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Abstract 1 

Testing and case identification are key strategies in controlling the COVID-19 2 

pandemic. Contact tracing and isolation are only possible if cases have been identified. The 3 

effectiveness of testing must be tracked, but a single comprehensive metric is not available to 4 

assess testing effectiveness, and no timely estimates of case detection rate are available 5 

globally, making inter-country comparisons difficult. The purpose of this paper was to 6 

propose a single, comprehensive metric, called the COVID-19 Testing Index (CovTI) scaled 7 

from 0 to 100, that incorporated several testing metrics. The index was based on case-fatality 8 

rate, test positivity rate, active cases, and an estimate of the detection rate. It used 9 

parsimonious modeling to estimate the true total number of COVID-19 cases based on deaths, 10 

testing, health system capacity, and government transparency. Publicly reported data from 11 

188 countries and territories were included in the index. Estimates of detection rates aligned 12 

with previous estimates in literature (R2=0.97). As of June 3, 2020, the states with the highest 13 

CovTI included Iceland, Australia, New Zealand, Hong Kong, and Thailand, and some island 14 

nations. Globally, CovTI increased from April 20 (x̄=43.2) to June 3 (x̄=52.2) but declined in 15 

ca. 10% of countries. Bivariate analyses showed the average in countries with open public 16 

testing policies (59.7, 95% CI 55.6-63.8) were significantly higher than countries with no 17 

testing policy (30.2, 95% CI 18.1-42.3) (p<0.0001). A multiple linear regression model 18 

assessed the association of independent grouping variables with CovTI. Open public testing 19 

and extensive contact tracing were shown to significantly increase CovTI, after adjusting for 20 

extrinsic factors, including geographic isolation and centralized forms of government. This 21 

tool may be useful for policymakers to assess testing effectiveness, inform decisions, and 22 

identify model countries. It may also serve as a tool for researchers in analyses by combining 23 

it with other databases. 24 

  25 
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Introduction 1 

Coronavirus disease-2019 (COVID-19) is caused by infection of the Severe Acute 2 

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The COVID-19 pandemic has forced many 3 

countries, states, and territories to enact public health measures to reduce its spread, including social 4 

distancing, contact tracing, stay-at-home orders, shuttering of schools, closure of public spaces, and 5 

border closures [1,2].  6 

Testing, case identification, and isolation are critical activities to breaking the transmission 7 

chain [3]. Other measures, including social distancing and use of face masks, are also needed [4]. In 8 

order to assess testing and inform decisions about resuming economic activities, many countries 9 

and institutions have tracked testing-related metrics.  10 

Thus far, the approach of many countries has generally been to specify several separate 11 

metrics related to testing, such as incidence, test positivity rate, number of hospitalizations, and 12 

mortality rate, with benchmarks for each criteria that are used to justify removing measures in 13 

phases [5,6]. However, many of these metrics rely on cases that have been identified through active 14 

diagnostic testing. One challenge, though, is the substantial proportion of the infected population 15 

that is asymptomatic [7,8]. Consequently, diagnostic testing has been inadequate to reveal what 16 

proportion of the population is infected, with real infections in most countries estimated to be 10 to 17 

15 times, and sometimes even >100 times, higher than the reported number of cases [9–11]. 18 

Furthermore, predicating reopening dates on incidence may disincentivize testing, since increased 19 

diagnostic testing will inherently uncover more cases and, thus, delay reopening. Another criticism 20 

is that some criteria, such as the “downward trajectory,” specified by the US Centers for Disease 21 

Control [5], are vague. Thus, metrics used by policymakers and politicians to inform decisions 22 

should not only be quantitative but also encourage widespread proactive testing, such as the 23 

proportion of the total number of infections that have been detected [12]. However, estimating the 24 

detection rate/underreporting is challenging.  25 
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The level of undetected cases has been estimated with models using transmission 1 

simulations and flight data [13,14]. Generally, these approaches require location-specific inputs, 2 

limiting scalability and transferability. Alternatively, deaths seem to be a good indicator of true 3 

number of COVID-19 infections in the population [15]. Deaths have been used in past pandemics to 4 

estimate the true size of the pandemic given limited case identification [16]. The infection-fatality 5 

rate (IFR) of COVID-19 based on serological testing and comprehensive diagnostic testing has been 6 

shown to be between 0.7% and 1% [17–20], indicating that approximately 100 infections have 7 

occurred to each death. However, factors such as health system capacity, demography, and political 8 

regime impact the IFR [21]. Furthermore, heterogeneity in definitions of COVID-19-related deaths 9 

and testing strategies cause differences in completeness of the death count [22]. Thus, if deaths are 10 

used as an indicator of the true number of infections, adjustments may be necessary for testing, 11 

health system capacity, and government transparency.  12 

A single, comprehensive metric that is scalable across all countries and territories would 13 

allow comparisons across states and identify ones most successful in more completely detecting the 14 

presence of infections in the population. It would also allow for statistical techniques, such as 15 

multiple linear regression, so researchers could comprehensively assess policy decisions in 16 

combination with other databases. Comprehensive metrics for COVID-19 and inter-country 17 

comparisons have been developed [23–25], but none that focus exclusively on testing or explicitly 18 

incorporate the true number of infections or detection rate, to the best of the authors’ knowledge. 19 

Thus, there is still a need for a single comprehensive metric that can overcome shortcomings in 20 

reported data to assess testing effectiveness during the COVID-19 pandemic.  21 

Therefore, a single comprehensive metric that assesses testing effectiveness by 22 

incorporating an estimate of the true total number of COVID-19 infections in the population was 23 

developed using publicly reported data universally accessible across nearly all countries and 24 

territories. Model estimates of true period prevalence and detection rate were validated against 25 

comparable estimates in the literature. The metric was then used to assess factors associated with 26 
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COVID-19 testing outcomes. We aimed to create a new tool for policymakers and researchers to 1 

comprehensively assess COVID-19 testing outcomes and identify effective policies. 2 

