(2.1) outputs (i.e., the model-predicted cumulative mortality) and the confirmed COVID-19 cumulative mortality
data for the states of Arizona, Florida, New York, and the entire US for the pre-lockdown and lockdown periods.

The choice of fitting mortality data, as opposed the COVID-19 incidence data (which is what many COVID-19
modelers seem to prefer) is motivated by the fact that the COVID-19 mortality data is more reliable than the cor-
responding incidence data. The justification for this claim is that the absence of a realistic way (i.e., implementing
robust rapid testing strategy across the country or jurisdiction) to quantify the size of the pool of COVID-19-infected
individuals who show no symptoms of the disease makes the data for the confirmed cases to be unreliable. Lau et
al. [39] evaluated the massive under-reporting and under-testing of COVID-19 cases in multiple global epicenters,
including the US. Their data analytics study shows that, due to limited testing capacities, mortality numbers may
serve as a better indicator for COVID-19 case spread in many countries (including the US). Their data indicate
that countries like France, Italy, the United States, Iran, and Spain have extremely high numbers of undetected and
under-reported cases. Furthermore, in a recent congressional hearing, the Director of the US Centers for Disease
Control and Prevention estimated that the current projected cumulative case data for the US may be 10 times lower
than the actual case data [40].

The observed cumulative mortality data, together with the fits of the model (2.1) for the pre-lockdown and
lockdown periods for the four jurisdictions, are presented in Figure 2. The estimated values of the 12 calibrated
(fitted) parameters of the model (obtained from the model/data fitting) are tabulated in Tables A.4 - A.7. The
baseline values of the other (12 known) parameters of the model are given in Table A.3 are drawn from the literature
or estimated based on information from the literature (see [41] for details.)
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Figure 2: Data fitting of the model (2.1), for the pre-lockdown and lockdown periods for the states of Arizona,
Florida, New York and the entire US. (a)-(d): cumulative mortality data and model fit for the pre-lockdown period
for the state of Arizona, Florida, New York, and the entire US, respectively. (e)-(h): cumulative mortality data and
model fit for the lockdown period for the state of Arizona, Florida, New York and the entire US, respectively.

3 Mathematical Analysis

3.1 Computation of Final Epidemic Size and Reproduction Number

The model (2.1) has a continuum (or family) of disease-free equilibria given by:

E0 : (S∗, E∗, E∗p , I
∗
a , I
∗
m, I

∗
s , I
∗
i , I
∗
h, I
∗
c , R

∗
u, R

∗
t ) = (S(0), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

where S(0) is the initial number of susceptible individuals in the community. The asymptotic stability analysis of
this family of equilibria will be explored below to gain qualitative insight into the behavior of initial solutions of
the model, particularly with respect to the control of the burden of the pandemic. For an epidemic model (i.e., a
model without demographic dynamics), such as (2.1), a useful feature to compute is the final size of the disease
[42–44]. It provides a measure of the number of individuals who remain susceptible at the end of the epidemic.
The approach in [42] will be used to compute the final size relation for the model (2.1). To apply this method, it is
convenient to let x ∈ IR8

+, y ∈ IR+, and z ∈ IR2
+ be vectors representing the compartments of infected, susceptible

and recovered individuals in the model (2.1), respectively. That is, x = (E, Ep, Ia, Im, Is, Ii, Ih, Ic)T , y = S
and z = (Ru, Rt)

T . Furthermore, suppose, Π is an 8 × 1 matrix in which the (i, j) entry is the fraction of the jth

susceptible compartment that goes into the ith infected class upon becoming infected, and b is an 8−dimensional
row vector of relative horizontal transmissions. It then follows from Arino et al. [42] that the model (2.1) reduces
to the following three-dimensional system of differential equations:

ẋ = ΠDyλ(x, y, z)bx− V x,

ẏ = −Dy β (x, y, z)bx,

ż = Wx,

where λ is the force of infection of the model (2.1) defined in (2.2), W is a 2 × 8 matrix in which the (i, j) entry
is the rate at which individuals of the jth infected compartment transition into the recovered (ith z) compartment
upon recovery, and V is the standard M-matrix of the linear transition terms between the infected compartments of
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the model (2.1) [42] (see also the application of next generation operator method to analyse the asymptotic stability
of disease-free equilibria of disease transmission models [45, 46]). It can be seen that, in the context of model (2.1),

D = 1,b = (0, 1, 1, 1, 1, 0, 0, 0),Π = (1, 0, 0, 0, 0, 0, 0, 0)T ,

and,

V =



Ae 0 0 0 0 0 0 0

−σe Ap 0 0 0 0 0 0

0 −rσp Aa 0 0 0 0 0

0 −(1− r)gσp 0 ρm 0 0 0 0

0 −(1− r)(1− g)σp 0 0 As 0 0 0

−τd −τd −τd −ρm −(1− f)ρs Ai 0 0

0 0 0 0 −fρs −ξi Ah 0

0 0 0 0 0 0 −ϕh Ac



.

Let y(0) = S(0), z(0) = (Ru(0), Rt(0))T . It then follows from Theorem 2.1 in [42] that the reproduction number
of the model (2.1), denoted by R, is given by:

Rc = λ(0, y(0), z(0))bV −1Πy(0) = REp + RIa + RIm + RIs , (3.1)

where,

REp =
(1− εmcm)βpσe

AeAp
, RIa =

(1− εmcm)βarσeσp
AaAeAp

, RIm =
(1− εmcm)βmσeσp(1− r)g

ρmAeAp
,

RIs =
(1− εmcm)βsσeσp(1− r)(1− g)

AeApAs
,

with,
Ae = σe + τd, Ap = σp + τd, Aa = γa + τd, As = δs + γs + ρs,
Ai = δi + γi + ξi, Ah = δh + γh + ψh, Ac = δc + γc.

The reproduction number Rc is an epidemiological quantity that measures the average number of new COVID-19
cases generated by a typical infected individual introduced into a community where some anti-COVID-19 inter-
ventions (such as social-distancing, face mask usage and self-isolation) are implemented. The result below follows
from Theorem 2.1 of [42].

Theorem 3.1. The continuum of disease-free equilibria (E0) of the model (2.1) is locally-asymptotically stable
whenever Rc < 1.

The epidemiological implication of Theorem 3.1 is that community transmission of COVID-19 can be effectively
suppressed in the community if the control and mitigation strategies implemented can bring the reproduction num-
ber (Rc) to a value less than unity.

Remark 3.1. For epidemic models (i.e., models with no birth and death demographic processes), such as (2.1),
having the associated reproduction (Rc) reduced to a value less than unity is sufficient, but not necessary, for elim-
inating the disease. That is, even if Rc exceeds unity, the disease eventually dies out over time. There are many
reasons to explain this. First, for Rc > 1, a sizable number of the population will get infected particularly if no
control or mitigation interventions are implemented (or are delayed in being implemented), some of whom would
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survive the infection (i.e., they would recover). Since the model assumes that recovery confers perfect and perma-
nent natural immunity against future infections, this process leads to, or contributes to, building community-wide
natural herd immunity (so that many of the remaining susceptible members of the community can be protected).
This, together with the implementation of control and mitigation measures, contribute in significantly suppressing
community transmission, and the disease eventually dies out (even if Rc > 1).

Finally, it follows from Theorem 5.1 of [42] that the final epidemic size relation for the model (2.1) is given by

ln

(
S(0)

S(∞)

)
≥ Rc

S(0)

(
S(0)− S∞ + E(0) +

AeEp(0)

σe

)
+

1− εmcm
S(0)

[
βa
Aa

Ia(0) +

(
βm
ρm

Im(0) +
βs
As
Is(0)

)]
,

where S(∞) = lim
t→∞

S(t). This final size relation can be solved recursively for S(∞) using, for instance, the
Newton-Raphson’s method, to obtain the number of susceptible humans who remain uninfected after the epidemic.

