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Abstract 1

Since its emergence in late 2019, COVID-19 has caused significant global morbidity and 2

mortality, overwhelming health systems. Considerable attention has been paid to the 3

burden COVID-19 has put on acute care hospitals, with numerous models projecting 4

hospitalizations and ICU needs for the duration of the pandemic. However, less 5

attention has been paid to where these patients may go if they require additional care 6

following hospital discharge. As COVID-19 patients recover from severe infections, 7

many of them require additional care. Yet with post-acute care facilities averaging 85% 8

capacity prior to the pandemic and the significant potential for outbreaks, consideration 9

of the downstream effects of the surge of hospitalized COVID-19 patients is critical. 10

Here, we present a method for projecting COVID-19 post-acute care needs. Our model 11

is designed to take the output from any of the numerous epidemiological models 12

(hospital discharges) and estimate the flow of patients to post-acute care services, thus 13

providing a similar surge planning model for post-acute care services. Using data from 14

the University of Utah Hospital, we find that for those who require specialized 15

post-acute care, the majority require either home health care or skilled nursing facilities. 16

Likewise, we find the expected peak in post-acute care occurs about two weeks after the 17

expected peak for acute care hospitalizations, a result of the duration of hospitalization. 18

This short delay between acute care and post-acute care surges highlights the 19

importance of considering the organization necessary to accommodate the influx of 20

recovering COVID-19 patients and protect non-COVID-19 patients prior to the peak in 21

acute care hospitalizations. We developed this model to guide policymakers in 22

addressing the “aftershocks” of discharged patients requiring further supportive care; 23

while we only show the outcomes for discharges based on preliminary data from the 24

University of Utah Hospital, we suggest alternative uses for our model including 25

adapting it to explore potential alternative strategies for addressing the surge in acute 26

care facilities during future pandemic waves. 27
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Author Summary 28

COVID-19 has caused significant morbidity and mortality globally, putting considerable 29

strain on healthcare systems as a result of high rates of hospitalization and critical care 30

needs among COVID-19 patients. To address this immediate need, a number of decision 31

support tools have been developed to project hospitalization, intensive care unit (ICU) 32

hospitalizations, and ventilator needs for the COVID-19 pandemic. As COVID-19 33

patients are discharged from acute care hospitals, many of them will require significant 34

additional post-acute care. However, with post-acute care facilities at high capacity 35

prior to the influx of COVID-19 patients and with significant outbreak potential in 36

long-term care facilities, there is high potential for shortages of post-acute care services. 37

Here, we present a model of COVID-19 post-acute care needs that is analogous to most 38

epidemiological models of COVID-19 hospitalization and ICU care needs. We develop 39

our model on University of Utah Hospital data and demonstrate its utility and its 40

flexibility to be used in other contexts. Our model aims to guide public health 41

policymaking in addressing the “aftershocks” of discharged patients requiring further 42

care, to prevent potential healthcare shortages. 43

Introduction 44

Since its emergence in late 2019, the virus responsible for coronavirus disease 2019 45

(COVID-19) has spread rapidly, causing significant global morbidity and mortality [1,2]. 46

While COVID-19 has considerable individual health impacts, significant attention has 47

been paid to the strain put on health systems resulting from high rates of hospitalization, 48

critical care, and ventilation among COVID-19 infections [3,4]. Consequently, a large 49

focus of decision support tools, including epidemiological models, has been to project 50

the impact of COVID-19 on acute care hospitalizations and ICU admissions under 51

different non-pharmaceutical interventions to help guide public health action. 52

Epidemiological models have played a signficant role in shaping the public health 53

response globally. A wide variety of methods have been deployed to project the course 54

of the COVID-19 outbreak, including agent-based models, population-level models with 55

and without age structure, and curve fitting approaches [5–9]. Despite the variation in 56

methodology, they each estimate the same health outcomes: infections, hospitalizations, 57

ICU hospitalizations, ventilators needed, and deaths. These models played a critical role 58

in helping policy makers design and implement effective interventions to avoid the 59

universal projection that without interventions, the surge of COVID-19 patients at the 60

peak of the outbreak would overwhelm healthcare facilities. While these health 61

outcomes provide necessary projections to address the surge of patients expected during 62

local epidemic peaks, none of these approaches consider what could be described as the 63

