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Abstract 
The role of non-pharmaceutical interventions (NPIs) on the spread of SARS-CoV-2 has drawn significant attention, 
both scientific and political. Particularly, an article by the Imperial College COVID-19 Response Team (ICCRT), 
published online in Nature on June 8, 2020, evaluates the efficiency of 5 NPIs. Based on mortality data up to early 
May, it concludes that only one of the interventions, lockdown, has been efficient in 10 out of 11 studied European 
countries.  
 
We show, via simulations using the ICCRT model code, that conclusions regarding the effectiveness of individual 
NPIs are not justified. Our analysis focuses on the 11th country, Sweden, an outlier in that no lockdown was 
effectuated. The new simulations show that estimated NPI efficiencies across all 11 countries change drastically 
unless the model is adapted to give the Swedish data special treatment. While stated otherwise in the Nature 
article, such adaptation has been done in the model code reproducing its results: An ungrounded country-specific 
parameter said to have been introduced in all 11 countries, is in the code only activated for Sweden. This parameter 
de facto provides a new NPI category, only present in Sweden, and with an impact comparable to that of a 
lockdown. 
 
While the considered NPIs have unarguably contributed to reduce virus spread, our analysis reveals that their 
individual efficiency cannot be reliably quantified by the ICCRT model, provided mortality data up to early May. 
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Introduction 
The spread of SARS-CoV-2 has challenged the world and political decisions are continuously 
made to reduce the virus's effect on population health and on healthcare organisations. In the 
absence of a vaccine, populations can only safeguard themselves through non-
pharmaceutical measures ranging from increased personal hygiene to social distancing. 
Different non-pharmaceutical interventions (NPIs) have been effectuated across the world. 
Scientific guidance is therefore needed upon which to base national exit strategies from 
implemented NPIs in a safe, yet efficient, manner.  
 
A series of reports have presented estimated effects of various NPIs on the spread of SARS-
CoV-2 infection, such as case isolation, closure of schools, restrictions specifically towards 
vulnerable groups such as people above the age of 70, or a total lockdown. Specifically, two 
reports by the Imperial College COVID-19 Response Team (ICCRT) set out to quantify the 
effect of NPIs [1,2]. These reports have since been widely used as support for political 
decisions that aim at reducing the rate at which the virus spreads [3]. 
 
The first of these, Report 9 [1], released online March 16, 2020, was influential in the change 
of the COVID-19 response policy in the UK [3] and is likely to have affected policy decisions 
in other European countries. 
In the second one, Report 13 [2], released online on March 30, a method was presented to 
estimate the actual effects of different NPIs that at the time had been effectuated in 11 
European countries. Based on the effectuation dates of the interventions and available time 
series of mortalities in each country, the influence of individual NPIs on the reproduction 
number Rt of SARS-CoV-2 infection was estimated from death data. 
Data from different countries were effectively pooled through the assumption that the NPI 
parameters are not country-specific: the factor of relative change in Rt resulting from 
effectuating a particular NPI is the same, regardless of in which country the NPI is effectuated. 
The factors were assumed time-independent, with the exception that a bonus factor is 
ascribed to an NPI if it is the first to be effectuated in a country. Some country-specific flexibility 
was, however, provided through the basic reproduction number R0 . In a later version of the 
model [9], released April 24 (after Report 13), the lockdown NPI, being the last NPI to be 
effectuated in all countries, except for Sweden, was also ascribed some country-specific 
flexibility. 
 
A slightly modified version of Report 13 [2] was accepted for publication in Nature on May 22 
and published online as an "accelerated article preview" on June 8 [4]. The Nature publication 
was based on a version of the method used in [2], with some subtle yet important 
modifications. The most notable such modification, discussed further below, was the 
introduction of a country-specific parameter to model the efficiency of the last NPI to be 
introduced in a country. 
 
It is claimed in [4] that "in our analysis we find that only the effect of lockdown is identifiable", 
but analysis supporting this claim is not to be found in [4], nor in [2] or [9]. 
 
The modellers behind [2,4] have openly shared their method implementation—a Bayesian 
estimation model—and data, through an online version-tracking repository [9]. This has 
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enabled the reproduction of results from [2], [4], and, more importantly, analyses of model 
sensitivities and parameter identifiability. Such analyses, routinely performed in fields of the 
engineering sciences when estimation and prediction models are considered, have been 
largely omitted in [2] and [4]. While sensitivity analyses alone cannot ascertain the reliability 
of a model candidate, they can reveal the opposite. 