3.2 Sensitivity of Reproduction Number With Respect to Case Detection and Face Mask Usage

In this section, the effect of case detection and self-isolation of asymptomatic individuals in the E, Ep and Ia
classes (using diagnostic testing) and face mask usage on the reproduction number (Rc) of the model (2.1) will be
assessed, for the states of Arizona, Florida, New York and the entire US. We first simulate the effect of maximum
case detection (τdmax) for two scenarios, where face masks of low quality (such as home-made cloth masks with
estimated efficacy of 25%) or of moderate quality (such as medical/surgical masks, with estimated efficacy of
50%) are used in the community. A contour plot (heat map) of Rc, as a function of percentage increase in the
maximum case detection rate (i.e., increase in the baseline value of τdmax) and face mask compliance (cm), is
depicted in Figure 3. This figure shows that the reproduction number (Rc) decreases with increasing values of
the percentage increase in the maximum case detection rate and face mask compliance, for the states of Arizona
(Figure 3 (a) and (e)), Florida (Figure 3 (b) and (f)), New York (Figure 3 (c) and (g)) and the entire US (Figure
3 (d) and (h)), regardless of the type (or efficacy) of the face mask used in the community. In particular, it is
evident from the contour plots that the reproduction number can be brought to a value less than unity (thereby
resulting in effectively curtailing community transmission of COVID-19) in Arizona, Florida and New York if the
baseline maximum case detection rate is increased by at least 10%, the face mask efficacy is 25%, and face mask
compliance exceeds 73%, 95%, and 35%, respectively. If the face mask efficacy is increased to 50%, then for
the same maximum detection rate of 10%, face mask use compliance 37%, 48%, and 18% is required to reduce
the reproduction number below one. Greater reductions in Rc are recorded if the moderately-effective face mask
(Figure 3 (e)-(h)) are used in the community, in comparison to when low effective face masks are used (Figure 3
(a)-(d)). These plots clearly show that widespread (random) testing (which then implies rapid detection, tracing
and isolation of confirmed cases), combined with face mask usage, significantly contributes in reducing community
transmission (by breaking the chain of transmission) regardless of the efficacy of face masks.

The sensitivity of the reproduction number with respect to the singular effect of face masks is monitored by
generating contour plots of Rc, as a function of face mask efficacy (εm) and compliance (cm). The results obtained,
depicted in Figure 3 (i)-(l), for Arizona, Florida, New York and the entire US, show decreasing values of the
reproduction number with increasing values of face mask efficacy and compliance, as expected. It is shown that,
with the assumed baseline face mask efficacy of 50% (i.e., εm = 0.5), a minimum compliance of 53% will be
needed to effectively curtail community transmission in the state of Arizona (Figure 3 (i)). The corresponding
minimum compliance percentages needed to achieve some control in Florida, New York and the whole of US are,
59%, 38% and 46%, respectively. The contours in Figure 3 (i)-(l) also show that using low effective face masks
(e.g., the cloth mask with estimated efficacy of 25%) with high compliance can lead to significant reduction in
disease burden. However, using such (cloth) masks will fail to reduce the reproduction number to a value below
unity, even if 100% compliance is achieved, in the states of Arizona and Florida. On the other hand, such masks
can bring the reproduction number to a value less than unity for the state of New York and the entire nation if the
compliance in its usage is at least 76% and 92%, respectively.
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Figure 3: Sensitivity of the control reproduction number (Rc) to important control parameters. Heat maps
of the control reproduction number, as a function of cloth face mask use compliance and percentage increases in
the maximum detection rate of asymptomatic infected individuals (τdmax). (a)-(d): impact of cloth masks (with
efficacy εm = 0.25) on disease dynamics for the state of Arizona, Florida, New York and all of US, respectively.
(e)-(h): impact of surgical/medical masks (with efficacy εm = 0.50) on disease dynamics for the state of Arizona,
Florida, New York and all of US, respectively. (h)-(k): impact of face masks efficacy (εm) and compliance (cm) on
disease dynamics for the state of Arizona, Florida, New York and all of US, respectively. Parameter values used in
the simulations are as given in Tables A.3-A.4 in Appendix A.

4 Numerical Simulations

In this section, the model (2.1) will be simulated, using the baseline parameter values in Tables A.3-A.4 in Appendix
A (unless otherwise stated), to assess the community-wide impact of early implementation of strict lockdown
measures (aimed at minimizing community transmission of COVID-19) in the states of Arizona, Florida, New
York and the entire US. The impact of lifting of community lockdown, as well as the effect of the use of non-
pharmaceutical interventions after the lifting of the lockdown, will also be assessed. Parameter values for the
pre-lockdown (sub-tables (a) of Tables A.3-A.4 in Appendix A) and the lockdown period (sub-tables (b) of Tables
A.3-A.4 in Appendix A) are used to simulate the COVID-19 dynamics in the four jurisdictions during the pre-
lockdown and the lockdown periods, respectively. It should be mentioned that, in all of the simulations to be carried
out, the control-related parameters (e.g., the face masks compliance and efficacy, cm and εm, and the diagnostic and
serology detection rate parameters, τd, τs and τdmax) are kept at their baseline values, for both the pre-lockdown
and lockdown periods in Tables A.3-A.4 (unless otherwise stated).

4.1 Impact of Early Implementation of Lockdown Measures and Mask use Compliance

It should be recalled that lockdown measures were implemented in the states of Arizona, Florida and New York on
March 31, 2020, April 3, 2020 and March 22, 2020, respectively, while the entire US was on lockdown by April 7,
2020. Furthermore, partial lifting of the lockdown measures were announced in the three states by May 15, 2020,
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May 4, 2020 and May 28, 2020, respectively. Although some US states delayed announcing some form of lifting of
lockdown measures until June 2020, the overwhelming majority of the US states implemented some form of lifting
by May 28, 2020. Consequently, we assume that the entire US started partial lifting of lockdown on May 28, 2020,
as was the case for the state of New York. We now run simulations of the model (2.1) for the three scenarios: (a) the
precise period when community lockdown was actually implemented, (b) lockdown measures were implemented
a week earlier than the actual time it was implemented, and (c) lockdown measures were implemented two weeks
earlier than the actual time they were implemented, for each of the three states and the entire US.

The simulation results obtained for scenario in which lockdown was implemented one week earlier are depicted
in Figure 4, showing daily and cumulative mortality for the three states and the US. This figure shows a marked
decrease in the peak daily deaths in each of the four locations (Figures 4 (a)-(d), magenta curves). In other words,
the pandemic curves in the three states and in the entire US would have been flattened earlier (characterized by
very low numbers at the pandemic peak). The decrease in daily mortality is even more dramatic if lockdown was
implemented two weeks earlier (Figures 4 (a)-(d), green curves). Furthermore, our simulations show that if the
lockdown measures were implemented a week earlier in Arizona, up to 75% of the cumulative number of COVID-
19 deaths in the state could have been averted (Figure 4 (e), magenta curve). Similarly, 76% of the cumulative
deaths in the state of Florida (Figure 4 (f), magenta curve) and 99% of the cumulative mortality in the state of New
York (Figure 4 (f), magenta curve) would have been prevented. At least 77% of the cumulative deaths recorded
in the entire US would have been averted if lockdown measures were implemented a week earlier (Figure 4 (h),
magenta curve). More dramatic reductions in cumulative mortality would have been recorded if the lockdown
measures were implemented two weeks earlier (Figure 4 (e)-(h), green curves).

Figure 4: Impact of early lockdown: Simulations of the model (2.1), showing the daily and cumulative mortality,
as a function of time, for various durations of the onset of lockdown measures for the states of Arizona, Florida,
New York and the whole of US. The model is ran from the date of the index case, for each of the four jurisdictions,
and extended one month beyond the first day of the relaxation (or partial lifting) of the lockdown measures. (a)-(d):
daily deaths for the state of Arizona, Florida, New York and all of US, respectively. (e)-(h): cumulative deaths for
the state of Arizona, Florida, New York and all of US, respectively. The predictions of the model, for the case when
community lockdown measures were implemented one week earlier, two weeks earlier, or on the actual date the
lockdown measures were implemented, are represented by magenta, green, and blue curves, respectively. Red dots
represent the actual observed data, while blue dashed vertical lines depict the start and end of the actual lockdown
period (shaded in cyan). Parameter used in the simulations are given in Tables A.3-A.4 in Appendix A, with various
start dates for the implementation of community lockdown measures.