“aftershocks” of the surge. That is, a secondary surge due to patients who were 64

discharged from an acute care facility, but still require continued support. 65

As patients recover from severe or critical COVID-19 infections, many will require 66

rehabilitative, supportive, or palliative care services. Depending on the intensity of care 67

the patient requires, treatment might include a stay in a skilled nursing facility or care 68

at home, including hospice care. Additionally, post-acute care services can act as a 69

pressure release valve for hospitals reaching saturation [10]. Grabowski et al. [10] 70

highlights some of the challenges for post-acute care planning. As evidenced by 71

COVID-19 outbreaks in nursing facilities across the globe [11], skilled nursing facilities 72

are ill-equipped to manage the infection prevention and control measures essential to 73

containing the spread of COVID-19. Skilled nursing facilities are, on average, at 85% 74

capacity [12], and no single facility is likely prepared to handle a surge of new patients. 75

Any given hospital discharges patients to multiple facilities. Since these recovering 76
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COVID-19 patients may still be infectious, they further increase the already high risk 77

for outbreak at these facilities and, subsequently, the need for even more patients 78

requiring acute hospital care. The staggering number of excess deaths attributed to 79

COVID-19 [13,14] originating from nursing facilities is a testament to the critical need 80

for surge planning modeling that integrates acute hospital and post-acute care. 81

We consider the downstream effects on post-acute care services of COVID-19 82

patients who previously required hopitalization, ICU care, and/or mechanical 83

ventilation. In this paper, we present a method for projecting post-acute care capacity 84

needs that takes in a time series of discharge estimates from any of the numerous 85

epidemiological models of COVID-19 and extends the results from these models to 86

estimate the flow of patients to three post-acute care services (and direct-to-home), thus 87

providing the same type of surge planning model for post-acute care services that the 88

multitude of high-profile epidemiological models provide for acute care planning. 89

Methods 90

This model is designed to extend projections from existing epidemiological models. It 91

builds off of the standard model outputs (time series of hospital and ICU discharges) 92

and projects the post-acute care needs of discharged patients. Post-acute care services 93

include: 1) direct-to-home (none), 2) home health care (hh), 3) skilled nursing facility 94

(snf), and 4) hospice (hos). This model is available in the Github repository 95

“mattrmaloney/covid-post-acute-care.” [15] 96

Model of discharge allocation 97

To project patient movement to each of the four post-acute care services, we use the 98

following statistical model, which uses a multinomial distribution to estimate patient 99

flow. We estimate the discharge location for nj patients discharged from ward j, where 100

j is either patients in the hospital for COVID-19 (all wards) or patients in the ICU: 101

(xj,none, xj,hh, xj,snf , xj,hos) ∼Multinomial(nj , pj,none, pj,hh, pj,snf , pj,hos) (1)

where pj,k and xj,k denotes the probability and number, respectively, of patients 102

discharged from ward j to post-acute outcome k (where k ∈ {none, hh, snf, hosp} for 103

our model). Thus, we have that
∑

k xj,k = nj . In addition, the set of probability 104

parameters must sum to one, so for our model pj,none + pj,hh + pj,snf + pj,hos = 1. 105

The multinomial patient allocation function is sufficient to determine flows into 106

post-acute care services. Formally, the model takes a time series of hospital discharges 107

from ward type j, i.e. 108

nj,1, nj,2, ...nj,T , (2)

where T denotes the total length of the time series. At each time step, a draw from 109

the multinomial distribution is used to allocate discharge counts across post-acute care 110

services. The result is a matrix with dimensions T × 4, where each column corresponds 111

to the number of new patients that flow to each post-acute care service at each point in 112

time. 113

To further operationalize this model, we also estimate the number of patients in each 114

of these services at any time to provide guidance on when existing services may reach or 115

exceed capacity. To determine patient counts in each service, we require baseline 116

estimates of the number of patients in each service and the length of stay for patients in 117

each service. In this paper, we assume the initial patient census is zero, however this 118

assumption can be easily changed. In the next section, we detail how length of stay 119
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estimates were determined. To calculate the census over time for each service, we use 120

the length-of-stay estimates to create discharge series for each service. The number of 121

discharges each day is equal to the inflow from lk days ago, where lk is the 122

length-of-stay assumption for service k. The cumulative sum of the inpatient flows 123

minus the cumulative sum of discharges gives the census at each point in time. 124