Methods and materials 3 

Data input 4 

Data on COVID-19 were collected from the Worldometer website, which collects data 5 

directly from government communication channels and is managed by an international team of 6 

developers, researchers, and volunteers [26]. The data collected from Worldometer included total 7 

cases (C), total deaths (D), total recovered (R), active cases (A), population (P) (in millions), and 8 

total tests (T). These data have been reported explicitly or implicitly by the website since at least 9 

April 6, 2020. Prior to this date, subsets of these data were available. 10 

 Two other input data included the Global Health Security Index Detection and Reporting 11 

sub-index (Isys) [27] and the Economist Intelligence Unit Democracy Index (Idem) [28]. The Isys 12 

assesses a health system’s capacity for early detection and reporting during epidemics of potential 13 

international concern. This index is available for 195 countries and has a scale from 0 to 100, where 14 

100 indicates perfect detection and reporting. Isys values were not available for Hong Kong and 15 

Taiwan. The value for Hong Kong, Isys=78, was imputed as the average between South Korea 16 

(Isys=92.1) and Singapore (Isys=64.5), which were assumed to have comparable health systems. 17 

Similarly, the value for Taiwan, Isys=81, was imputed as average between South Korea (Isys=92.1) 18 

and Japan (Isys=70.1). All other states without a value (n=17) were imputed as 42, which was the 19 

global average. Idem is a projected measure of the degree of democracy; it is calculated for 167 20 

countries and states and has a scale from 0 to 10, where 10 indicates the highest degree of 21 

democracy. This value was assumed to act as a proxy for transparency in data reporting. All states 22 

without a value (n=24) were imputed to be 5.4, the global average. 23 
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 Countries and territories were included in the index if at least one case was reported, and the 1 

population was greater than or equal to 100,000. Data were accessed daily; however, this report 2 

presents the results for data accessed as of 00:00 GMT on June 3, 2020 (n=188). 3 

 4 

Definition of key indicators 5 

Several key indicators were computed from the input data, representing important 6 

epidemiological indicators used in the analysis. 7 

 8 

Case Fatality Rate (CFR) 9 

The CFR is the proportion of total deaths, D, among closed cases (sum of D and R). 10 

However, some countries, including the Netherlands and United Kingdom, have not reported the 11 

number of recoveries, and others have not tracked recoveries in real-time. Additionally, the closed-12 

case definition of CFR can overestimate the CFR in the early stages of an epidemic because of the 13 

relatively small number of closed cases [29]. Therefore, an alternative estimate of CFR was 14 

calculated as the ratio of deaths, D, to cases, C. Logically, the ratio of D:C is lower than D:(D+R) 15 

because C includes unresolved cases with unknown outcomes. Linear regression of these two ratios 16 

using data from the Worldometer [26] showed the relationship to be: D:(D+R) = 1.99*(D:C) 17 

(R2=0.58, n=178). Thus, the CFR used in our further analysis was the minimum of either the 18 

reported closed-case CFR or 2 times the ratio of D:C (Eq. 1).  19 

 20 

𝐶𝐹𝑅 = min (
𝐷

𝐷 + 𝑅
,
2𝐷

𝐶
)             (1) 21 

 22 

Test Positivity Rate (TPR) 23 

TPR was computed as the ratio of cases, C, to tests, T (Eq. 2). 24 

 25 
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𝑇𝑃𝑅 =
𝐶

𝑇
             (2) 1 

 2 

While the reported number of tests from specific countries or territories may represent multiple tests 3 

conducted on a single individual or even number of specimens, no adjustment was attempted to 4 

account for such heterogeneity in the various definitions of the TPR. In some cases, T was not 5 

available and thus TPR was not calculated. 6 

 7 

Tests per Capita (TPC) 8 

TPC was computed as the ratio of tests, T, to population (in millions), P (Eq. 3). 9 

 10 

𝑇𝑃𝐶 =
𝑇

𝑃
             (3) 11 

 12 

Similar to TPR, no adjustments were made to account for inter-country heterogeneity in 13 

definitions of T. In cases where T was not available, TPC was also not available. 14 

 15 

Estimating true number of infections and detection rate 16 

It can be assumed that the reported number of cases, C, in a country represents a subset of 17 

the true number of infections. Some infections will go undetected, but as detection of cases 18 

increases, C will approach the true number of infections. Thus, the true number of infections (Inf) is 19 

some factor, f, higher than the cases that have been identified (Eq. 4). 20 

 21 

𝐼𝑛𝑓 = 𝑓𝐶             (4) 22 

 23 

We conceptualized this factor, f, to be a function of the level of testing, the approach to 24 

testing (e.g., whether testing focuses on symptomatic, hospitalized, or general populations), and the 25 
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quality and completeness of the data. We then used the CFR, TPR, TPC, Isys, and Idem to formulate 1 

numerical values for f. Two separate formulations of f (f1 and f2) were defined, and the maximum of 2 

each of the two factors was used in the following analysis, as described below.  3 

 4 

Factor 1 (f1) 5 

Health system capacity and government transparency affect the completeness of data. To 6 

account for this, two multipliers were constructed: msys (Eq. 5) to adjust for the health system 7 

capacity using Isys—an indicator of a health system’s ability to detect and report cases; and mdem 8 

