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Abstract 
Multiple studies have been conducted to predict the impact and duration of the current 
COVID-19 epidemics. Most of those studies rely on parameter calibration using the 
published number of confirmed cases. Unfortunately, this number is usually 
incomplete and biased due to the lack of testing capacities, and varying testing 
protocols. An essential requirement for better monitoring is the evaluation of the 
number of undiagnosed infected individuals. This number is crucial for the 
determination of transmission prevention strategies and it provides statistics on the 
epidemic dynamics. To estimate the number of undiagnosed infected individuals, we 
studied the relation between the fraction of diagnosed infected out of all infected, and 
the fraction of infected with known contaminator out of all diagnosed infected. We 
simulated multiple models currently used to study the COVID-19 pandemic and 
computed the relation between these two fractions in all those models. Across most 
models currently used and for most realistic model parameters, the relation between 
the two fractions is consistently linear and model independent. This relation can be 
used to estimate the number of undiagnosed infected, with no explicit epidemiological 
model. We apply this method to measure the number of undiagnosed infected in Israel. 
Since the fraction of confirmed cases with a known source can be obtained from 
epidemiological investigations in any country, one can estimate the total number of 
infected individuals in the same country. 
 
 

Introduction 
Since the initial spread of COVID-19, the number of infected individuals has been used 
as one of the main tools to measure the spread of the virus.1,2 However, it is now clear 
from measures in China and around the world that there is a substantial number of 
undiagnosed infected.3—5 To estimate the total number of infected, it is crucial to 
determine the Confirmed Cases Fraction (CCF), which is defined here as the fraction 
of confirmed (diagnosed) infected out of all infected (both diagnosed and 
undiagnosed). A precise estimate of CCF is essential for the assessment of the current 
situation in any given country and the establishment of protective measures. In 
different countries, CCF values depend on sampling protocols and frequencies. 
Except for Iceland that has now tested its entire population and identified all infected 
individuals, there are obvious disparities between countries in their testing capacities 
and protocols6,7. Recently, serology-based estimates of the total exposed number 
emerge.28,29 However, it is not clear that these exposed are infective. 
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In the absence of a vaccine or efficient treatment, the control of social contacts through 
large-scale social distancing measures appears to be the most effective means of 
mitigation in the current COVID-19 pandemic. Modeling has emerged as an important 
tool to gauge the potential for widespread contagion, to cope with associated 
uncertainty, and inform its mitigation, and has increased the interest in epidemiological 
models.8—13 The predictions of those models are often based on observations-driven 
parameter estimates. However, one of the main observations for this pandemic - the 
reported number of carriers is heavily influenced by sampling biases. To correlate the 
number of reported diagnosed and the total number of infected, one must estimate 
CCF. 
 
Multiple models have been proposed to evaluate CCF using, for instance, the number 
of deceased patients,14,15 but in all those studies, the results depend on the models 
used or on estimates of country-specific parameters, such as the age dependence or 
the Infection fatality rate (IFR). We here propose a novel approach to evaluate CCF 
based on the fraction of diagnosed infected with a known infection source (Known 
Source Fraction KSF). We show that this method is not sensitive to the details of the 
model used. 
 
Two main types of predictive models were proposed for the current COVID-19 
epidemic: macroscopic models, using aggregated data at the population scale and 
microscopic models, incorporating distributed information at the individual level.16—18 
Macroscopic models use stochastic processes or ODEs to predict the evolution of the 
outbreak on a global scale.11,16 The simplest and most common model is the SIR 
model,19 where the population is divided into three categories: Susceptible, Infected, 
and Removed (figure 1 upper scheme). In this model, propagation of the virus depends 
on the infection rate or the number of contacts between susceptible and infected 
individuals, and the detection rate that characterizes the time that infected individuals 
remain contagious. The Removed category can include individuals that survived the 
virus and are now immune, or deceased patients (SIRD). If stringent confinement is 
applied, this category can also simply be all diagnosed individuals since they are now 
removed from the system and can no longer contaminate other individuals.  
 
A difference between COVID-19 and previous respiratory diseases is the relatively 
long incubation time. Therefore, a fourth category is often added: Exposed individuals 
(SEIR model – figure 1 second scheme) that carry the virus but still do not contaminate 
others. A lag of a few days has indeed to be considered when observing infection 
patterns.21,22 More sophisticated versions of SEIR also incorporate migration to assess 
the efficiency of intercity restrictions.23 In light of the latest development, other 
categories can be added to the system such as Asymptomatic individuals. Finally, 
models were refined with a time-dependent infection rate,17 age-dependent infection 
matrices, or even quarantine.24,25 The practical conclusions drawn from such models 
rely on predetermined assumptions on the CCF over time. We here propose a 
straightforward method to estimate the time-dependent CCF and show that it is not 
sensitive to the details of the model used.  
 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 15, 2020. ; https://doi.org/10.1101/2020.06.09.20126318doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20126318
http://creativecommons.org/licenses/by-nc/4.0/


 
 