Model inputs and parameters 125

Hospital and ICU discharges 126

Since our model does not attempt to model the broader COVID-19 outbreak, it requires 127

a time series of hospital and ICU discharges. In this paper, we use model outputs from 128

the Johns Hopkins University Infectious Disease Dynamics (JHU IDD) model, which 129

combines an SEIR model with a statistical model to estimate daily hospitalizations, ICU 130

hospitalizations, and ventilated patients [8]. As a result of the considerable uncertainty 131

surrounding estimates of the proportion of all infections that are hospitalized, the JHU 132

IDD model assumes the hospitalization rate is 10 times the infection fatality rate (IFR) 133

and, due to uncertainty in estimates of the IFR, they explore 3 IFRs: 0.25%, 0.5%, and 134

1%. Here, we explore 0.5% IFR and the corresponding 5% hospitalization rate. 135

We demonstrate the utility of our model on two example runs of the COVID-19 136

outbreak in Utah using the JHU IDD model, simulating the outbreak with Rt = 1.2 for 137

“current Utah”, based off of the actual transmission rate in Utah on May 2,2020, 138

calculated based off of the positive test rates [16]; and Rt = 1.6 followed by pulsed 139

lockdowns with Rt = 0.55 for “pulsed social distancing”, calculated based of Maryland’s 140

pre-lockdown reproductive number and the estimate of the lockdown in the UK [16,17]; 141

for both we assume a 0.5% IFR. We run the model from January 1, 2020 to December 142

31, 2020 (Figure 1). 143

Length of stay estimates 144

A critical component to determining when current capacity will be exceeded by 145

COVID-19 patient needs is estimating the duration of stay for patients who are 146

discharged to each of the different service types (Table 1). We do not calculate a length 147

of stay for patients discharged directly to home since that will not influence facility 148

capacity. The estimate for the average length of stay (ALOS) for COVID-19 patients in 149

skilled nursing facilities is based on the University of Utah Health’s ALOS from 150

reporting affiliate skilled nursing facilities, and further validated by the actual 151

experience in a COVID-19 dedicated skilled nursing facility in Utah after seven weeks of 152

operations during the pandemic. The home health and hospice ALOS assumptions are 153

based on anticipated ALOS and a small COVID-19 patient sample from the University 154

of Utah Health’s home health and hospice agency, Community Nursing Services. The 155

hospice ALOS also includes general inpatient hospice patients. 156

Table 1: Assumptions for length of stay and initial patient counts for post-acute 157

care services 158

Days
Direct-to-Home 0
Home Health 15
Skilled Nursing Facility 18
Hospice 7
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Fig 1. Timeseries of hospital and ICU A) discharges from hospital across the state of
Utah based on an epidemiological model of the current reproductive number in Utah
(current Utah); B) discharges from ICUs across the state of Utah based on an
epidemiological model of (current Utah); C) discharges from the hospital across the
state of Utah based on an epidemiological model of pulsed lockdowns (opening based on
ICU capacity); and D) discharges from ICUs across the state of Utah based on an
epidemiological model of opening based on ICU capacity
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Post-acute care probability priors 159

The probabilities that parameterize the multinomial distribution are very uncertain. 160

Even as the COVID-19 pandemic has progressed with significant numbers of 161

hospitalizations and deaths, post-acute care needs lag behind. Considering the 162

generation time of infections coupled with the long duration of hospitalizations and ICU 163

hospitalizations, the number of patients who have been discharged to post-acute care 164

services remains relatively low, leading to uncertainty in parameter estimates. First, we 165

determined preliminary estimates of the fraction of individuals who would end up in 166

each post-acute care service type, for both non-ICU discharges and ICU discharges. 167

Then, we constructed discrete “low,” “mean,” and “high” estimates to summarize the 168

potential range of outcomes (Table 2). 169

The non-ICU discharge destination fractions are based on internal University of 170

Utah Health system discharge data from the previous calendar year. The mean ICU 171

patient discharge fractions for home health and skilled nursing facility care are based on 172

historical estimates for those hospitalized for sepsis, which has a similar inpatient 173

mortality rate [10]. The other ICU estimates are also based on University of Utah 174

discharge data from the previous calendar year. 175

Table 2: Preliminary estimated ranges for fractions of patients discharged to each 176

post-acute care destination for non-ICU and ICU hospitalized COVID-19 patients 177

Non-ICU discharge ICU discharge
Low Mean High Low Mean High

Direct-to-Home 0.496 0.748 0.874 0.152 0.488 0.744
Home Health 0.090 0.180 0.360 0.100 0.200 0.400
SNF 0.030 0.060 0.120 0.150 0.300 0.400
Hospice 0.006 0.012 0.048 0.006 0.012 0.024