(Eq. 6) to adjust for government transparency using Idem—an indicator of government transparency 9 

in reporting data. 10 

𝑚𝑠𝑦𝑠 =
100

10√𝐼𝑠𝑦𝑠 
=

10

√𝐼𝑠𝑦𝑠
             (5) 11 

 12 

𝑚𝑑𝑒𝑚 =
100

10√10𝐼𝑑𝑒𝑚
=

10

√10𝐼𝑑𝑒𝑚
             (6) 13 

 14 

The mathematical relationships between the index and the multiplier in each of these 15 

equations follow declining relationships asymptotic to 1 and the principle that when health system 16 

capacity (Isys) or government transparency (Idem) are reduced, the multipliers increase, representing 17 

increased underreporting. 18 

Additionally, another indicator of underreporting is a high ratio of deaths to cases, D:C. If 19 

all infections have been identified as cases and all cases resolve, then this ratio will approach the 20 

infection fatality rate (IFR), which has been estimated for COVID-19 to be around 1% or less [17]. 21 

That is, for every recorded death, at least 100 infections occurred. Thus, if the ratio of 100D:C 22 

exceeded 1, it was used together with msys and mdem to determine f1, otherwise 1 was used and f1 23 

was determined by the product of msys and mdem only (Eq. 7). 24 

 25 
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𝑓1 = 𝑚𝑠𝑦𝑠𝑚𝑑𝑒𝑚max (
100𝐷

𝐶
, 1)             (7) 1 

 2 

Factor 2 (f2) 3 

Inadequate or low testing levels may also affect the completeness of the data. Therefore, a 4 

second factor incorporated data on testing (Eq. 8). This factor was comprised of two multipliers: 5 

mTPR (Eq. 9) based on TPR—an indicator of adequate testing relative to disease prevalence—and 6 

mTPC  (Eq. 10) based on TPC—an indicator of adequate testing relative to the population. 7 

 8 

𝑓2 = 𝑚𝑇𝑃𝑅𝑚𝑇𝑃𝐶              (8) 9 

 10 

The World Health Organization (WHO) has suggested testing capacity is adequate when 11 

TPR is <10% [30]. If TPR is greater than 10%, it was inferred that increasingly more cases were 12 

undetected and that the multiplier mTPR would be equal to the ratio of the TPR to that 10% 13 

benchmark (Eq. 9).  14 

𝑚𝑇𝑃𝑅 = {
 1             𝑖𝑓 𝑇𝑃𝑅 < 10%
𝑇𝑃𝑅

0.1
        𝑖𝑓 𝑇𝑃𝑅 ≤ 10%

             (9) 15 

 16 

It was further assumed that if TPC was greater than 100,000 per million, or 10% of the entire 17 

population, TPC was extensive enough not to contribute to underreporting (i.e., mTPC = 1). 18 

Logically, as TPC decreases, the likelihood of undetected infections increases. The assumed 19 

relationship between the multiplier mTPC and TPC followed a step-wise logarithmic relationship 20 

(Eq. 10). 21 

 22 
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𝑚𝑇𝑃𝐶 =

{
 
 
 

 
 
 
1                       𝑖𝑓 𝑇𝑃𝐶 > 100,000 𝑝𝑒𝑟 𝑚𝑖𝑙𝑙𝑖𝑜𝑛
1.5   𝑖𝑓 𝑇𝑃𝐶 [50,001 − 100,000 𝑝𝑒𝑟 𝑚𝑖𝑙𝑙𝑖𝑜𝑛]
2        𝑖𝑓 𝑇𝑃𝐶 [25,001 − 50,000 𝑝𝑒𝑟 𝑚𝑖𝑙𝑙𝑖𝑜𝑛]
3         𝑖𝑓 𝑇𝑃𝐶 [10,001 − 25,000 𝑝𝑒𝑟 𝑚𝑖𝑙𝑙𝑖𝑜𝑛]
4            𝑖𝑓 𝑇𝑃𝐶 [5001 − 10,000 𝑝𝑒𝑟 𝑚𝑖𝑙𝑙𝑖𝑜𝑛]
5                             𝑖𝑓 𝑇𝑃𝐶 ≤ 5000 𝑝𝑒𝑟 𝑚𝑖𝑙𝑙𝑖𝑜𝑛

10                                          𝑖𝑓 𝑇𝑃𝐶 𝑖𝑠 𝑢𝑛𝑘𝑛𝑜𝑤𝑛

             (10) 1 

 2 

True number of infections  3 

The true number of infections, Inf, was estimated as the product of C and the maximum of 4 

the two factors, whichever was highest (Eq. 11). 5 

 6 

𝐼𝑛𝑓 = 𝑓C = max(𝑓1, 𝑓2) 𝐶             (11) 7 

 8 

When possible, Inf was compared against national estimates from other empirical estimates 9 

in literature to validate the model.  10 

 11 

Detection Rate (DR) 12 

With an estimate of the true number of infections, it was possible to estimate what 13 

percentage of the infections (including asymptomatic) have been detected. The total number of 14 

cases, C, was divided by Inf to estimate the DR in each country or territory. The inverse of the 15 

factor, 1/f, represents the DR. Estimates of the DR were compared to DRs published in the 16 

literature. 17 

 18 

Calculation of the COVID-19 Testing Index 19 

The COVID-19 Testing Index (CovTI) consists of four sub-indices, each based on a single 20 

key indicator. The key indicators used were the DR, TPR, CFR, and proportion of cases that are 21 

active (i.e., A/C). These indicators were chosen since they are commonly used as metrics and are 22 
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computable with the methods described above. The relationship between each sub-index and its 1 

indicator was built on two principles. First, each sub-index was scaled from 0 to 100 with 0 2 

representing the worst indicator value and 100 the best indicator value. Second, a square root 3 

mathematical relationship was used to scale the sub-index. A square root function was chosen as a 4 

simplistic way to reflect the complex reality, in which each marginal change of an indicator in the 5 

undesired direction (e.g., increase in TPR or decrease in DR) represents an increasingly higher risk 6 

of an uncontrolled COVID-19 epidemic or a worse testing response. These sub-indices were 7 

combined in a weighted average to compute CovTI. 8 

 9 

Detection Rate sub-index (DRsi) 10 

If infections are undiagnosed, those individuals can actively spread the disease unknowingly. 11 