Figure 1: Models Description 
Upper plot - Dynamics of the SIR model. A Susceptible individual can get infected with a rate 
proportional to βIS. An infected can get Removed from the system with a rate proportional to γI. Middle 
plot - Dynamics of the SEIR model. An Exposed category is added. Exposed are not infecting but can 
become infecting with a probability of δ per exposed. Lower plot - Dynamics of the discrete-time 
simulations: First line - Each Infected (red) can infect each susceptible (dark). If an infected is detected, 
it becomes quarantined and thus removed (green). Second-line If the contaminator of a diagnosed 
individual was already detected (i.e it is green by the time the new infected is diagnosed), the newly 
diagnosed is considered "controlled" (blue) implying that its source of contamination is known. We 
define two ratios. CCF is the fraction of diagnosed individuals over the total number of infected 
(diagnosed and undiagnosed). KSF is the fraction of diagnosed individual with a known source of 
contamination. 
 
 

Methods 
We performed discrete stochastic simulations of both SIR and SEIR models for 
different infectivity distributions, where each event is explicitly modeled. The models 
studied either had an equal probability of getting infected for each susceptible, or a 
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variable distribution with a scale-free distribution. We present here results with a slope 
of -2, but other slopes had similar results.  
 
Following is a technical description of the simulation framework. For the sake of 
efficiency, each event (e.g. infection, detection…) is represented as a tree to allow a 
rapid selection of the individual involved in the next event. Each leaf corresponds to 
an individual. The value of each internal node in the tree is the sum of the values in its 
direct descendants in the tree. The tree root is the total probability of the event. This 
configuration enables us to access each individual in logarithmic time. We also keep 
track of the identity of the contaminator in a repertoire, in case of a contamination 
event.  
 

 
 
Figure 2: Simulations methodology 
Trees recording individuals in a category of the population. There are trees for each event. Each node 
is the sum of its two direct descendent. The leaves are events involving a given individual (from the 
appropriate category). The root is the total probability of an event in the entire population. The leaves 
can have different values if the probability of an event differs among individuals. 
 
We compute the normalized probabilities of each event (based on the top node of the 
tree of this event) in the appropriate model. At each step, we choose an event based 
on these probabilities. For a contamination event, a susceptible is chosen based on 
its (pre-defined) infectivity. The probability of such an event is the product of the total 
number of infected, the total infection probability of susceptible individuals, and the 
infection rate. Following, an infection event, a susceptible becomes infected, the 
chosen susceptible is determined by traversing the susceptible tree. The tree is then 
updated along the entire path. We also choose randomly an infected as the 
contaminator and record its leaf number in the repertoire.  
 
For a detection event, an individual is randomly chosen in the infected tree with a 
probability proportional to the product of the total number of infected and the detection 
rate. We then check if his/her contaminator has already been detected by observing if 
the leaf of the contaminator was already detected. In such a case, the number of 
Controlled is increased by 1. Once the total number of infected reaches one percent 
of the total population, we stop the simulation. The ratios in figures 3A and B are taken 
along the simulations. The results in figure 3C are at the last time point of the 
simulation. Simulations where the total number of infected collapsed before reaching 
one percent of the total population were not incorporated in the results. 
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Results 
In many cases, the KSF can be estimated from the epidemiological investigations even 
on a limited sample of the confirmed infected individuals. In contrast, CCF can be 
directly measured only through wide scales surveys. Moreover, in most countries, the 
total fraction of infected is low, requiring very large surveys to obtain accurate 
estimates. 
 
To test whether KSF can be used to estimate CCF, we computed KSF and CCF in 
different models. We then tested whether the relation between KSF and CCF is 
sensitive to the details of the model. While there is a large number of existing models, 
most current works on COVID-19 are based on different versions of either the SIR or 
SEIR models.4,19,22 We thus simulated these usual three (four) categories: Susceptible 
(S), (Exposed (E)), Infected/undiagnosed infected (I), and Removed/Diagnosed (R). 
The last category includes all individuals that can no longer contaminate others, 
namely all the diagnosed individuals. Therefore, the Infected category corresponds to 
undiagnosed individuals. This is a reasonable assumption since in most countries 
diagnosed individuals are put into quarantine. We also assume that recovered 
individuals can no longer get infected and, therefore, do not return to the Susceptible 
category (at least not with a high enough probability). β represents the infection rate 
at which Susceptible get Infected (Exposed), (δ is the rate at which Exposed become 
Infectious), and γ is the detection rate at which Infected get Removed. We further 
define as C the number of Controlled individuals. It represents the fraction of the 
Removed for whom the identity of their contaminator is known. In practice, each time 
a Susceptible gets infected, an Infected is randomly chosen to be the contaminator 
and its identity is recorded. When an individual gets diagnosed, we check the identity 
of its contaminator and if this contaminator has already been diagnosed, we consider 
that the newly diagnosed individual moves to the Controlled category (see figure 1 for 
a description of the dynamics and Methods). We ignored false positives (diagnosed 
that are not infected) in the current analysis, as their number is consistently small.17,26 
We further discuss false negatives. 
 