Simulations were also carried out to assess the community-wide impact of increased face mask usage during the
lockdown period in each of the four jurisdictions considered in this study. For these simulations, four levels of
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face mask compliance (in relation to the baseline value of the face mask compliance during lockdown, tabulated
in Tables A.3-A.4 in Appendix A), namely 25%, 50%, 75% and 100% compliance, are considered. The results
obtained, depicted in Figure 5, show a marked decrease in cumulative mortality with increasing compliance level
of mask usage in each of the four jurisdictions. In particular, it can be seen that, if half of the residents of the
state of Arizona consistently wear face mask in public during the lockdown period, up to 47% of the cumulative
mortality recorded by the day of the partial lifting of the lockdown measures in the state (May 14, 2020) would
have been averted (Figure 5 (a)). Similarly, up to 30%, 50% and 26% of the cumulative deaths recorded by the day
of the lifting of the lockdown in the states of Florida (Figure 5 (b)), New York (Figure 5 (c)) and in the entire US
(Figure 5 (d)) would have been averted if half their residents wear face masks consistently during their respective
lockdown periods.

A dramatic increase in the cumulative mortality averted in the four jurisdictions is recorded if 75% of the
residents of the four jurisdictions wear face masks during the lockdown period. Specifically, while up to 60% and
42% of mortality recorded by the day of lifting of lockdown measures in Arizona and Florida would be averted,
the state of New York and the entire US would prevent up to 65% and 37% of the deaths they recorded by the
day of the lifting (if 75% of their respective residents wear face masks during the lockdown). If everyone in the
four jurisdictions wear face mask during the lockdown, the percentage reduction of the cumulative mortality on
the day of lifting of lockdown in the states of Arizona, Florida, New York and the whole of US further increase
to 66%, 50%, 74% and 44%, respectively (this corresponds to 468, 714, 21, 928, and 44, 380 deaths being avoided
in the respective jurisdictions, under this 100% face mask compliance scenario). The actual cumulative mortality
recorded in the four jurisdictions by their respective day of the partial lifting of the lockdown (based on using the
baseline values of the face mask compliance, given in Tables A.3-A.4 in Appendix A), together with the cumulative
mortality that would have been recorded on the day of the lifting for various face mask compliance levels, are
tabulated in Table 4.1.

In summary, it can be concluded from Figures 4 and 5 that early implementation of lockdown (i.e., if they were
implemented a week or two earlier than the day they were implemted), combined with increased level of face masks
use during the lockdown periods, will result in a dramatic reduction in the burden of the pandemic in each of the four
jurisdictions considered in this study. In fact, these figures show that it is quite possible that the pandemic might
not have even (significantly) taken off in any of the four jurisdictions if the lockdown measures were implemented
two weeks earlier, and if most of the residents of the four jurisdictions wore face masks consistently in public.

Table 4.1: Actual cumulative mortality on the day lockdown was lifted (Row 2), and cumulative mortality as a
function of mask use compliance that would have been recorded on the day lockdown was lifted? for the states
of Arizona, Florida, New York, and entire US. Baseline mask compliance corresponds to the estimated mask-use
compliance during the lockdown period in Tables A.3-A.4 in Appendix A.

Mask compliance level Arizona Florida New York USA
Baseline mask compliance during lockdown 651 1, 399 30, 140 105, 896

25% mask compliance 558 1, 282 23, 540 93, 410

50% mask compliance 374 996 1, 4780 74, 030

75% mask compliance 285 819 10, 320 62, 540

100% mask compliance 236 705 7, 682 55, 300
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Figure 5: Impact of face masks compliance during lockdown: Simulations of the model (2.1), showing cumula-
tive mortality, as a function of time, for the US state of Arizona, Florida, New York and the entire US. The model is
simulated from the date of the index case for each of the four jurisdictions, for different levels of face masks com-
pliance (cm). (a)-(d): cumulative deaths for the states of Arizona, Florida, New York and all of US, respectively.
The blue curve represents the case for the baseline value of the face masks compliance, and the red dots represent
the actual data. The blue dashed vertical lines represent the onset and termination dates for the lockdown measures
(this region is shaded in cyan color). Parameter values used in the simulations are as given in Tables A.3-A.4 in
Appendix A, with various levels of face masks compliance (cm).

4.2 Impact of Varying Levels of Lifting of Community Lockdown Measures

The model (2.1) is now simulated, using the parameter values in Tables A.3-A.4 in Appendix A, to assess the
community-wide impact of varying levels of lifting of the community lockdown measures implemented in the
states of Arizona, Florida, New York and the entire US. Various states and jurisdictions within the US (with the
exception of the states of New York, New Jersey, New Hampshire, District of Columbia, Illinois, and Delaware)
implemented various levels of lifting of the lockdown measures (by May 20, 2020) [27], in an effort to re-open
socio-economic activities. We consider three levels of community lockdown lifting, namely mild, moderate and
high, as described below (adapted from [47]):

Mild re-opening: The main components of mild lifting or re-opening of community lockdown include lifting of
stay-at-home (lockdown) measures (except for vulnerable individuals, who should shelter-at-home) and maintain-
ing six-feet social-distancing in public places (e.g., parks, outdoor recreation areas, shopping areas, etc). For this
re-opening level, no socializing in groups with more than 10 people and non-essential travels are allowed. Workers
work from home (telework) and nonessential businesses (such as construction sites, manufacturers, nonessential
retail stores for delivery, curbside and in-store pickup, wholesalers, outdoor business, such as drive-in movies,
landscaping and gardening) are allowed to reopen. Furthermore, restaurants and bars are allowed to offer take-out,
while schools and organized youth activities (e.g., daycare, camp) remain closed. Visitation to senior care facilities
and hospitals are prohibited.

Moderate re-opening: Under this moderate level of community re-opening, indoor businesses (such as indoor
dining at restaurants, hair salons and barber shops, but with waiting areas closed, offices, etc.,) are allowed to
reopen (but with limits on capacity, strict cleaning requirements and mandatory social distancing). Furthermore,
real estate firms, in-store retails (excluding Malls, but individual stores can provide curbside pickup), vehicle sales,
leases and rentals, commercial building management, etc., are allowed to reopen. Nonessential travels and gather-
ings of up to 25 people are allowed. The use of face coverings in public is encouraged.

High re-opening: For high level of lifting of community lockdown, gatherings of up to 50 people are allowed.
Additionally, nonessential businesses (such as indoor dining at restaurants with up to 50% capacity and tables
spaced at least six feet away from each other; seating in bar areas allowed, but only if six feet of distance can
be maintained between parties) are allowed to re-open. Furthermore, personal care services, such as nail salons,
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massage parlors, spar services and tanning salons can reopen. Some “low-risk” youth sports are allowed. Similarly,
indoor religious gatherings can operate at 33% of maximum capacity. Nonessential businesses, such as, low-risk
outdoor arts and entertainment activities, including zoos, botanical gardens, historical sites, outdoor museums and
parks, low-risk indoor arts and entertainment activities, including museums, aquariums and historical sites; film,
movie and music production; higher education institutions; professional sports, without fans in the stands, are al-
lowed. Places that often draw large crowds (e.g., movie theaters, gyms and fitness centers, shopping malls, etc.,)
are allowed to reopen.

We model lifting of community lockdown based on increases in community contacts, as measured in terms of
increases in the baseline values of the community contact rate parameters, βp, βa, βi and βs (tabulated in Tables
A.4-A.7 (b)). In particular, we assume that mild lifting of lockdown measures corresponds to a 5% increase in the
baseline values of the contact rate parameters. Similarly, we assume that moderate and high lifting correspond to a
10% and 20% increase in the baseline values of these parameters, respectively. While numerous US states adopted
mild or moderate levels of reopening, none, to the authors’ knowledge, adopted the high reopening level. In other
words, high reopening represents a worst-case scenario that is not, at the current moment, realistically plausible.
We do not expect any US state to adopt the high reopening level (until community transmission of the pandemic is
greatly curtailed and/or a safe and effective vaccine or antiviral is available.

It should further be stated that, for the simulations to be carried out in this section, all control-related parameters
of the model (e.g., parameters related to the use of face masks in public (cm and εm and case detection (τd, τs and
τdmax etc.) are kept at their baseline values. That is, for the simulations in this section, no additional improvements
in the baseline values of the control-related parameters of the model will be allowed (i.e., all control measures are
implemented at their baseline levels given in Tables A.4-A.7).