Objectives 
In this study, we investigate the method used by the ICCRT [4] to estimate the effect of non-
pharmaceutical interventions on the reproduction of SARS-CoV-2 in Europe. In particular, we 
examine model sensitivities and how problems with parameter identifiability influence the 
reliability of the results. A similar investigation of the model used by the ICCRT in their Report 
13 [2] is available in our previous report [5]. 

Estimating the impact of interventions      
In [4], five NPI categories are defined, as shown in Figure 1. When effectuated, each 
intervention is assumed to instantaneously result in a step-change in the reproduction number 
Rt, as illustrated in Figure 2. 

 
Figure 1. Dates that non-pharmaceutical interventions (NPIs) were effectuated in individual countries, according 
to [4]. The annotations illustrate code revisions introduced by the authors of [4] in their model code [9]: On April 9, 
the date on which public events were banned in Sweden was revised from March 12 to March 29. In the same 
code revision, school closure was no longer defined to have taken place in Sweden. In [4], school closure had 
again been defined to have occurred in Sweden. However, this does not comply with the corresponding version of 
the code [9], in which school closure remains defined as not have taken place in Sweden. 
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The model assumes that the reproduction number Rt is only affected by the NPI parameters, 
and by herd-immunity effects resulting from a diminishing susceptible-to-infected ratio. A 
partial data pooling is performed, in the sense that a particular NPI is expected to have the 
same multiplicative impact on Rt, regardless of which country it is effectuated in. Three 
exceptions apply: I: The first NPI to be effectuated in a particular country is ascribed a bonus 
effect, as shown by the red versus green bars in Figure 2; II: lockdown is ascribed a country-
specific bonus effect; III: the last NPI that is effectuated in a country, being the lockdown NPI 
for all countries except for Sweden, is also ascribed a country-specific bonus effect. Additional 
country-specific flexibility is provided by letting the basic reproduction number R0, be a 
country-specific parameter, co-identified with the NPI-effect parameters.  
 
Apart from the NPI effectuation dates, a stochastic infection-to-death distribution and an 
infection-fatality-ratio are utilized. They are both based on previous reports [6]. Notably, the 
infection-to-death distribution (excluding reporting delay) has a mean of 23.9 days, 
comparable to the duration of the time window within which all NPIs were effectuated, as 
shown in Figure 1. 
 
The above components are combined into a model, driven by country-wise daily reported 
deaths (source: ECDC [7]). A Bayesian approach based on Markov Chain Monte Carlo 
(MCMC) [8] simulations is employed to compute posterior distributions of the NPI effects on 
Rt, along with the country-specific R0 values. In [4] the estimates are reported as 50 % and 95 
% credibility intervals (CI) of these distributions. 
 
It is claimed in [4] that lockdown has an "identifiable large impact on transmission" and that 
the "close spacing of interventions in time [...] mean the individual effects of the other 
interventions are not identifiable". Posterior credibility intervals for the effects of interventions 
presented in [4] however indicate the contrary: Individual 95 % CIs are presented for the 
effectiveness of each of the five considered NPIs. These CIs are all narrow, with each NPI 
except for lockdown ascribed effectiveness between -2 % and 18 %, see Figure 2 in [4].  

Methods and results 
We performed an empirical analysis of the model underlying [4], using the original model code 
and input data as provided by the authors of [4] through [9]. This simulation-based analysis is 
specifically influenced by the case of one country that has received remarkable special 
treatment in the model: Sweden, the only country which has not implemented the lockdown. 

The role of the last intervention 
While it was never motivated how data supports the exception of the lockdown, but not the 
other 4 NPIs from the otherwise applied pooling strategy introduced in [2], this special 
treatment of lockdown remained in [4]. 
 
As revealed in [5], the model version used in [2] had difficulties fitting the model to data from 
Sweden, which is the only modelled country in which lockdown had not been effectuated. This 
was fixed in the code version used in [4] by allowing country-specific variations of not only the 
lockdown intervention effect but also of  “the last intervention to be effectuated in a country”. 



 

5 

Notably, this fix was only activated for Sweden in the version of the code [9] reproducing the 
results of [4]. I.e., the fix introduces an ungrounded virtual NPI category for Sweden alone, 
that the model can utilise to improve its fit to data. When activating the last intervention fix for 
all countries, as is incorrectly claimed was done in [4], the statistics engine throws warnings 
that the "posterior means and medians may be unreliable", indicating numerical issues. 
 