Without timely diagnosis, effective contact tracing cannot occur. Therefore, undiagnosed infections 12 

critically contribute to unchecked spread of COVID-19 and subsequently represent inadequate 13 

response. Thus, DRsi was given 40% weighting in computing the CovTI (Eq. 16). As the detection 14 

rate decreases, the DRsi decreases (Eq. 12). 15 

 16 

𝐷𝑅𝑠𝑖 = 100√𝐶/𝐼𝑛𝑓             (12) 17 

 18 

Test Positivity sub-index (TPsi) 19 

The TPR is a commonly used testing metric for COVID-19 [31]. A high TPR represents a 20 

reactive, rather than proactive, approach to testing. Accordingly, as TPR increases, the TPsi decreases 21 

(Eq. 13). If TPR was not available, a dummy value of 20 was used. TPsi was given 20% weighting in 22 

computing the CovTI.  23 

 24 

𝑇𝑃𝑠𝑖 = 100 − 100√𝑇𝑃𝑅              (12) 25 

 26 
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Case-Fatality sub-index (CFsi) 1 

The WHO has suggested that the CFR should be around 1 to 2 percent if the response is 2 

adequate. If CFR is higher, only severely infected patients are being diagnosed. Accordingly, if CFR 3 

increases beyond the minimum benchmark of 2%, CFsi decreases (Eq. 13). If the CFR is less than 4 

2%, the CFsi is 100. CFsi was given 20% weighting. If the CFR was 0%, a dummy value of 50 was 5 

used. 6 

 7 

𝐶𝐹𝑠𝑖 = min(100√
0.02

𝐶𝐹𝑅
, 100)             (14) 8 

 9 

Active Case sub-index (ACsi) 10 

Finally, a fourth sub-index accounts for how active the epidemic is in a country. If the 11 

epidemic is relatively active in the country, it is less likely the testing is adequate, and the increase 12 

reflects inadequate case identification. It provides a metric to incorporate progress as cases resolve. 13 

As the proportion of total cases that are active decreases, it reflects the epidemic is declining and 14 

passing, and the ACsi increases (Eq. 15). It was given a weight of 20%. 15 

 16 

𝐴𝐶𝑠𝑖 = 100 − 100√
𝐴

𝐶
             (15) 17 

 18 

In the case of United Kingdom and the Netherlands that do not report A, the ACsi is not computable. 19 

In such cases, a dummy value of 50 was used. 20 

 21 
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COVID-19 Testing Index (CovTI) 1 

The CovTI was calculated as the weighted average of the four sub-indices (Eq. 16) described 2 

above with a heavier weighting given to the DRsi due to the importance of undetected cases in driving 3 

uncontrolled epidemics and because it incorporates several factors into its derivation. 4 

 5 

𝐶𝑜𝑣𝑇𝐼 = 0.4 𝐷𝑅𝑠𝑖 + 0.2 𝑇𝑃𝑠𝑖 + 0.2 𝐶𝐹𝑠𝑖 + 0.2 𝐴𝐶𝑠𝑖             (16) 6 

 7 

Statistical analyses with CovTI 8 

Five independent grouping variables were assessed for their effect on COVID-19 testing 9 

effectiveness by analyzing their association with CovTI (Table 1). Testing and contact tracing 10 

policy status were accessed from the Oxford COVID-19 Government Response Tracker [32] for 11 

May 13, 2020, which is three weeks prior to June 3, 2020, approximately the average time from 12 

symptom onset to death [19]. Islands were defined as any country that is an island, part of an island 13 

(co-island), or has limited land connections (limited land) or archipelago (see details in S1 Table). 14 

Crude bivariate analyses using two-tailed two-sample t-tests and one-way analysis of variance 15 

(ANOVA) were used to test whether the means between groups were different. A multiple linear 16 

regression (MLR) model was developed by using forced entry of all factors with p>0.20 in crude 17 

analysis. Factors were removed using backwards stepwise method (p >0.05) with Bayesian 18 

Information Criterion (BIC) used to assess model fit and overparameterization. Analyses were 19 

performed in Stata 14 [33].  20 

 21 

Table 1. Definitions of grouping variables for multiple linear regression of COVID-19 Testing 22 

Index (n=163). 23 

Factor (Grouping Variables) Operational Definitiona n (%) 

Testing Policy   
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No testing policy OxCGRT Testing = 0 on May 13, 2020 6 (3.7) 

Limited Testing OxCGRT Testing = 1 on May 13, 2020 70 (42.9) 

Symptomatic Testing OxCGRT Testing = 2 on May 13, 2020 58 (35.6) 

Open Public Testing OxCGRT Testing = 3 on May 13, 2020 29 (17.8) 

Contact Tracing Policy   

No contact tracing OxCGRT Contact Tracing = 0 on May 13, 

2020 

19 (11.7) 

Limited contact tracing OxCGRT Contact Tracing = 1 on May 13, 

2020 

64 (39.3) 

Comprehensive contact tracing OxCGRT Contact Tracing = 2 on May 13, 

2020 

80 (49.1) 

Geographical setting    

Island or island-like nation Entirely on island(s) (including Australia) 

or parts of islands (e.g., Dominican 

Republic) or have very limited land 

connections (e.g., Hong Kong) 

28 (17.2) 

Non-island nation Not meeting the definition of island nation 135 (82.8) 

Form of government   

Authoritarian government Idem < 4 48 (29.5) 

Non-authoritarian federation Constitutionally a federation with Idem ≥4 17 (10.4) 