Rather than using these low, mean, and high estimates directly, we create a 178

continuous distribution of possible multinomial parameter values using a Dirichlet 179

distribution. Formally, 180

(pj,none, pj,hh, pj,snf , pj,hos) ∼ Dir(αj,none, αj,hh, αj,snf , αj,hos). (3)

Thus, for every hospitalization discharge series, we draw a random set of 181

probabilities/parameters for the multinomial distribution from that Dirichlet 182

distribution, where the α values are parameters that will initially be proportional to the 183

mean care service fractions shown in Table 2. Denoting the vector of these mean values 184

for ward j as p̄j , we introduce a scaling parameter, φj , such that our initial α 185

parameters are 186

αj,none, αj,hh, αj,snf , αj,hos = p̄jφj . (4)

The magnitude of φj will determine how much weight is put on our priors versus the 187

new, actual discharge outcomes we may observe in the future. Smaller α values 188

correspond to wider, flatter distributions around each service type probability and 189

represent less confidence in our priors about these probabilities. If we restrict φj to be 190

an integer it has a nice interpretation: we are as confident in our priors as if we had 191

observed φj discharges that were distributed according to p̄j . 192

We used the low and high estimates from Table 2 to calibrate φj for j = icu and 193

j = non icu discharges. We ran simulations to determine numerically the lowest integer 194

values of φ at which 90% of the individual values drawn from the Dirichlet distribution 195

were within their respective low to high ranges. We do not require that 90% of the 196

draws of each parameter fall within their low-to-high range, only that collectively 90% 197

of all the parameters are within their respective ranges. The former would be too 198
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Fig 2. Post-acute care priors probability for each of the four post-discharge care
services, (red) Home Health, (blue) Hospice, (green) Skilled Nursing Facility, (purple)
None for A) non-ICU hospitalized and B) ICU hospitalized COVID-19 patients.

restrictive. Specifically, the algorithm starts at φj = 1, takes 10,000 draws from the 199

Dirichlet distribution, and then checks what percentage of the parameters fall within 200

their low-to-high ranges. If the percentage is less than our 90% condition, we add one to 201

φj and run another 10,000 simulations. We repeat the process until our condition is 202

met. Following this procedure, we find that φicu = 138 and φnon icu = 121. The 203

corresponding Dirichlet parameter values are shown in Table 3. The corresponding 204

Dirichlet distributions are shown in Figure 2. 205

Method for updating priors 206

As new patient counts for each care category are observed (denoted by x) we can 207

incorporate this new information to update the Dirichlet distribution according to 208

(pj,none, pj,hh, pj,snf , pj,hos)|(xj,none, xj,hh, xj,snf , xj,hos) ∼
Dir(αj,none + xj,none, αj,hh + xj,hh, αj,snf + xj,snf , αj,hos + xj,hos) (5)

The expected probabilities in the posterior distributions are 209

E[pj,k] =
xk + αj,k

αj,none + xj,none + αj,hh + xj,hh + αj,snf + xj,snf + αj,hos + xj,hos
(6)

Results 210

Updating priors using University of Utah Hospital discharges 211

As of May 27, 2020, University of Utah Hospital has discharged a total of 78 COVID-19 212

patients: 24 patients who spent time in the ICU and 54 who had not. The cumulative 213

fraction of patients who were discharged to the four post-acute care service types (as 214

well as a dotted line indicating our initial expectations of where patients would be 215

discharged to) are shown in Figure 3 for non-ICU patients (Figure 3A) and patients 216

who spent time in the ICU (Figure 3B). These observations of actual patient discharges 217

were used to update our priors. For non-ICU discharges, the observations have 218

decreased our expectation of the percentage of patients who will require home health 219

services and increased our expectation about the percentage of patients who will require 220

hospice care. For ICU patients, the observations have increased our expectation of the 221
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Fig 3. Incorporating new information over time. The x-axis shows days since we began
tracking discharge data. The left-side plots compare the cumulative observed fraction of
University of Utah COVID-19 patients discharged to each care service with our initial
expectations for Non-ICU (A) and ICU (C) discharges. The right-side plots show how
our discharge probability expectations changed over time based the observed discharges
for non-ICU (B) and ICU (D).