The simulation results obtained, depicted in Figure 6, show an increase in both the daily and cumulative
COVID-19-induced mortality with increasing lifting levels of the community lockdown. This is expected, since
increasing the level of lifting of the community lockdown measures implies increased community contacts, thereby
resulting in increased number of COVID-19 infections, hospitalizations and deaths. For the worst-case scenario,
where the lifting level is high (i.e., the baseline values of the community contact rate parameters are increased by
20%), the states of Arizona, Florida and the entire US will experience a devastating second wave of the pandemic,
occurring five to ten months after the lockdown measures were lifted, while the state of New York will only
experience a mild second wave (Figure 6, red curves). In particular, under this high lifting scenario (and with
control measures at their baseline values), the second wave for the states of Arizona and Florida will peak in
mid and late October, 2020, respectively, (with about 1, 148 and 2, 733 COVID-19 related deaths in Arizona and
Florida, respectively on the day the pandemic peaks (Figures 6 (a)-(b), red curves)). Similarly, the second wave
for the entire US will peak early in February 2021 (recording about 2, 788 deaths on the day of the second wave
peak), and no pandemic peak will be experienced at the state of New York (Figures 6 (c)-(d), red curves).

On the other hand, if the level of lifting of the community lockdown was moderate, our results show a marked
decrease in the size of the pandemic peaks, as well as a shift in the timing of the peaks (Figures 6 (a)-(d), magenta
curves). Specifically, for this scenario, the peak of the second wave for Arizona and Florida will occur in mid to
late April and Frebruary, 2021, respectively, while the US state of New York and the entire US do not experience
a second wave. Furthermore, the moderate lifting scenario will avert over 92% and 84% of the deaths that would
have occurred at the peak of the pandemic in Arizona and Florida, respectively, if high level of lifting of the control
measures is implemented (i.e., compare red and magenta curves in Figures 6 (a)-(d)).

If mild lifting of the community lockdown was implemented, our simulations show that while the states of
Florida, New York and the whole of US will not experience a second wave, Florida will experience a relatively mild
second wave that will peak in late November, 2020 (Figures 6 (a)-(d), green curves). In this (mild lifting) scenario,
Florida will record about 46 deaths at the peak of the second wave. This represents a 98% reduction of the mortality
that would have been recorded at the peak of the second wave in Florida if high lifting of lockdown measures was
implemented. Furthermore, for this mild lifting of lockdown scenario, the states of Arizona, Florida, New York,
and the entire US will record about 2, 274, 12, 06032, 380, and 155, 900 cumulative deaths, respectively, by the
end of December 2020. These cumulative death numbers represent increases of about 438, 4, 252, 30, and 5, 300,
respectively, in the cumulative mortality that would have been recored by the end of September 2020. Additionally,
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the projected cumulative mortality numbers by the end of the year represent increases of about 1, 623, 10, 661,
2, 240, and 50, 004, respectively, from the actual cumulative mortality numbers when each of the four jurisdiction
started re-opening (Figures 6 (e)-(h)). Table 4.2 summarizes the cumulative COVID-19 related deaths that would
have been averted in the states of Arizona, Florida, New York, and the entire US, by the end of September, October,
November, and December of 2020, if the mild level of lifting of community lockdown was implemented in the four
locations, in comparison to implementing the moderate level of lifting of community lockdown (showing greater
reductions in the states of Arizona and Florida, in comparison to the mild or moderate reductions in the state of
New York and the whole of US).

It is worth emphasizing that the size of the second wave depends on the level of lifting of the lockdown measures
implemented and the location. For instance, while the state of Florida will always record a second wave, regardless
of the level of the lifting of the community lockdown measures (mild, moderate, or high), the states of Arizona
and New York, as well as the entire US, will not record a (significant) second wave if the level of lifting of the
community lockdown was mild. In all four locations, the size (or pubic health burden of the second wave) decreases
with decreasing level of the lifting of the community lockdown measures. Further, moderate and mild lifting not
only decreases the peak daily mortality, they shift the time of the second wave. It is also notable from Figure 6
that the second wave in Arizona and Florida is far more severe than the first wave, regardless of the level of lifting
of the community lockdown implemented in the two states.

Figure 6: Impact of re-opening of community lockdown. Simulations of the model (2.1), showing daily and
cumulative mortality, as a function of time, for various levels of re-opening of community lockdown measures in
the states of Arizona, Florida, New York and the entire US. Mild, moderate, and high re-opening of community
lockdown corresponds to a 5%, 10%, and 20% increase in the baseline value of the community contact rate param-
eters (βp, βa, βi, and βs), respectively. (a)-(d): Daily deaths for the state of Arizona, Florida, New York and all of
US, respectively. (e)-(h): Cumulative deaths for the state of Arizona, Florida, New York and all of US, respectively.
Other parameter values used in the simulations are as given in Tables A.3-A.4 in Appendix A.
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Table 4.2: Percentage reduction in cumulative COVID-19 mortality averted in the states of Arizona, Florida, New
York and the entire US (by the end of September, October, November, and December of 2020) if mild levels
of lifting of community lockdown was implemented, in comparison to the case where moderate level of lifting
of the community lockdown was implemented. Mild and moderate lifting of community lockdown correspond,
respectively, to a 5% and 10% increase in the baseline values of the community contact rate parameters (βp, βa, βi
and βs).

Location September 30, 2020 October 31, 2020 November 30, 2020 December 31, 2020
Arizona 48 % 58 % 66 % 73 %

Florida 52 % 60 % 67 % 72 %

New York 2.3 % 2.5 % 2.6 % 2.7 %

US 10 % 13 % 15 % 17 %

4.3 Effect of Mask Usage After High Lifting of Community Lockdown Measures

In this section, the model (2.1) is simulated, using the parameter values in Tables A.3-A.4 in Appendix A, to assess
the community-wide impact of mask usage during the post-lockdown period in the states of Arizona, Florida, New
York and the whole of US. For these simulations, we consider high level of lifting of the community lockdown
measures in all four jurisdictions (i.e., we consider the scenario where the baseline values of the community contact
rate parameters, βp, βa, βi and βs, are increased by 20% in all four locations) and various values of face mask
compliance (cm). Note that the baseline efficacy of the face mask to protect the wearer from acquiring infection is
assumed to be 50% (i.e., εm = 0.5). The simulation results obtained are depicted in Figure 7, from which it follows
that the cumulative number of cases, hospitalizations and COVID-induced mortality decrease with increasing face
mask compliance. It was observed that if two in every five people (i.e., 40%) in each of the jurisdictions considered
in this study wear face masks in public after the lockdown measures were lifted, only the state of Florida will
experience a (very mild) second wave of the pandemic. In this scenario, the states of Arizona and New York, as
well as the entire US, will not have a second wave of the pandemic. Furthermore, no second wave of the pandemic
will be experienced in any of the four jurisdictions if half of the residents wear face masks after the lockdown (this
is obtained from plotting the corresponding daily mortality; the plot is not included to save space).

If half of Arizonans wear face masks after the lockdown period, under this high lifting scenario, Figure 7 (a)
shows that the state will record a cumulative mortality of 1, 180 by the end of December 2020 (and this corresponds
to a 98% reduction in the cumulative mortality that would have been recorded in the state if the face mask compli-
ance was at the estimated value of 14% during the lockdown period, tabulated in Table A.4)). Similarly, the states
of Florida, New York, and the entire US will record 4, 465, 31, 770, and 138, 800 cumulative deaths, respectively
(over the same time period), if half their populations wear face masks in public after the lockdown period. This rep-
resents a reduction of 96%, 26% and 67% in the cumulative mortality, respectively, that would have been recorded
if the respective estimated face mask compliance during the lockdown period was used (Figures 7 (b)-(d)). These
numbers decrease dramatically if 75% of the residents of the four jurisdictions wear face masks immediately after
the lifting of the lockdown measures. For example, the states of Arizona, Florida, New York and the whole US
will record cumulative mortality of 951, 2, 516, 31, 270 and 124, 200, respectively (over the same time period), if
75% of their respective residents wear face masks after the lockdown period (representing a 99%, 99%, 28% and
74% reduction in the respective cumulative mortality in comparison to when the estimated lockdown face mask
compliance value is used). Higher reductions are observed when everyone wears face mask after the lockdown
(albeit the reductions are far more pronounced in the states of Arizona and Florida, than in the state of New York
and the entire US). Figure 7 shows similar results for the reductions in the cumulative hospitalizations (Figures 7
(e)-(h)) and the cumulative new COVID cases (Figures 7 (i)-(l)).