Non-authoritarian unitary state Constitutionally not a federation with Idem 

≥4 

98 (60.1) 

Development status   

OECDb member Member 36 (22.1) 

Non-OECD member Not a member 127 (77.9) 

aOxCGRT = Oxford COVID-19 Government Response Tracker [32] 1 
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bOECD = Organization for Economic Development 1 

Results 2 

True number of infections 3 

Globally, the model estimated that approximately 68.2 million people have been infected in 4 

the period prior to June 3, 2020, compared to the reported 6.47 million cases (mean multiplier 5 

factor, f, =10.5, range = 1.5 to 165). In other words, for every reported case it is estimated that 9.5 6 

infections have gone unreported. 7 

 8 

Detection rate 9 

Globally, the DR was estimated to be 9.5% (range = 0.6-66.6%). The countries estimated to 10 

have the highest detection rates were Australia, Singapore, Iceland, and Hong Kong (Table 2), each 11 

estimated to have detected at least 50% of all infections. 12 

 13 

Table 2. Top 10 countries and territories according to highest implied detection rate (data 14 

00:00 GMT June 3, 2020). 15 

Global Rank Country or Territory Multiplier Factor, f Implied Detection Rate 

1 Australia 1.50 66.6% 

2 Singapore 1.61 62.3% 

3 Iceland 1.68 59.7% 

4 Hong Kong 2.00 50.0% 

5 Kuwait 2.31 43.2% 

6 New Zealand 2.51 39.9% 

7 Israel 2.61 38.3% 
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8 Latvia 2.62 38.1% 

9 Malta 2.84 35.2% 

10 Bahrain 2.93 34.2% 

 1 

Comparison to previous estimates 2 

This model’s estimates were compared against historical estimates in the literature (Table 3). 3 

The results showed that this model’s estimates were similar to previous estimates at comparable 4 

time periods (R2=0.97). In many cases the estimates of true number of cases and DR closely 5 

matched previous estimates, and in most cases the estimates were within the 95% confidence 6 

interval of previous estimates. 7 

 8 

Table 3. Comparison of total cases and detection rate estimates with other similar estimates in 9 

literature [34] [35]. 10 

  Other Estimates[34][35] This Study’s Estimate 

Date Country 

Estimated 

Period 

Prevalence 

[95% CI] 

Implied 

Detection Rate 

[95% CI] 

Estimated 

Period 

Prevalence 

Implied 

Detection 

Rate 

  

% of total 

population 

% of infections 

% of total 

population 

% of 

infections 

14 April 

2020 

[34] 

Australia 0.04 [0.03-0.09] 59 [28-90] 0.07 33 

Canada 1.0 [0.67-2.2] 6.7 [3.1-10] 0.25 28 

South 

Korea 

0.06 [0.04-0.13] 35 [16-53] 0.06 33 

USA 2.6 [1.7-5.6] 6.8 [3.2-10] 1.5 13 
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4 May 

2020 

[35] 

Austria 0.76 [0.59-0.98] 23.4 [18-30] 0.85 20 

Belgium 8.0 [6.1-11] 5.4 [3.9-7.1] 9.7 4.4 

Denmark 1.0 [0.81-1.4] 17 [12-21] 0.92 17.6 

France 3.4 [2.7-4.3] 7.6 [6.0-9.6] 4.9 5.3 

Germany 0.85 [0.66-1.1] 23 [18-30] 0.95 21 

Italy 4.6 [3.6-5.8] 7.5 [6.0-9.6] 6.2 5.6 

Norway 0.46 [0.34-0.61] 32 [24-44] 0.51 28 

Spain 5.5 [4.4-7.0] 9.6 [7.5-12] 6.5 8.1 

Sweden 3.7 [2.8-5.1] 6.0 [4.4-8.0] 2.9 7.4 

Switzerland 1.9 [1.5-2.4] 18 [14-23] 2.8 12.4 

UK 5.1 [4.0-6.5] 5.3 [4.2-6.8] 4.8 5.6 

 1 

COVID-19 Testing Index 2 

Comparison between Countries 3 

Countries in the top quartile of CovTI had lower TPR, lower CFR, lower proportion of 4 

active cases, and higher DR (Fig 1). The top 10 countries according to the index were dominated by 5 

island nations and states that are effectively islands (e.g., Hong Kong) (Table 4a). Among non-6 

island nations, Thailand, Slovakia, and Israel had the highest CovTI (Table 4b). Full results are 7 

reported in Supporting Information (S1 and S2 Tables).  8 

 9 

Fig 1. Comparison of the medians of test positivity rate (TPR), case fatality rate (CFR), 10 

proportion of active cases (AC), and detection rate (DR) among the quartiles of COVID-19 11 

Testing Index (CovTI). Bottom quartile includes the lowest 25% of CovTI values (n=47), 2nd 12 

quartile includes CovTI values between 25th and 50th percentiles (n=47), 3rd quartile includes CovTI 13 

values between 50th and 75th percentiles (n=47), and the top quartile includes highest CovTI values 14 
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above 75th percentile (n=47) . Values in brackets indicate the range of CovTI values in each 1 

quartile. Error bars represent interquartile range. Data per 00:00 GMT June 3, 2020. 2 

 3 

Table 4. COVID-19 Testing Index (CovTI) and sub-indices a) among all countries and 4 

territories assessed (n=188) and b) among only non-island nations (n=143). 5 

DRsi, TPsi, CFsi, ACsi, as described in text with percentages indicating degree of weighting. Data per 6 

00:00 GMT June 3, 2020. Complete data set in S1 Table.  7 

a)  8 

Global Rank Country or Territory CovTI 

DRsi 

(40%) 

TPsi 

(20%) 

CFsi 

(20%) 

ACsi 

(20%) 