percentage of patients who will not require any services and decreased our expectation 222

of the percentage patients who will require a skilled nursing facility. Table 3 shows the 223

parameters for the posterior Dirichlet distributions. 224

Table 3: Dirichlet distribution parameters 225

Prior Posterior
Non-ICU ICU Non-ICU ICU

Direct-to-Home 90.508 67.344 114.72 79.72
Home Health 21.780 27.600 20.02 26.80
SNF 7.260 41.400 7.90 38.88
Hospice 1.452 1.656 2.64 2.29

Post-acute care simulations 226

We present an example run of 1000 model simulations across the state of Utah and in 227

Salt Lake City to demonstrate the post-acute care model output from January 31 to 228

December 31, 2020. We ran the simulations on the hospital discharge time series shown 229

in Figure 1. 230
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We calculated daily estimates of both the number of patients discharged to each care 231

type and the number of COVID-19 beds needed. Additionally, while we do not consider 232

a baseline occupancy in this paper, one could be used to estimate the total patient 233

census for each facility type at a given spatial scale. 234

We show the model ouput, a time series of the daily number of post-acute care beds 235

needed for each of the three care types considered (home health, hospice, and skilled 236

nursing facilities), for the State of Utah for patients discharged from all hospital wards 237

(Figure 4) and for patients discharged from the ICU (Figure 5). Here, we find the 238

majority of patients in Utah needing additional care are requiring home health care or 239

skilled nursing facilities, with very few needing hospice care. Likewise, we find the 240

expected peak in post-acute care needs occurs about two weeks after the expected peak 241

for acute-care hospitalizations (Figure 6). This is a result of the duration of 242

hospitalization delaying the peak of post-acute care needs. Additionally, due to the long 243

duration of care patients receiving post-acute services require, the distribution of 244

occupancy is asymmetric with a high volume of patients needing post-acute care 245

services through the remainder of the year and into next year. 246

Likewise, while the overall shape of the post-acute care occupancy curves are similar 247

for patients discharged from the hospital and from the ICU, we see that a much greater 248

fraction of patients discharged from the ICU requires skilled nursing care (Figure 5) 249

compared to a nearly equal proportion of patients discharged from the hospital 250

requiring home health care and skilled nursing care (Figure 4). 251

Like most epidemiological models that show acute care hospitalizations and ICU 252

admissions changing under various non-pharmaceutical interventions, we show how our 253

post-acute care model can take in discharge estimates from different outbreak curves, 254

leading to different post-acute care needs at different times (Figures 4 and 5). 255

Discussion 256

We present the COVID-19 post-acute care model as an open-source modeling framework 257

that aims to extend the standard output of most epidemiological models (i.e., 258

hospitalization and ICU discharge) to fill a major gap in modeling the COVID-19 259

outbreak. The post-acute care model aims to guide public health policymaking in 260

addressing the “aftershocks” of discharged patients requiring further care. Aside from 261

filling a major gap in the literature [10], the flexibility of our model to accept a time 262

series of discharges generated from any epidemiological model to forecast the post-acute 263

care needs of discharged hospital and ICU patients will enable this model to be adapted 264

for a multitude of different outbreak scenarios across multiple spatial and temporal 265

scales. 266

Although the COVID-19 pandemic is well underway in most locations, with the long 267

duration of stay in hospital and ICU settings, many locations are just now starting to 268

experience the first surge of patients into post-acute care services. Thus, this model 269

represents an important tool in guiding public health decision-making towards how 270

patients will receive prolonged care post-discharge. Arranging bed availability may be 271

especially important as the infection status of these patients may be uncertain [18–20]. 272

Likewise, discharging potentially COVID-19 positive patients to skilled nursing facilities 273

poses a potential problem as evidenced by the significant outbreaks in long term care 274

facilities [11]. Consequently this model can help guide the creation and/or expansion of 275

COVID-specific post-acute care services. 276

Further, while little information is available on the types of services that patients 277

with COVID-19 need following discharge from acute care, data on post-discharge 278

probability is also still preliminary. Here, we develop the model and implement 279