With the fix in place for Sweden, the public events ban is ascribed a 71 % mean (95 % CI: 59–
81 %) reduction of Rt in Sweden, to be compared with its negligible < 2 % mean (and < 15 % 
with 95 % credibility) effect in all other modelled countries. Figure 2 shows the outcome for 
Sweden when executing the model with (a) and without (b) the last intervention fix. It should 
be noted that the removal of the model’s special treatment of Sweden in (b) significantly 
increases the estimated importance of the public events ban in all 11 countries, not just in 
Sweden. 

 
Figure 2. Estimated effectiveness of the public events ban intervention in Sweden. Top pane shows posterior 
credibility intervals for the reproduction number Rt in Sweden; the bottom pane shows the effectiveness of the 
considered interventions in the 11 modelled European countries. (a) Results of the code used in [4], with a separate 
last intervention parameter for the public events ban in Sweden. (b) Results of the same code, but with the last 
intervention parameter fix disabled also for Sweden, as in [2]. 
 
We have not come across any reason motivating separate treatment of the last effectuated 
NPI, except for the one presented above, to also fit the Swedish data. 

  

Interventions

Complete lockdown

Public events banned

School closure

Self isolation
Social distancing
encouraged

50%

95%

(b)

0

1

2

3

17
 fe

b

24
 fe

b

2 
m

ar

9 
m

ar

16
 m

ar

23
 m

ar

30
 m

ar

6 
ap

r

13
 ap

r

20
 ap

r

27
 ap

r

4 
m

aj

R
t

(a)

Social distancing

Self Isolation

School Closure

Public Events

Lockdown

0%
(no effect on transmissibility)

25% 50% 75% 100%
(ends transmissibility)

Relative % reduction in Rt

G
ov

er
nm

en
ta

l i
nt

er
ve

nt
io

n

First Intervention Later Intervention

0

1

2

3

17
 fe

b

24
 fe

b

2 
m

ar

9 
m

ar

16
 m

ar

23
 m

ar

30
 m

ar

6 
ap

r

13
 ap

r

20
 ap

r

27
 ap

r

4 
m

aj

R
t

0%
(no effect on transmissibility)

25% 50% 75% 100%
(ends transmissibility)

Relative % reduction in Rt

First Intervention Later Intervention



 

6 

Intervention definition sensitivity 
A challenge in the modelling of NPI effects is to accurately represent when, and to what extent, 
a particular NPI was effectuated. We investigate two examples: 
 

● Higher education instances in Sweden transitioned to online teaching on March 18, 
while elementary schools remained open. The version of the model used in Report 13 
[2] (dated March 30), defined school closure to have taken place on March 18. 
However, the model was revised on April 9, and school closure in Sweden was re-
defined not to have taken place. In [4] school closure is again said to have been 
effectuated in Sweden, but in the code used to generate the results of [4] school 
closure is defined not to have taken place in Sweden. 

● Similarly, public events exceeding 500 persons were banned in Sweden on March 12. 
On March 29, the restriction was tightened to 50 persons. Report 13 defined the date 
of the public events ban to March 12. On April 9, the effectuation date of public events 
ban was changed from March 12 to March 29 in the code [9]. In [4], the effectuation 
date is defined to be March 29. 

 
The outcome in Figure 3a is obtained when running the [4] version of the model, with school 
closure defined to have taken place in Sweden, and the Swedish public events ban to have 
taken place on March 29. With the public events ban date moved back to March 12, the results 
are instead those shown in Figure 3b. Re-running the model once more, now with school 
closure being defined not to have been effectuated, instead results in the estimates of Figure 
3c. All parameters not explicitly mentioned above are kept at their nominal values used in [4].  
 

 
Figure 3. Effect of interventions on virus spread in Sweden, with slightly varying definitions of the interventions. (a) 
School closure defined to have taken place, public events defined to have been banned on March 29. (b) Same 
as (a), but with the public events ban moved back to March 12. (c) Same as (b), but with school closure defined 
not to have taken place. As expected, the visual appearance of the plots is similar, with the last intervention 
contributing most to the reduction of virus spread. This is problematic, since the last intervention differs between 
(a), (b), and (c), each relying on equally motivated NPI effectuation dates, de facto introduced by the authors of 
[2,4] in different versions of the model code [9]. 
 