1 Iceland 86.8 77.3 82.8 100.0 96.7 

2 Australia 86.0 81.6 93.0 100.0 73.9 

3 New Zealand 83.3 63.1 92.7 100.0 97.4 

4 Hong Kong 82.5 70.7 92.7 100.0 78.2 

5 Brunei 76.7 50.3 91.5 100.0 91.6 

6 Malta 75.8 59.4 90.6 100.0 69.7 

7 Thailand 75.5 50.0 91.4 100.0 86.2 

8 Slovakia 74.8 55.9 90.8 100.0 71.7 

9 Israel 74.4 61.8 82.8 100.0 65.5 

10 Taiwan 73.5 44.7 92.2 100.0 85.7 

 9 

b) 10 

Global Rank Country or Territory CovTI 

DRsi 

(40%) 

TPsi 

(20%) 

CFsi 

(20%) 

ACsi 

(20%) 

7 Thailand 75.5 50.0 91.4 100.0 86.2 
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8 Slovakia 74.8 55.9 90.8 100.0 71.7 

9 Israel 74.4 61.8 82.8 100.0 65.5 

11 South Korea 73.3 57.7 88.9 88.8 73.3 

14 Malaysia 72.6 57.7 88.1 100.0 59.5 

16 Georgia 72.1 57.7 88.4 99.8 56.7 

17 Jordan 71.6 57.7 93.8 100.0 48.9 

18 Montenegro 71.3 44.9 82.1 84.9 100.0 

21 Palestine 69.8 50.0 90.0 100.0 58.9 

22 Kyrgyz Republic 69.1 57.7 87.3 100.0 42.5 

 1 

Temporal Comparison 2 

Comparing the index from April 20 to June 3, the global average of CovTI increased nearly 3 

10 points from 43.2 to 52.2 (Fig 2). The index in most countries (89.9%) increased over this time 4 

period. Some countries, such as Australia, increased substantially, while other countries, such as 5 

Germany and USA, increased comparably to the global average increase. Other countries (10.1%) 6 

had index values that decreased, including Russia, Canada, and Brazil.  7 

 8 

Fig 2. Trend of COVID-19 Testing Index among selected countries and groups. OECD = 9 

Organization for Economic Cooperation and Development. BRIC = Brazil, Russia, India, and 10 

China. Shaded grey area represents full range of CovTI values. 11 

 12 

Variable Analysis 13 

Bivariate analyses showed that testing policy and contact tracing policy were significantly 14 

associated (p<0.0001) with CovTI (Table 5). Additionally, the trend demonstrated that increasing 15 

levels of testing and contact tracing was associated with improved CovTI. Island nations were 16 

significantly more effective than non-islands, and significant differences in CovTI were found 17 
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between forms of government. OECD members had better COVID-19 testing outcomes, but the 1 

differences were not significant (p=0.11). 2 

 3 

Table 5. Comparison of differences in COVID-19 Testing Index between countries and states 4 

with different testing and tracing policies, geographical settings, forms of government and 5 

economic development status (n=163). 6 

Variable n (%) 

CovTI 

 x̄ (95% CI) 

Test 

statistica 

p-value 

Testing policy   10.4 <0.0001 

No testing policy 6 (3.7) 30.2 (18.1-42.3)   

Limited testing 70 (42.9) 49.5 (46.2-52.8)   

Symptomatic testing 58 (35.6) 54.7 (51.1-58.2)   

Open public testing 29 (17.8) 59.7 (55.6-63.8)   

Contact tracing policy   14.5 <0.0001 

No contact tracing 19 (11.7) 40.8 (33.8-47.9)   

Limited contact tracing 64 (39.3) 49.7 (46.3-53.1)   

Extensive contact tracing 80 (49.1) 57.4 (54.6-60.1)   

Geographical setting   3.82 0.0002 

Island or island-like 28 (17.2) 61.4 (55.6-67.2)   

Non-island 135 (82.8) 50.6 (48.3-52.9)   

Form of government   3.05 0.05 

Non-authoritarian unitary state 98 (60.1) 54.5 (51.8-57.3)   

Authoritarian government 48 (29.4) 50.1 (45.8-54.4)   

Non-authoritarian federation 17 (10.4) 47.0 (40.4-53.7)   

Economic development status   1.60 0.11 
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OECD Member 36 (22.1) 55.8 (50.8-60.7)   

Non-OECD Member 127 (77.9) 51.5 (49.1-54.0)   

a t-statistic from two-way two-sample t-test with equal variance or F-statistic from one-way 1 

ANOVA 2 

 3 

 All factors were entered into the initial MLR model. The final model included all factors 4 

except economic development. The MLR showed that testing policy had the largest effect on testing 5 

outcomes, whereby widespread open testing was associated with a 23.8-point increase in CovTI 6 

compared to no testing policy (Table 6). Contact tracing, centralized governments, and islands were 7 

also associated with improved CovTI values. 8 

 9 

Table 6. Multiple linear regression analysis F(8, 154) = 9.06 (p<0.0001), adjusted R2 = 0.28 of 10 

factors associated with COVID-19 Testing Index from final model (n=163) (Data from 00:00 11 

GMT June 3, 2020). 12 

Independent variables 

Mean CovTI 

(95% CI) 

β coefficient (change in 

CovTI associated with factor) 

95% CI p value 

Constant  21.0   

Testing policy     

No testing policy 30.2 (18.1-42.3) Ref.  <0.0001 

Limited testing 49.5 (46.2-52.8) 14.6 4.2-25.0  

Symptomatic testing 54.7 (51.1-58.2) 18.8 8.3-29.3  

Open public testing 59.7 (55.6-63.8) 23.8 12.7-34.9  

Contact tracing policy    0.001 

No contact tracing 40.8 (33.8-47.9) Ref.   