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2020. ; https://doi.org/10.1101/2020.07.05.20146951doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.05.20146951
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7: Impact of face mask usage on COVID-19 burden after mhigh lifting of community lockdown.
Simulations of the model (2.1), for high lifting of community lockdown in the states of Arizona, Florida, New York
and the entire US, and various levels of face mask compliance (cm). (a)-(d): Cumulative mortality for the state
of Arizona, Florida, New York and all of US, respectively. (e)-(h): Cumulative hospitalizations for the state of
Arizona, Florida, New York and all of US, respectively. (i)-(l): Cumulative cases for the states of Arizona, Florida,
New York and all of US, respectively. Parameter values used are as given in Tables A.3-A.4 in Appendix A, and
various levels of face mask compliance (cm).

4.4 Effect of Mask Usage After High Lifting of Community Lockdown Measures

When high level of lifting is implemented (i.e., the associated community contact rate parameters (βp, βa, βi and
βs) are increased by over 20% from their baseline values), our simulations show that a second wave in all four
jurisdictions would be inevitable, depending on the level of the increase of the high lifting scenario. We consider a
hypothetical scenario where the level of lifting of the community lockdown measures is further increased, such as
to a level that entails increasing the baseline values of the community contact rate parameters (βp, βa, βi and βs) by
50%. This higher level may be akin to essentially returning to business as usual, where no significant restrictions are
imposed (except, perhaps, no large gatherings such as major sporting, social and political campaign events). The
simulation results obtained, for this hypothetical scenario in the four jurisdictions, are depicted in Figure 8. This
figure shows a dramatic decrease in daily COVID-induced mortality with increasing face mask compliance. For
this higher community lockdown lifting scenario, the states of Arizona and Florida will experience a major second
wave peaking on October 19, 2020 (with 1, 294 deaths on this day) and October 3, 2020 (with 3, 599 deaths on this
day), respectively, even if half their residents wear face masks after the lockdown has been lifted (Figures 8 (a)-(b),
red curves). The state of New York and the entire US will have milder second waves peaking on March 24, 2021
(with 123 deaths at the peak) and January 13, 2021 (with 5, 896 deaths at the peak), respectively. Furthermore,
no second wave will occur in any of the four jurisdictions if 75% of their respective residents wear face masks
after the lockdown period (Figures 8 (a)-(d), purple curves). In fact, under this very high lifting scenario, all four
jurisdictions will have very mild or no significant outbreaks of COVID-19 if the face masks compliance is at least
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75%. In other words, high masks compliance after community lockdown lifting (even if the level of lifting was
very high) greatly reduces the community transmission of COVID-19 in all four jurisdictions (resulting in very
mild or no outbreaks in all four jurisdictions). If everyone in the jurisdictions wear face masks after the lockdown
(i.e., cm = 1), our simulations show that, for this very high level of lifting of community lockdown (with baseline
community contact rates increased by 50%), the pandemic will be effectively curtailed (as measured in terms of
major suppression of community transmission) in all four locations within two to three months after the community
lockdown measures have been lifted.

Figure 8: Impact of higher lifting of community lockdown measures (as measured in terms of 50% increase in
the baseline values of the community contact rate parameters, βe, βi, βa and βs) and various compliance levels of
face mask usage in the four jurisdictions. Simulations fo the model (2.1) showing the daily mortality, as a function
of time. (a)-(d): daily deaths for the state of Arizona, Florida, New York and all of US, respectively. Parameter
values used are as given in Tables A.3-A.4 in Appendix A, with various levels of face masks compliance (cm).

4.5 Impact of Case Detection and High Lifting of Community Lockdown Measures

In this section, the model (2.1) is simulated to assess the impact of detection of exposed (E), pre-symptomatic (Ep),
and asymptomatically-infectious (Ia) individuals, via the implementation of a COVID-19 diagnostic/surveillance
testing strategy (as measured in terms of increase in the baseline values of the maximum detection rate parame-
ter, τdmax), and high level of lifting of community lockdown measures, on the burden of COVID-19 in the four
jurisdictions considered in this study. The results obtained, depicted in Figure 9, show a dramatic decrease in the
daily and cumulative mortality with increasing values of the maximum detection rate. This figure shows that, while
Arizona, Florida, and the entire US will suffer a major second wave if the baseline value of the maximum detection
rate (τdmax) is used (as depicted in Figure 6), much milder second waves will be recorded in the states of Arizona
and Florida if the baseline value of the maximum detection rate is increased by 10% (Figures 9 (a)-(d), red curves).
It should be mentioned that the milder second waves will still be larger than the first waves recorded in the two
jurisdictions. On the other hand, it can be seen from this figure that (for this scenario) the state of New York and the
entire US will not suffer a second wave of the pandemic. If the baseline value of the maximum detection rate can
be increased by 15%, our simulations show that none of the four jurisdictions will suffer a second wave. However,
the decline in the daily deaths for the states of Arizona and Florida is slower that that for the state of New York and
the entire US (Figures 9 (a)-(d), magenta curves). If the baseline value of the maximum detection rate is increased
by 20% from its baseline value, our simulations show that none of the four jurisdictions will experience a second
wave (Figures 9 (a)-(d), green curves).

Furthermore, a significant reduction in the cumulative mortality is achieved in all four jurisdictions, with in-
creasing levels of the baseline maximum detection rate (Figures 9 (e)-(h)). For example, if the maximum detection
rate is increased by 10% from its baseline value ( noting that, for these simulations, high level of lifting of lockdown
is used), our simulations for the state of Arizona show that up to 96% of cumulative mortality that would have been
recorded by the end of December 2020, under the high lifting scenario with baseline value of maximum detection
rate (depcited in Figure 6) will be averted in the state if τdmax is increased by 10% from its baseline value (i.e.,
compare Figures Figure 6 and Figure 9). Similarly, the states of Florida, New York and the entire US will avert
91%, 25%, and 60% of the respective cumulative deaths that would have been recorded by the end of December,
2020, under this scenario. Our simulations show even more dramatic decrease in the cumulative number of deaths
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if the baseline maximum detection rate is increased by 20% (Figure 9, green curves). It can be concluded from
Figure 9 that widespread (random) diagnostic testing (i.e., the detection, tracing and rapid self-isolation of infected
individuals with no symptoms of COVID-19) plays a major role in curtailing community transmission in each of
the four jurisdictions. Consequently, widespread testing greatly contributes in suppressing community transmis-
sion of COVID-19. In particular, ramping up testing to a level that increases the baseline value of the maximum
detection rate (τdmax), by as low as 20%, could greatly diminish community transmission, to the extent that Ari-
zona, Florida, New York state, and the entire US may not experience a second wave. In summary, widespread
random testing contributes in detecting, tracing and isolating asymptomatic cases (hence, breaking their transmis-
sion chains) that would otherwise be spreading the virus in the community. More testing clearly does not mean
more new cases. More testing means more detection (and rapid isolation) of asymptomatic cases, thereby reducing
community transmission. It should be emphasized that face masks compliance is maintained at the baseline value
depicted in Tables A.3-A.4.

Figure 9: Impact of percentage increase in maximum detection rate of asymptomatic infected individuals,
for the case where high level of lifting of community lockdown (i.e., 20% increase in the community contact rates)
was implemented in each of the four jurisdictions. Simulations of the model (2.1), showing daily and cumulative
mortality, as a function of time. (a)-(d): daily deaths for the state of Arizona, Florida, New York and all of US,
respectively. (e)-(h): cumulative deaths for the state of Arizona, Florida, New York and all of US, respectively.
Parameter values used are as given in Tables A.3-A.4 in Appendix A, with various percentage increase in the value
of τdmax.