probabilities based on preliminary data from Utah, however we also highlight the way in 280
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Fig 4. Example post-acute care daily bed occupancy needs and available skilled
nursing facility beds in COVID-19 dedicated facilities (solid black line) and beds in
COVID-19 dedicated wards within a larger facility (dotted black line) in the State of
Utah for patients discharged from the hospital to each of three care types under two
non-pharmaceutical interventions A) Home health care based on current Utah, B)
Hospice care based on current Utah, and C) Skilled Nursing Facilities based on current
Utah, D) Home health care based on pulsed social distancing, E) Hospice care based on
pulsed social distancing, and F) Skilled Nursing Facilities based on pulsed social
distancing.
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Fig 5. Example post-acute care daily bed occupancy needs and available skilled
nursing facility beds in COVID-19 dedicated facilities (solid black line) and beds in
COVID-19 dedicated wards within a larger facility (dotted black line) in the State of
Utah for patients discharged from the ICU to each of three care types under two
non-pharmaceutical interventions A) Home health care based on current Utah, B)
Hospice care based on current Utah, and C) Skilled Nursing Facilities based on current
Utah, D) Home health care based on pulsed social distancing, E) Hospice care based on
pulsed social distancing, and F) Skilled Nursing Facilities based on pulsed social
distancing.
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Fig 6. Daily hospital and post-acute care occupancy for (A) current Utah and (B)
pulsed social distancing.
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which our prior distributions can be updated as new data become available or replaced 281

entirely with data from other locations. 282

While this model projects the bed needs for different post-acute care services, it is 283

important to consider the organization necessary to accommodate the influx of 284

recovering COVID-19 patients and protect non-COVID-19 patients. Ideally, specialized 285

buildings or units would be repurposed for COVID-19 patients to recover in. However, 286

many facilities currently lack the design and/or staffing resources necessary to isolate 287

recovering or quarantined COVID-19 patients [21]. It is critical for public health 288

officials and post-acute care leaders to work together to determine which facilities have 289

the beds, staff, and resources necessary to support the influx of patients and create 290

protocols for accepting and placing recovering COVID-19 patients while protecting 291

vulnerable patients. 292

This model can also be used and adapted to explore potential alternative strategies 293

for addressing the surge in acute care facilities during future pandemic waves. As 294

suggested by Grabowski et al. [10], post-acute care services can act as a “pressure 295

release valve” for acute care hospitals, taking in patients who are partially recovered to 296

release beds for more critically ill patients. However, without proper planning, 297

post-acute care facilities can serve as the opposite, acting as a “bottleneck.” If patients 298

who are ready to be discharged but require additional care have nowhere to go as a 299

result of post-acute care services being saturated, this can negatively impact hospital 300

capacity. While exploring this relationship is outside the scope of this paper, this 301

modeling framework can be easily adapted to explore these and simliar questions. 302

Additionally, as treatments for COVID-19 are developed, one unanticipated side 303

effect could be that while treatments successfully prevent death in a large number of 304

patients, they could result in more patients, patients who would have died without 305

treatment, surviving and requiring long-term care. At the current time, any estimates of 306

how treatments may impact acute or post-acute care needs would be entirely 307

speculative, however, as more becomes known about potential successful treatments, the 308

prior estimates for proportion of patients being discharged to the different care services 309

can easily be updated to adapt to this type of new information. 310

Our modeling approach has several limitations. Our initial assumptions about the 311

fraction of patients requiring each post-acute care service are very uncertain, as they are 312

based on aggregated historical University of Utah Health discharges prior to the 313

appearance of COVID-19. However, we account for this by giving relatively low weight 314

to our priors versus observed COVID-19 discharges. Another limitation is that we do 315

not account for uncertainty about the length-of-stay estimates for post-acute care 316

services, although the model could be modified to incorporate this in future work. The 317

largest limitation is that the model does not directly account for characteristics of the 318

patient population, meaning the posterior allocation probabilities may not generalize 319

well to regions or health systems with dissimilar populations. An extension of this work 320

could condition the probability of requiring a post-acute care service on patient 321

characteristics such as age or comorbidities. Although we highlight several limitations, 322

our approach is well-suited to answer policy questions and provides a unique modeling 323

output that can help guide the post-acute care surge. As most epidemiological models 324

focused on acute care services, we concentrate on post-discharge needs, however, as is 325

the case with standard epidemiological models, it is critical for policy makers to 326

consider the range of possible trajectories and the sensitivity of results to different 327

assumptions. Likewise, since we do not model the community outbreak leading to 328

hospitalizations, it is critical that the inputs to our post-acute care model be carefully 329

considered for their strengths and weaknesses, as any limitations of the input model will 330

flow through our model framework as well. Despite these limitations, this model has 331

already been used to help improve post-acute care services in Utah and we believe its 332
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usefulness in pandemic preparedness extends far beyond the state. 333
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