Limited contact tracing 49.7 (46.3-53.1) 6.2 -0.2-12.5  
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Extensive contact tracing 57.4 (54.6-60.1) 11.1 4.7-17.4  

Geographical setting    0.004 

Non-island 50.6 (48.3-52.9) Ref.   

Island or island-like 61.4 (55.6-67.2) 7.5 2.2-12.7  

Form of government    0.12 

Non-authoritarian federation 47.0 (40.4-53.7) Ref.   

Authoritarian government 50.1 (45.8-54.4) 4.1 -2.6-10.9  

Non-authoritarian unitary state 54.5 (51.8-57.3) 6.4 -0.1-12.9  

 1 

Discussion 2 

We developed a novel comprehensive metric, entitled the CovTI, that attempts to measure 3 

effectiveness of testing during the COVID-19 pandemic at the country level and is derived from key 4 

epidemiological indicators computable from data available across nearly all countries, as reported 5 

on the Worldometer website and other similar databases [26]. Previous research has assessed 6 

government response [23] and suggested specific indicators to facilitate inter-country comparisons 7 

[24]. However, this is the first published metric to comprehensively assess testing outcomes with a 8 

focus on detection/underreporting. The results showed that testing and contact tracing 9 

independently contribute to better detection and should be used in conjunction with one another. 10 

The results showed that the parsimonious model yielded estimates of true period prevalence 11 

consistent with previous estimates as shown below.  12 

 13 

National testing policy impact on testing outcomes 14 

Testing effectiveness, as indicated by CovTI, was strongly associated with contact tracing 15 

and testing policies. This validates the model’s ability to track COVID-19 testing outcomes and 16 
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further provides confirmation that countries that prioritize policies and dedicate resources 1 

specifically to testing and contact tracing have effectively reduced underreporting and improved 2 

testing-related health outcome metrics, such as the CFR.  3 

The results also show that increasingly more inclusive policies for testing (for example, 4 

open public testing vs. symptomatic testing) and contact tracing (e.g., extensive vs. limited) yielded 5 

progressively better detection rates and testing outcomes. Therefore, countries should aim to 6 

increasingly expand these efforts. Additionally, contact tracing and testing independently 7 

contributed to better outcomes, even after adjusting for other factors. Hence, policies should ensure 8 

increased testing is paired with increased contact tracing capacity.  9 

High values in the proposed index showed correlation with countries that have been 10 

recognized for their success in responding to the COVID-19 pandemic, including Taiwan, 11 

Australia, Iceland, and South Korea. These countries are recognized for their high testing rates and 12 

comprehensive contact tracing programs [36,37]. Thus, this analysis provided quantitative evidence 13 

supporting policy recommendations to facilitate strong national leadership, expand diagnostic 14 

capacity, rapidly enact comprehensive contact tracing, and proactively test for COVID-19 [36,37]. 15 

 16 

Extrinsic factors affecting testing outcomes 17 

This analysis found that island nations had better testing effectiveness outcomes compared 18 

to non-island nations. Geographical isolation is an obvious advantage to controlling infectious 19 

disease [38]. The results also showed an association of higher CovTI with authoritarian and unitary 20 

forms of government. This result suggests an association between better testing outcomes and more 21 

centralized forms of government. Previous research has shown associations between the level of 22 

democracy and CFR, where the time trajectories of CFR increase more steeply for democracies than 23 

for autocracies, i.e. democracies have higher CFR than autocracies [21]. A higher CFR indicates 24 

poorer testing effectiveness, i.e. lower CovTI (Fig 1). Here we show that centralized governments 25 

have higher CovTI and lower CFR, which is consistent with Sorci et al. [21]. Thus, extrinsic factors 26 
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affect a country’s ability to implement testing strategies. Combining this metric with other 1 

databases that can account for other possible factors, such as trust in government institutions, 2 

demographics, or urban/rural distribution, could further elucidate other extrinsic factors related to 3 

COVID-19 testing. 4 

 5 

Estimate of true number of cases and detection rate 6 

A parsimonious empirical model was used to estimate the true number of infections and 7 

inferred detection rate by back-calculating from reported deaths with adjustments for health system 8 

capacity, government transparency, and testing levels. The results were comparable to more 9 

complex modeling approaches based on similar principles [34,35]. The findings suggested that 10 

nearly 90% of global infections remain unreported, which is consistent with previous estimates 11 

showing that true number of infections are many times higher than reported cases [9–11]. In 12 

addition, other authors have used different models to estimate the true number of cases as a 13 

percentage of the population in various European countries. For example, period prevalence in Italy 14 

was estimated at 4 percent in April [39] and 4.4 percent in France in May [40]. Several of the 15 

hardest affected countries early in the pandemic had an estimated period prevalence between 3 and 16 

7.5 percent [41]. These estimates were generally consistent with our estimates (Table 3).  17 

Seroprevalence of antibodies is often touted as a reliable means to estimate period 18 

prevalence and past exposure to SARS-CoV-2. Efforts are underway in June 2020 across England, 19 

Germany, and the United States, among others, to randomly sample the population and determine 20 

country-level seroprevalence. However, due to the specificity of the serological tests, false positives 21 

can substantially affect the accuracy of the results[42] Therefore, models and parsimonious 22 

estimates may continue to play an important role in estimating the true number of infections.  23 

 24 
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Herd immunity 1 

The estimates of this model further agree with models in the hardest hit countries, such as 2 