Additional simulations were carried out to assess the combined impact of percentage increases in the maximum case
detection rate (τdmax) of asymptomatic infected individuals (i.e., infected individuals in the E, Ep and Ia classes)
and increased mask use compliance (cm), from their baseline values, on the public health burden of the pandemic in
the four jurisdictions. The simulations were carried out for the case where a high level of lifting of the community
lockdown (i.e., 20% increase in the baseline values of the community contact rate parameters) was implemented in
each of the four jurisdictions. The results obtained are depicted in Figure 10, from which it follows that the daily
and cumulative mortality significantly decreases with increasing levels of the maximum case detection rate (from
its baseline value). For instance, even a 10% increase in the baseline value of the maximum case detection rate
could lead to a sizable reduction in the cumulative mortality in all four jurisdictions. Furthermore, a 20% increase
in the baseline level of the maximum case detection rate can dramatically decrease the burden of the pandemic in
each of the four jurisdictions even if combined with low level of face mask compliance, such as 25% face mask
compliance (Figure 10, green curves). In fact, this combination (of 20% increase in baseline value of τdmax and
25% face mask compliance) can avert a second wave in each of the four jurisdictions. For this particular case (with
20% increase in baseline value of τdmax and 25% mask compliance), the states of Arizona, Florida, New York
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and the whole of US will record, respectively, about 1, 075, 3, 394, 31, 620, and 138, 000 cumulative deaths by the
first week of December 2020. This corresponds to 99%, 99%, 28% and 71% decrease in the cumulative deaths
if the maximum case detection rate (τdmax) was combined only with baseline face mask compliance (i.e., if only
baseline face mask compliance is used). Larger increases in the maximum case detection rate and increased face
mask compliance will lead to even more significant decrease in the burden of the pandemic in all four jurisdictions.

Figure 10: Impact of increase in maximum detection rate of asymptomatic infected individuals (τdmax) and
face masks use. Simulations of the model (2.1), showing daily and cumulative mortality, as a function of time, for
high level of lockdown lifting in the states of Arizona, Florida, New York and the entire US. (a)-(d): daily deaths
for the state of Arizona, Florida, New York and all of US, respectively. (e)-(h): cumulative deaths for the state of
Arizona, Florida, New York and all of US, respectively. Parameter values used are as given in Tables A.3-A.4 in
Appendix A, with various values of percentage increases in τdmax and face masks compliance fixed at 25% (i.e.,
cm = 0.25).

Discussion and Conclusions

In this study, we developed a new Kermack-Mckendrick epidemic model (i.e., a disease transmission model with no
demographic processes) for the transmission dynamics and control of COVID-19 in the states of Arizona, Florida,
New York, and the entire US. Some of the notable features of the compartmental model, which takes the form of
a deterministic system of nonlinear differential equations, include accounting for the dynamics of pre-symptomic
and asymptomatically-infectious individuals (who contribute to disease transmission) and allowing for the assess-
ment of the community-wide impact of some non-pharmaceutical interventions, particularly the use of face masks
in public. The model, which was parameterized using cumulative mortality data from the aforementioned four
jurisdictions, was used to address the important question of whether or not the widespread use of face masks could
halt the post-lockdown resurgence of COVID-19 in the US, without having to undergo another cycle of community
lockdowns. Specifically, the model was used to assess the community-wide impact of early lockdown, various
levels of lockdown lifting, case detection of asymptomatic individuals, and the use of face masks on the dynamics
and control of COVID-19 in each of the four jurisdictions considered in this study.

Rigorous qualitative analysis of the model reveal that it has a continuum of disease-free equilibria, which is
asymptotically-stable whenever a certain epidemiological threshold, known as the control reproduction number
is less than unity. The epidemiological implication of this result, which represents a sufficient condition for the
effective control of the disease, is that community transmission of COVID-19 can be significantly suppressed in
the four jurisdictions if the control and mitigation interventions can bring, and maintain, the reproduction threshold
to a value less than unity. A relation for the final size of the pandemic was also derived analytically. We explored
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the sensitivity of the reproduction number with respect to face mask compliance in the four jurisdictions. In
particular, we showed that community transmission of COVID-19 can be significantly reduced, using a face mask
with efficacy of 50%, if at least 53% of Arizonans wear a face mask (from the beginning of the index case in
Arizona). Similar face mask compliance for the states of Florida (59%), New York (38%) and the entire US (46%)
were also obtained. In other words, our study shows that COVID-19 could have been effectively controlled if a
public face mask strategy (particularly using surgical/medical masks, with protective efficacy of at least 50%) is
implemented in each of the four locations, and the aforementioned minimum compliance attained (and maintained)
from the beginning of the pandemic. This result is consistent with what actually happened in other parts of the world
(particularly in some Asian countries, such as China, Japan, Singapore and South Korea), where the universal use of
face masks greatly curtailed community transmission of COVID-19 (and brought the pandemic under very effective
control, essentially at scales that can be, for all intents and purposes, considered as pandemic elimination).

Community lockdown was one of the major non-pharmaceutical intervention implemented in the US (and
around the world), in an effort to curtail the community spread of COVID-19. Many states of the US were in
community lockdown generally from mid March to the end of May, 2020 (we consider, for simulation purposes,
that the entire US was (generally) in community lockdown between April 7, 2020 to May 28, 2020). In particular,
the state of New York, once the global epicenter of COVID-19, was among the first of the US states to implement a
community lockdown (on March 22, 2020) and among the last to begin to partially-reopen (on May 28, 2020). As a
consequence, the state of New York is currently recording very low COVID-19 case numbers and one of the lowest
mortality numbers in the US [48]. On the other hand, the states of Arizona and Florida that were among the last to
lockdown and among the first to partially lift the lockdown measures, are now experiencing an alarming resurgence
of COVID-19 (with record case and hospitalization numbers [4, 5, 49]. It should be emphasized that, although
the states of Arizona and Florida succeeded in bending their epidemic curves during the lockdown period, they
were not in community lockdown long enough to achieve the two weeks of continuous decline in confirmed cases
stipulated in the re-opening guidelines by the White House Coronavirus Task Force [28]. Our study highlights
the importance of early implementation of control measures (community lockdown in this case) and sustaining
these measures until a time is reached when it is safe to (responsibly) begin to relax these measures (i.e., begin to
partially lift the lockdown measures). Our simulations showed that if the lockdown measures were implemented
a week earlier (than the actual days they were implemented in the four locations), all four jurisdictions would
have recorded very significant reductions in their respective daily and cumulative mortality numbers by the day
the lockdown measures were partially lifted. For example, our simulation results showed that about 77% of the
cumulative mortality number for the US (as of the day lockdown measures were partially lifted) would have been
averted.

Our simulation results also highlight the importance of combining early implementation of the lockdown mea-
sures with increased face mask usage during the community lockdown. In particular, we showed that combining
the early implementation of lockdown (i.e., implementing the lockdown measures 1-2 weeks earlier) with a public
face mask strategy during the lockdown (and with reasonably high face mask compliance level) resulted in dramatic
reductions in disease burden in each of the four jurisdictions. In fact, our simulations showed that the pandemic
might not have even taken off significantly in any of the the four jurisdictions if the community lockdown measures
were implemented two weeks earlier and most people in the jurisdictions wear face masks during the lockdown.

The lifting of community lockdown in many communities in the US was done in multiple phases, and at
varying levels. For this reason, we used our model to assess the community-wide impact of the varying levels
of lifting of community lockdown implemented in the four jurisdictions. We considered three levels of lifting of
community lockdown, namely mild, moderate and high (based on the level of community interactions allowed. For
example, based on whether or not restaurants, gyms, salons, malls, etc., are opened or closed). Mechanistically, the
heterogeneity in the lifting levels is incorporated into our model by increasing the baseline values of the community
contact rate parameters (βp, βa, βi and βs). Our results showed an increase in daily and cumulative mortality in each
of the four jurisdictions with increasing lifting levels of the community lockdown implemented in the respective
jurisdictions. Furthermore, we showed that if a high level of lifting of the community lockdown is implemented
(and all control measures are fixed at their baseline levels), the states of Arizona and Florida will have a devastating
second wave of the COVID-19 pandemic that would occur about five months after their respective lifting of the
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community lockdown, while the state of New York and the entire US will record much milder second waves.
However, if the level of lifting was moderate, our results showed a sizable decrease in the COVID-19 burden in
all four jurisdictions. If mild lifting was implemented, only the state of Florida will experience a second wave
of the pandemic. In other words, our study showed that the size (or severity) of the second wave depends on the
level of lifting of the community lockdown. Furthermore, the severity (or size) of the second wave decreases with
decreasing levels of the lockdown lifting. The second waves recorded in Arizona and Florida during moderate and
high lifting of the community lockdown measures are drastically more severe than their respective first waves.