To simulate epidemics, we keep track of I, R and C and compute the two ratios: 

ଵ

஼஼ி
=

1 +
ூ

ோ
  and 

ଵ

௄ௌி
=

ோ

஼
. Those two ratios rapidly achieve equilibrium (plots A and B in figure 

3). Moreover, in different realizations of the same model, most of the trajectory density 
is centered on a limited range of KSF and CCF values. Different initial conditions and 
stochastic realizations lead to similar solutions (figure 3B). As such, for a given model 
and known parameters, one can use KSF to estimate CCF. 
 
However, in most cases, the spread dynamics parameters or even the appropriate 
model are unknown. To show that the relation between KSF and CCF is not model or 
parameter specific, we tested this relation in multiple versions of SIR and SEIR models 
and different parameter configurations. We implemented SIR and SEIR models with 
homogenous and heterogeneous infection rates to reflect the fact that not all 
individuals have the same infection probability (as a function of age/gender/genetics 
or other factors). In each configuration, we ran simulations with different values of the 
parameters (figure 3C). One can see that, while both fractions vary in different models 
and parameters, however, an approximately linear relation is consistent among all 
models. 
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Since R and C can be obtained from measures of diagnosed infected and 
epidemiological investigations, KSF can be estimated in most cases. Then CCF and 
thus I can be determined from the relation in figure 3C. To check the applicability of 
our methodology, we analyzed the number of confirmed cases in Israel every day7. In 
parallel, we analyzed from the Israeli Minister of Health the fraction of confirmed cases 
in Israel with a known source (KSF) (figure 3D). We then estimated the total number 
of infected in Israel (figure 3E). Note that in Israel, the number of undiagnosed infected 
is relatively small since this country has applied stringent controls and testing early in 
the crisis. This agrees with the relatively low number of death events in Israel. 
 

 
 
Figure 3: Results from simulations 
Plot A - Density plot of the two ratios over 1000 simulations. Plot B - Time evolution of the two ratios 
ଵ
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. We observe that not only the ratios achieve equilibrium, but they are never 

very far from it. Plot C - Independently of the model used (SIR or SEIR, with homogeneous or 
heterogeneous infection rate), we observe a linear relation between 1/CCF and 1/KSF. Plot D – 
Distribution of source of infection per day in Israel. Data. obtained from the Israeli ministry of health with 
the fraction of confirmed cases with a known source. We ignored in this analysis infected coming from 
abroad (deep gray).  Plot E - The number of confirmed cases (Removed) in Israel was obtained from 
world data (full line).7 We used our method to estimate the total number of infected in Israel (Dashed 
line). 
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Discussion 
We have presented a method to estimate the fraction of undiagnosed infected from 
the fraction of infected with a known contaminator (out of all infected). While the first 
value is hard to measure in realistic situations, the second is often known. 
  
The KSF estimate suffers from multiple caveats with opposite effects. First, removed 
individuals were considered controlled only if their contaminator was already 
diagnosed when in fact it could be diagnosed even after. Therefore, even already 
removed individuals could be counted eventually as controlled. A second and more 
complex problem is that reported infected may be biased toward people who have 
been in contact with other reported infected. As such, the number of controlled 
individuals would be overestimated. A direct solution to these limitations would be to 
perform detailed epidemiological investigations on patients with clinical complications. 
Such patients typically do not suffer from sampling bias and detailed enough 
investigations will limit the number of missed controls. Such investigations can be 
performed on a limited sample.27 
 
Another limitation of our estimate is that epidemiological investigations are not perfect, 
as such, some controlled individuals might be missed. Similarly, some diagnosed may 
be assumed to be infected from a known source, when in fact they were infected by 
other sources. These limitations can be solved when detailed genetic information is 
available on the virus. Note again that only a small fraction of the diagnosed individuals 
has to be investigated in detail to obtain KSF. 
 
As of May 31st, the number of daily infections is decreasing in most countries, but this 
decrease is slower than the predictions of all SIR models class. This feature comes 
from the fact that the infection rate, although lower than at the beginning of the crisis, 
is still high and erratic. If new models were to be developed for such periods, the same 
analysis can be done to test whether their results stay on the same approximate linear 
relation between 1/CCF and 1/KSF  even if SIR style models are abandoned. 
 
Other versions of the SIR models include a transition to a death state or an 
Asymptomatic category. Since our Removed category includes all individuals that can 
no longer contaminate, it already accounts for the dead and the effect of quarantine. 
Our Infected category includes all undiagnosed individuals that can contaminate 
others therefore, it accounts for all carriers including the asymptomatic individuals. 
Migration has a minor effect on contamination,23 so we did not include this feature. For 
the sake of simplicity, we presented here a non-spatial model where all infected 
individuals can contaminate others disregarding proximity but, since the similarity 
between CCF and KSF is an inherent property of epidemiological models, we do not 
expect network and spatial features to change our conclusions. 
 
To summarize, as is the case for every model, multiple caveats can affect the validity 
of the model, most of those can be avoided in detailed and unbiased investigations on 
small numbers of diagnosed (even a few tens). Thus, while we do not propose to use 
the observed relation as is on biased published epidemiological data, the here 
reported relation between KSF and CCF can be a critical tool to estimate the spread 
of diseases.  
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