As seen in Figure 3, subtle changes in NPI definitions have an unrealistically large impact on 
the estimated effectiveness of individual NPIs in Sweden. This is because the last effectuated 
NPI is exempt from the country data pooling and is hence the only NPI practically available to 
the model in order to explain the decrease in Rt indicated by the Swedish data in absence of 
a societal lockdown. The three scenarios attribute the most significant decrease in Rt to the 
public events ban, the school closure, and to social distancing, respectively. 
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Before the modellers, for undisclosed reasons, began treating the last effectuated NPI in each 
country separately, the above changes did not only impact the estimated effectiveness of 
school closure and public events ban in Sweden, but in all modelled countries, as further 
illustrated in [5]. This provides a second plausible explanation as to why the authors of [4] 
introduced the special treatment of the last NPI to be effectuated in each country. 

Estimating the importance of lockdown  
With 11 countries in the analysis, Sweden was the only country without the NPI lockdown 
being effectuated. To give the model a chance to evaluate the efficiency of the lockdown 
intervention on a more equal footing, we ran the code on input data from only two countries: 
The UK and Sweden. We also deactivated the fix, present in [4] but not [2], that effectively 
exempts the last effectuated NPI in each country from the data pooling. 
 
Pooling Sweden and UK data result in major reattributions of NPI effects, as shown in 
Figures 4 and 5. The model now attributes the reduction in Rt to the public events ban and 
estimates a negligible effect of the lockdown NPI. 

 
Figure 4. The estimated effectiveness of interventions. Results were obtained by pooling only two of the modelled 
countries: Sweden and the UK in an execution of the [4] version of the code [9], with the last intervention-fix 
disabled. The model now estimates that public events ban has been the most efficient intervention, while the 
importance of lockdown being small. 
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Figure 5. Estimated effectiveness of interventions. Results were obtained by pooling only two of the modelled 
countries: Sweden and the UK in an execution of the [4] version of the code [9], with the last intervention fix 
disabled. The reduction of Rt is almost exclusively ascribed to the public events ban; the model estimates the 
importance of lockdown to be negligible. The model estimates Rt to have dropped below 1 at the end of March in 
both countries, with stated credibility exceeding 95 %. 

Data and code availability 
We have used the original model code and associated data, provided in [9] and described as 
“the exact code that was used" in [4]. A fork of this code, generating the figures in this 
manuscript, is provided in [10].  

Discussion 
The aim of this study was to investigate the method used by the ICCRT in [4] for estimation of 
NPI effects on SARS-CoV-2 spread. We found the combination of high model sensitivity, and 
the assumption of Rt being driven solely by the NPIs, to constitute a fundamental limitation. 
This should be considered when the modelling results are used as a basis for policymaking. 
 
The perhaps most remarkable result in [4] is that almost all the decrease of viral reproduction 
was attributed to the lockdown intervention in the 10 countries where it was effectuated. In 
those same 10 countries, the effects of the 5 other considered intervention categories were 
almost negligible. In the one country where lockdown was not effectuated (Sweden), it was 
instead the public events ban intervention that almost alone contributed to attaining Rt<1. It 
seems unlikely that this would be the result of fortunate circumstances, where lockdown was 
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implemented in exactly the 10 countries where it would have a large impact on Rt, and omitted 
in the single country, where it was not needed. The distribution modelling the infection-to-
death delay in [4] has a mean of 23.9 days, and so the model could not predict this outcome 
at the time most countries chose to effectuate lockdown, while one country did not.  
 
An arguably more plausible explanation of the findings is that it is the last of all interventions, 
that in the model will contribute to bringing Rt<1 in a specific country. This is confirmed by 
executing the model [9] with different interventions being defined as having occurred last in 
the one country where lockdown was not effectuated. It is hard to judge whether, for example, 
a partial transition to online teaching constitutes a school closure or not. This is reflected by 
the model used in [2] first defining school closure to have taken place in Sweden. In a 
subsequent code version it was defined not to have taken place, using the above motivation, 
and in the code version used in [4] it had again been re-introduced. Similarly, the crowd size 
limit associated with the public events ban NPI remains a free design parameter for the 
modeller to decide. Early versions of the model code defined the public events ban to have 
taken place on the date where gatherings exceeding 500 persons were discouraged in 
Sweden. This was later changed to the date when gatherings exceeding 50 persons were 
discouraged. As shown in Figure 1, the intervention defined to have been effectuated last in 
Sweden is different, depending on which of the mentioned definitions of school closure and 
public events ban is chosen. This results in either school closure, public events, or social 
distancing discouraged becoming defined as the last intervention to have been effectuated in 
Sweden. In each case, the model uses the last intervention to explain the reduction in Rt that 
becomes evident in the death reports collected over April and May. 
 