We also assessed the impact of universal use of face masks after the lockdown. In particular, we showed that for
high lifting, the disease burden in each of the four jurisdictions decreases with increasing face mask compliance.
If two in every five residents of each of the four jurisdictions (i.e., 40%) wear face masks after the lockdown, our
study showed that only the state of Florida will have a second wave (which will be relatively mild). In fact, no
second wave will be experienced in any of the four locations if half of their residents wear face masks. Higher
reductions of pandemic burden will be recorded if face mask compliance is 75%. Thus, this study showed that, for
mild moderate, or high level of lifting of community lockdown, face masks are extremely useful, and can greatly
suppress COVID-19 (in addition to obviating the likelihood of a devastating second wave). On the other hand, if
the level of lifting is unreasonably high, characterized by a 50% increase in the community contact rate parameters
(this hypothetical scenario is essentially equivalent to returning to almost a “business as usual” scenario), then all
four jurisdictions will experience a second wave (albeit the second wave for New York state and the entire US
will be mild) if half the residents of the respective jurisdictions wear face masks after the lockdown. There will,
however, be no second wave in any of the four jurisdictions if the post-lockdown face mask compliance is 75%.
Thus, our study showed that high face masks compliance after lockdown will greatly curtail COVID-19 even if the
lifting of the lockdown was high.

The community-wide impact of early detection and self-isolation of asymptomatic cases (as measured by in-
crease in the maximum detection rate parameter, τdmax) was also assessed in our study. Our simulation results
showed a significant reduction in the daily and cumulative mortality with increasing values of the maximum detec-
tion rate, in all four jurisdictions. Although the states of Arizona and Florida, as well as the entire US, will suffer
devastating second waves when their respective baseline value of the maximum detection rate parameter are used,
ramping up testing (and contact tracing, followed by self-isolation of cases) to a level that increases the respective
baseline value of the maximum detection rate by just 10% will result in a much milder second wave in Arizona and
Florida, and no second wave in New York state and the whole of the US. Further increasing the baseline maximum
detection rate to 20% of its baseline value will guarantee no second wave as well as trigger a substantial reduction
in the number of deaths in any of the four jurisdictions. More dramatic reductions in disease burden are achieved if
the testing strategy is combined with a universal face masks use strategy.

In summary, this study emphasizes the importance of early implementation of effective control strategies. In
the absence of a safe and effective vaccine or antiviral, the control and mitigation of COVID-19 rely solely on the
implementation of non-pharmaceutical interventions. While the lockdown measures implemented in the US have
greatly curtailed community transmission of COVID-19 during the lockdown period, numerous states within the
US federation rushed to pre-maturely re-open or lift the lockdown measures, triggering an alarming resurgence
of COVID-19 in numerous states. We showed that the implementation of an effective public face mask strategy
will greatly control community transmission in the states of Arizona, Florida, New York, and the entire US if
the compliance level in each of the four jurisdictions is high enough (regardless of the level of lifting of lockdown
implemented). We showed that such a face mask use strategy can avert the projected devastating second expected to
hit these jurisdictions by the end of the year 2020. The effectiveness of face masks to curtail the burden of COVID-
19 is enhanced if it is combined with an effective testing strategy that can increase the maximum detection rate (of
asymptomatic infected individuals) in the community. This study showed that the prospect for the effective control
of the post-lockdown resurging COVID-19 in the states of Arizona, Florida, New York and the entire US is very
promising using a face mask strategy, if the mask strategy is universally adopted in the country (and compliance
is at least moderate). Before a safe and effective vaccine and/or antiviral is developed and approved for use in
humans, the use of face masks in public is, undoubtedly, the best and most effective way to curtail community
transmission of the COVID-19 pandemic in the four jurisdictions we considered. Of course, our study is not
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advocating that face masks must be worn in public until the vaccine or antiviral is developed. They should be worn
until community transmission is greatly suppressed. Once this is achieved, the use of face masks in public can be
relaxed, as long as diagnostic testing and contact tracing can be ramped up to quickly identify and suppress any new
post-mask outbreak in the community. Countries in Asia, particularly (and some in Europe) adopted this approach
to great effect. Once their mask use strategy (and other NPIs, such as social-distancing) succeeded in suppressing
community transmission, they relaxed the use of face masks in public but continue to be very vigilant (vis a vis
the rapid identification and suppression of any future outbreaks). It should be mentioned that contact tracing is
more feasible (and effective) when community transmission is already suppressed to a low (and manageable) level.
It is logistically-easier (or feasible) to effectively trace a small number of cases, than a large number. The US is
currently recording about 56, 000 confirmed cases daily, and the number of confirmed cases is expected to rise (up
to 100, 000 cases daily, or more). Tracing the contacts of these cases will be almost an impossible undertaking.
Our study emphasize the urgent need to decrease community transmission (via, primarily, the universal use of
face masks, complemented by social-distancing, avoiding large gatherings and other NPIs). Once the reduction is
achieved, the face masks use strategy can be relaxed, and tracing and testing can now become the main strategy to
rapidly detect and contain any future COVID-19 outbreaks in the community.

Finally, this study highlights the fact that widespread random testing contributes in detecting, tracing and isolat-
ing asymptomatic cases (hence, breaking their transmission chains) that would otherwise be spreading the virus in
the community. More testing clearly does not mean more new cases. More testing means more detection (and rapid
isolation) of asymptomatic cases, thereby reducing community transmission. Hence, more testing reduces number
of new cases, hospitalizations and deaths. More dramatic reduction in COVID-19 burden (measured in terms of
reduction in the number of new cases, hospitalizations and deaths) is achieved when the public face masks use strat-
egy (with at least moderate compliance) is combined with a robust and effective random testing (and subsequent
tracing and rapid isolation of cases) strategy in the community.
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Appendices
A Tables of variable descriptions, parameter descriptions, and parameter values

Table A.1: Description of the state variables of the model (2.1)

State variable Description
S Population of susceptible individuals
E Population of exposed (newly-infected but not infectious) individuals
Ep Population of pre-symptomatic (infectious) individuals
Ia Population of asymptomatically-Infectious individuals
Im Population of infectious individuals with mild or moderate clinical symptoms of COVID-19
Is Population of infectious individuals with severe clinical symptoms of COVID-19
Ii Population of infectious individuals in self-isolation
Ih Population of hospitalized individuals
Ic Population of individuals in ICU
Ru Population of untested recovered individuals
Rt Population of recovered individuals who received serology (antibody) test
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Table A.2: Description of parameters of the model (2.1)

Parameter Description
βp(βa)(βm)(βs) Effective contact rate for individuals in the Ep(Ia)(Im)(Is) class

εm Efficacy of face masks to prevent transmission and acquisition of infection (0 < εm ≤ 1)
cm Compliance in face mask usage in the community (0 < cm ≤ 1)
τd Detection rate of asymptomatically-infected individuals via random diagnostic/surveillance

testing
τs Detection rate of untested recovered individuals via serology (antibody) testing

τdmax(τsmax) Maximum diagnostic (serology) detection rate
Tn Average number of testing conducted per day
σe Progression rate from E to Ep class
σp Progression rate of pre-symptomatic exposed individuals to Ia, Im or Is class
r Proportion of individuals in the Ep class who show no clinical symptoms of COVID-19 at

the end of the incubation period (and move to the Ia class)
1− r Proportion of individuals in the Ep class who show clinical symptoms of COVID-19 at the

end of the incubation period (and move to the Im class, at a rate g(1 − r)σ, or to the Is
class, at a rate (1− g)(1− r)σ)

g Proportion of individuals in the Ep class who develop mild symptoms of COVID-19 at the
end of the incubation period

1− g Proportion of individuals in the Ep class who develop severe symptoms of COVID-19 at
the end of the incubation period

f Proportion of individuals in the Is class who are hospitalized
1− f Proportion of individuals in the Is class who are self-isolated
ρm Self-isolation rate for individuals in the Im class

(1− f)ρs Self-isolation rate for individuals in the Is class
fρs Hospitalization rate for individuals in the Is class
ξi Hospitalization rate of self-isolated individuals
ψh ICU admission rate for hospitalized individuals

γa(γs)(γh)(γi)(γc) Recovery rate for individuals in the Ia(Is)(Ih)(Ii)(Ic) class
δs(δh)(δi)(δc) Disease-induced death rate for individuals in the Is(Ih)(Ii)(Ic) class

Table A.3: Baseline parameter values for the model (2.1) drawn from the literature.