Italy or Spain, which estimate that more than five percent of the population in those countries have 3 

been infected [41]. However, such a low proportion of the population presumably with antibodies is 4 

far from conferring herd immunity that may inhibit future disease transmission. It is important to 5 

note that, while these proportions are much higher than the officially reported cases, they do not 6 

represent herd immunity—a concept considered important to fully reopening society. Although 7 

herd immunity depends on the basic reproductive number (R0) [43], which varies with effectiveness 8 

of interventions, some estimates specify a threshold of 50 to 60 percent seroprevalence to achieve 9 

herd immunity [44], while others, accounting for differential susceptibility, estimate the threshold 10 

may be as low as 20 percent [45]. Nevertheless, these estimates suggest that herd immunity is not 11 

yet occurring at the national level of the countries analyzed. 12 

 13 

Excess deaths 14 

Reported deaths are an important indicator. However, excess deaths (i.e., total mortality in 15 

excess of seasonal averages) are substantially higher than the reported COVID-19 deaths in many 16 

locations, including Brazil, Jakarta, New York City, and Ecuador [46]. These excess deaths suggest 17 

such locations have not accurately captured deaths related to COVID-19 in official figures [47]. 18 

Different definitions of attributable deaths substantially affect data. For example, Russia had 19 

previously used a very limited definition for inclusion determined via autopsy that does not count 20 

many deaths even if the patient previously tested positive for SARS-CoV-2 [48]. On the other hand, 21 

some countries have opted to exhaustively include any presumptive death to COVID-19 in official 22 

data. Belgium has included unconfirmed deaths within their COVID-19 death total [49]. In such a 23 

case, COVID-19 deaths are greater than excess deaths [46]. These examples of limited or 24 

conservative death definitions impact this model’s estimates. Nevertheless, substantial differences 25 

between excess deaths and deaths attributed to COVID-19 may indicate insufficient testing or 26 
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policy decisions that systematially exclude some deaths. While proxy factors, including the 1 

adjustments for government transparency and health system capacity, were included to mitigate this 2 

factor, it is likely the model estimates will not sufficiently adjust in cases of excessive deaths across 3 

such wide ranging scenarios. Including data on excessive deaths could improve the validity of the 4 

model; however, such data is usually reported with a lag of several weeks or not reported at all. 5 

 6 

Sources of uncertainty 7 

Several assumptions were made to generate this model. Most notably, the model assumes 8 

specific and universal relationships between deaths and total number of infections, implying an 9 

inherent IFR. Advances in therapeutics and differences in health system capacity will influence this 10 

rate, though [21]. In addition, several factors including age, sex, hypertension, diabetes, and blood 11 

groups are known to affect the mortality and hospitalization rates [50–56]. Future analyses may 12 

combine CovTI with databases that include these factors. The model also assumes specific 13 

relationships between proxy indicators, such as the Global Health Security Index and Democracy 14 

Index, and data outcomes. While the direction of the relationship is arguably evident, the magnitude 15 

and shape of the relationship is unknown. Furthermore, this model aims to be parsimonious (i.e., 16 

not introducing excessive parameters or uncertainty) and is, by nature, deterministic. The decision 17 

to include a minimum number of variables and data was strategic, but a stochastic approach could 18 

better illustrate the uncertainty and sensitivity to the above assumptions. The model also reported 19 

estimates of total number of cases and detection rates. These values should be used cautiously as a 20 

comparative tool, rather than exact values. 21 

Conclusion 22 

This report described a novel comprehensive metric (COVID-19 Testing Index, CovTI) that 23 

evaluates the overall effectiveness of COVID-19 testing in the current pandemic using real-time 24 

publicly reported data among 188 countries and territories. The metric incorporated case-fatality 25 
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rate, test positivity rate, proportion of active cases, and an estimate of detection rate based upon 1 

reported death data by adjusting for heterogeneity in testing levels, health system capacity, and 2 

government transparency. The estimated detection rate of COVID-19 aligned satisfactorily with 3 

previous empirical and epidemiological models. National policies that allow open public testing and 4 

extensive contact tracing were significantly associated with higher values of CovTI, which reflects 5 

improvements in the estimated detection rate. Extrinsic factors, including geographic isolation and 6 

centralized forms of government, were also shown to be associated with higher COVID-19 testing 7 

outcomes. Countries should commit to expanding policies on testing and contact tracing in order to 8 

reduce levels of undetected infections and reduce disease transmission. Applications of this metric 9 

include combining it with different databases to identify other factors that affect testing outcomes or 10 

using it to temporally track a holistic measure of testing outcomes at the national level.  11 
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Supporting information 20 

S1 Table. Raw data inputs and computed values for the COVID-19 Testing Index (CovTI) on June 3, 21 

2020. Raw data inputs, key epidemiological indicators, multipliers, factors, and sub-indices used to compute 22 

CovTI on June 3, 2020 among eligible countries and territories (n=188). Further details of each variable are 23 

described in the text. C=cases, D=total deaths, R=total recovered, A=active cases, P= population (in 24 

millions), T=total tests, CFR=case fatality rate, TPR=test positivity rate, TPC=tests per capita, msys=health 25 
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system capacity multiplier, mdem= democracy multiplier, mTPR= test positivity rate multiplier, mTPC= per 1 

capita testing multiplier. f1=factor 1, f2=factor 2, Inf= true number of infections, Prev=Estimated Period 2 

Prevalence = Inf /P, Act=proportion active cases=A/C, DR=detection rate, DRsi= Detection Rate sub-index, 3 

TPsi=Test Positivity sub-index, CFsi= Case-Fatality sub-index ACsi= Active Case sub-index, 4 

CovTI=COVID-19 Testing Index. OECD= Organization for Economic Development member, BRIC= 5 

Brazil, Russia, India, and China. 6 

 7 

S2 Table. Dataset for bivariate and multiple linear regression analyses. CovTI as of June 3, 8 

2020; island status; form of government; OECD membership; COVID-19 testing policy as of May 9 

13, 2020; and COVID-19 contact tracing policy as of May 13, 2020 among eligible countries and 10 

territories with complete data (n=163). Further details of each variable are described in the text. 11 
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