The main difference between the models used by the ICCRT in [2] and [4] is the introduction 
of country-specific effect parameters for the last NPI to be effectuated. This last NPI is 
lockdown in all countries except Sweden, where it is public events ban, school closure or 
social distancing encouraged, depending on which version of NPI effectuation dates is 
adopted. This bonus parameter provides an explanation of the decrease of Rt in Sweden, 
despite the absence of lockdown. Remarkably, in the ICCRT model code [9] reproducing the 
results in the Nature article [4], the bonus last intervention parameter has been disabled for 
all countries except Sweden, de facto providing a bonus NPI parameter in Sweden for the 
model to use. Enabling the bonus parameter for all 11 countries, to match the wording in [4], 
results in numerical issues and warnings from the MCMC engine that the posterior 
distributions should not be trusted. 
 
Our point is not to argue whether a school closure took place or not in Sweden, what the most 
appropriate crowd size limit is, or whether lockdown should be ascribed a higher or lower 
effect on than for instance public events ban. Instead, our findings highlight a remarkably large 
sensitivity to such minor changes in input data. 
 
The nominal NPI effectuation dates considered in [2], do not suffer from the pathological case 
of any NPI being effectuated on the same day across all 11 countries, see Figure 1, but the 
observed sensitivity issues can still be qualitatively understood from the analysis of the 
regression matrix for the linear regression problem at the heart of estimating the NPI 
parameters, as performed in [5,10]. The identifiability issues are to some extent acknowledged 
in [4], by recognizing that "The close spacing of interventions in time [...] mean the individual 
effects of the other interventions are not identifiable". The basis for this deduction is not 
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presented in [4]. More remarkably, it is easily overshadowed by the subsequent presentation 
of credible intervals for the effects of the different NPIs, and the claim that "Lockdown has an 
identifiable large impact on transmission (81% [75% - 87%] reduction".  As seen in Figure 3, 
the mentioned credible intervals shrink as more data become available, hiding the 
fundamental identifiability problems of the underlying model, and giving the results a false 
sense of reliability. 
 
There are several other aspects of the model in [4] that deserve scrutiny. The authors of [4] 
write that they “assess whether there is evidence that interventions have so far been 
successful at reducing Rt below 1” and later hint at an affirmative conclusion by writing that 
they “estimate large reductions in the reproduction number Rt in response to the combined 
non-pharmaceutical interventions”. We argue that it is questionable to determine the joint 
impact of NPIs on Rt using a model based on the assumptions that changes in Rt are de facto 
only driven by the NPIs. The authors seem to acknowledge this in their counterfactual analysis, 
by stating that “even in the absence of government interventions we would expect Rt to 
decrease and therefore would overestimate the deaths in the no-intervention mode”. Yet, no 
serious effort to falsify the underlying hypothesis that the NPIs are the main reason for the 
reduction in Rt is ever presented. The closest we could find was a section of the supplement 
of [4], corresponding to Section 8.4.4 of [2], that describes an attempt to assess this 
assumption using a form of Gaussian process prior null hypothesis. There is, however, no 
reference to quantitative results, and no code to perform this experiment has been provided 
in [9]. 
 
Using simple but insightful executions of the original model code, we have demonstrated that 
even a seemingly simplistic and data-driven phenomenological model can suffer from severe 
sensitivity and identifiability issues. With much at stake during all phases of a pandemic, we 
conclude that it is crucial to thoroughly scrutinize any SARS-CoV-2 estimation or prediction 
model, prior to considering its use as decision support in policymaking. Such scrutiny relies 
on modellers following the good practice used by the authors of [4], of sharing open source 
code. 
 
We would finally like to state that we strongly support the ambition of [4], to use available data 
to estimate the efficiency of different NPIs. However, the fact that the NPIs were introduced 
so closely in time during some weeks in March, unfortunately, made identifiability of individual 
NPIs infeasible. 
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