Parameter value Reference
εm 0.5 Estimated from [50]
σe 1/2.5 [17, 51, 52, 52–54]
σp 1/2.5 [17, 53–55]
r 0.324 Estimated from [8, 14]
g 0.719 Estimated from [8, 14]
ρs 1/3.5 [56]
ψh 1/6 [57]
γa 1/5 [57]
γs 1/10 [17, 58]
γh 1/8 [58]
γi 1/7 [59]
γc 1/10 [17, 58]
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Table A.4: Calibrated parameter values for the model (2.1) using cumulative mortality data for the state of Arizona.
(a) Pre-lockdown period (i.e., from March 6 to March 31, 2020). (b) Lockdown period (i.e., from March 31 to
May 15, 2020). The lower 95% confidence interval bound is denoted by CI (low), while the upper 95% confidence
interval bound is denoted by CI (up).

(a) Estimated parameters for the pre-lockdown period.

Parameter Value 95% CI (low) 95% CI (up)
βp 1.4491 0.1988 1.8275

βa 0.5746 0.1000 0.9678

βm 0.6456 0.1000 3.1649

βs 0.4233 0.1000 0.6055

cm 0.0435 0.0357 0.0500

τdmax 0.2388 0.1537 0.4171

ρm 0.2857 0.0571 0.2972

ξi 0.2857 0.0857 0.2972

δh 0.0155 0.0050 0.0380

δc 0.0304 0.0300 0.0800

δs 0.0228 0.0225 0.0600

δi 0.0228 0.0225 0.0600

Rc 2.0510 0.7623 2.5078

(b) Estimated parameters for the lockdown period.

Parameter Value 95% CI (low) 95% CI (up)
βp 1.3149 1.0225 1.4491

βa 0.5746 0.4512 0.5746

βm 0.4372 0.1000 0.6456

βs 0.3893 0.2265 0.4233

cm 0.1392 0.1100 0.1715

τdmax 0.4525 0.3257 0.5721

ρm 0.2552 0.0982 0.2857

ξi 0.2601 0.1287 0.2857

δh 0.0081 0.0073 0.0103

δc 0.0108 0.0097 0.0137

δs 0.0054 0.0073 0.0069

δi 0.0054 0.0049 0.0069

Rc 0.9415 0.0049 0.9877

Table A.5: Calibrated parameter values for the model (2.1) using cumulative mortality data for the state of Florida.
(a) Pre-lockdown period (i.e., from March 1 to April 3, 2020). (b) Lockdown period (i.e., from April 3 to May 4,
2020). The lower 95% confidence interval bound is denoted by CI (low), while the upper 95% confidence interval
bound is denoted by CI (up).

(a) Estimated parameters for the pre-lockdown period.

Parameter Value 95% CI (low) 95% CI (up)
βp 1.3523 0.8804 1.6706

βa 0.9232 0.4013 1.926

βm 0.6800 0.1000 0.8675

βs 0.2062 0.0100 0.2479

cm 0.0396 0.0374 0.05

τdmax 0.2309 0.1065 0.3011

ρm 0.2857 0.0571 0.2956

ξi 0.2561 0.0973 0.2857

δh 0.0051 0.0050 0.0320

δc 0.0308 0.0300 0.0702

δs 0.0231 0.0225 0.0527

δi 0.0231 0.0225 0.0527

Rc 2.0997 1.9118 2.2214

(b) Estimated parameters for the lockdown period.

Parameter Value 95% CI (low) 95% CI (up)
βp 1.1505 0.6004 2.3827

βa 0.9232 0.1160 0.9832

βm 0.5064 0.1154 0.6800

βs 0.1642 0.1021 0.2062

cm 0.1647 0.0800 0.2056

τdmax 0.4681 0.3242 0.8105

ρm 0.1612 0.0857 0.1714

ξi 0.2568 0.1143 0.2571

δh 0.0067 0.0040 0.0150

δc 0.0075 0.0014 0.0135

δs 0.0056 0.0011 0.0101

δi 0.0056 0.0011 0.0101

Rc 0.9772 0.6638 0.9859
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Table A.6: Calibrated parameter values for the model (2.1) using cumulative mortality data for the state of New
York. (a) Pre-lockdown period (i.e., from March 1 to March 22, 2020). (b) Lockdown period ((i.e., from March
22 to May 28, 2020)). The lower 95% confidence interval bound is denoted by CI (low), while the upper 95%
confidence interval bound is denoted by CI (up).

(a) Estimated parameters for the pre-lockdown period.

Parameter Value 95% CI (low) 95% CI (up)
βp 2.7450 1.3772 3.3895

βa 0.8989 0.1000 2.0134

βm 0.1254 0.1000 3.1228

βs 0.4246 0.1000 0.8043

cm 0.0190 0.0000 0.0500

τdmax 0.3010 0.3002 0.4940

ρm 0.2857 0.0571 0.2896

ξi 0.2822 0.0857 0.2857

δh 0.0371 0.0050 0.0400

δc 0.0434 0.0300 0.0800

δs 0.0326 0.0225 0.0600

δi 0.0326 0.0225 0.0600

Rc 2.5321 1.5460 3.2335

(b) Estimated parameters for the lockdown period.

Parameter Value 95% CI (low) 95% CI (up)
βp 1.0363 0.4207 1.8901

βa 0.8989 0.2228 0.9889

βm 0.4046 0.1735 0.5978

βs 0.5943 0.1000 0.7425

cm 0.1500 0.1222 0.2162

τdmax 0.4485 0.3010 0.6142

ρm 0.2466 0.1716 0.2857

ξi 0.2426 0.1714 0.2571

δh 0.0097 0.0067 0.0221

δc 0.0129 0.0089 0.0221

δs 0.0065 0.0044 0.0111

δi 0.0065 0.0044 0.0111

Rc 0.8480 0.5307 0.8955

Table A.7: Calibrated parameter values for the model (2.1) using cumulative mortality data for the entire US. (a)
Pre-lockdown period (i.e., from January 22 to April 7, 2020). (b) Lockdown period (i.e., from April 7 to May 28,
2020). The lower 95% confidence interval bound is denoted by CI (low), while the upper 95% confidence interval
bound is denoted by CI (up).

(a) Estimated parameters for the pre-lockdown period.

Parameter Value 95% CI (low) 95% CI (up)
βp 0.7290 0.6677 0.7751

βa 0.8969 0.7745 0.9764

βm 0.8086 0.7530 0.9224

βs 0.4010 0.1870 0.4642

cm 0.0278 0.0276 0.0294

τdmax 0.1797 0.1722 0.1960

ρm 0.1801 0.1584 0.1853

ξi 0.1765 0.1316 0.2417

δh 0.0073 0.0052 0.0386

δc 0.0304 0.0300 0.0800

δs 0.0228 0.0225 0.0600

δi 0.0228 0.0225 0.0600

Rc 2.3277 2.2854 2.3758

(b) Estimated parameters for the lockdown period.

Parameter Value 95% CI (low) 95% CI (up)
βp 0.4075 0.3327 0.5454

βa 0.6036 0.1008 0.8614

βm 0.4592 0.2531 0.7336

βs 0.1344 0.1053 0.2635

cm 0.1835 0.1312 0.2300

τdmax 0.2294 0.1799 0.3812

ρm 0.2571 0.1045 0.2684

ξi 0.0795 0.0571 0.1557

δh 0.0048 0.0043 0.0050

δc 0.0064 0.0058 0.0067

δs 0.0032 0.0029 0.0034

δi 0.0032 0.0029 0.0034

Rc 0.8833 0.6363 0.8929
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