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Abstract 

 

We used a new strategy to screen cytokines associated with SARS-CoV-2 infection. 

Cytokines that can classify populations in different states of SARS-CoV-2 infection 

were first screened in cross-sectional serum samples from 184 subjects by 2 statistical 

analyses. The resultant cytokines were then analyzed for their interrelationships and 

fluctuating features in sequential samples from 38 COVID-19 patients. Three cytokines, 

M-CSF, IL-8 and SCF, which were clustered into 3 different correlation groups and had 

relatively small fluctuations during SARS-CoV-2 infection, were selected for the 

construction of a multiclass classification model. This model discriminated healthy 

individuals and asymptomatic and nonsevere patients with accuracy of 77.4% but was 

not successful in classifying severe patients. Further searching led to a single cytokine, 

hepatocyte growth factor (HGF), which classified severe from nonsevere COVID-19 

patients with a sensitivity of 84.6% and a specificity of 97.9% under a cutoff value of 

1128 pg/ml. The level of this cytokine did not increase in nonsevere patients but was 

significantly elevated in severe patients. Considering its potent antiinflammatory 

function, we suggest that HGF might be a new candidate therapy for critical COVID-

19. In addition, our new strategy provides not only a rational and effective way to focus 

on certain cytokine biomarkers for infectious diseases but also a new opportunity to 

probe the modulation of cytokines in the immune response. 

 

Key words 

COVID-19, SARS-CoV-2, cytokine, biomarker, HGF, IL-8, M-CSF, SCF 

 

Main points 

M-CSF, IL-8 and SCF together discriminated healthy individuals, asymptomatic 

infection subjects and nonsevere COVID patients; 

HGF discriminated nonsevere and severe COVID-19, with an accuracy of 84.6% for a 

cutoff value of 1128 pg/ml; 
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Similar fluctuation patterns for M-CSF/IL-6/IP-10 and IFN-γ/IL-R2α might imply 

functional relationships among these cytokines; 

and HGF could be a candidate for critical COVID-19 therapy. 
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Introduction 

 

The pandemic of coronavirus disease 2019 (COVID-19) is imposing a heavy burden on 

global public health. As of May 30, 2020, COVID-19 has been confirmed in more than 

5 million people worldwide, carrying a mortality of approximately 6.2% [1]. COVID-

19 is caused by infection with severe acute respiratory syndrome coronavirus-2 (SARS-

CoV-2), which shares 79.5% sequence homology with SARS-CoV [2]. The high 

transmission capability of SARS-CoV-2, which is indicated by a basic reproductive 

number R0 of 2.0 - 3.77 [3, 4, 5], led to the rapid spread of the virus from a city to the 

whole world in 3 months.  

SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as a receptor to infect 

cells [6, 7]. The ACE2 distribution is enriched in human alveolar epithelial cells, 

making the lung a vulnerable target organ [8]. Patients infected with SARS-CoV-2 

commonly manifest lower respiratory tract symptoms of dry cough or, less commonly, 

dyspnea [9, 10]. These symptoms reflect, to some extent, inflammation in the lung. 

Inflammation is a ‘side effect’ of the immune response. Viral infection induces innate 

and/or adaptive immune responses by the host immune system. Initiation of these 

responses can result in the production of some cytokines that induce a proinflammatory 

response and attract cells, such as neutrophils and macrophages, to sites of infection 

and in turn cause damage to normal host tissues by releasing cytotoxic substances [11]. 

In COVID-19 patients, evidence has indicated that the levels of some cytokines are 

significantly elevated in COVID-19 patients, and cytokine storms are associated with 

the severity of the disease [10, 12, 13, 14]. In this study, we searched cytokine 

biomarkers of COVID-19 by a new strategy taking into account the fluctuations and 

interrelationships of cytokines, which have been largely overlooked in previous studies, 

and identified cytokines that can classify populations with different conditions during 

SARS-CoV-2 infection. 

 

Methods 

Patients and samples 
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Cross-sectional serum samples were obtained from 184 subjects, including 37 healthy 

controls, 37 asymptomatic individuals infected with SARS-CoV-2 confirmed by RT-

PCR, 97 nonsevere or moderate COVID-19 inpatients, and 13 severe COVID-19 

patients. The asymptomatic individuals and COVID-19 inpatients were included from 

previous studies. Asymptomatic individuals and COVID-19 patients were confirmed 

by RT-PCR assay from nasal and pharyngeal swab specimens. 

Sequential serum samples used for the fluctuation analysis were obtained from 38 

COVID-19 inpatients. These patients were among the subjects in a previous study [15]. 

Serum samples were collected from these patients every 3 days during hospitalization, 

and each patient provided at least 4 sequential samples.  

The study was approved by the Ethics Commission of Chongqing Medical University 

(reference number: 2020006-1). Written informed consent was waived by the Ethics 

Commission of the designated hospital for emerging infectious diseases. 

Detection of cytokines 

Concentrations of 48 cytokines and chemokines in serum samples were measured using 

a Bio-Plex Pro Human Cytokine Screening Panel (48-Plex #12007283, Bio-Rad) 

according to the manufacturer’s instructions. All serum samples were inactivated at 

56 °C for 30 min before the assay. 

Definitions 

A confirmed case of SARS-CoV-2 infection was defined as an individual with 

nasopharyngeal swabs positive for SARS-CoV-2 nucleic acid by RT-PCR. An 

asymptomatic case was defined as an individual with a positive RT-PCR result but 

without any relevant clinical symptoms in the preceding 14 days but before 2 

consecutive negative RT-PCR results. Severe COVID-19 was determined if a COVID-

19 patient showed any of the following: shortness of breath, RR ≥ 30 bpm, blood 

oxygen saturation ≤ 93% (at rest), PaO2/FiO2 ≤ 300 mmHg, or pulmonary inflammation 

that significantly progressed > 50% within 24 to 48 hours. Nonsevere patients, 

including mild and moderate patients, were defined as COVID-19 patients with 

symptoms but that could not be classified as severe. 

Multiclass classification model 
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A multinomial logistic regression model was used to determine the class of individuals. 

A multiclass classifier was trained by fitting the multinomial logistic model using the 

‘nnet’ package of R software, version 3.6.0. A ten-fold cross-validation method was 

used to evaluate the performance of the model. Briefly, all the subjects or healthy 

controls (the cross-sectional samples) were randomly divided into 5 sets using the ‘caret’ 

package of R software; 3 of the 5 sets were used for training, and the remaining 2 were 

used for testing. This procedure was repeated 10 times so that each set was under the 

testing set. The classification accuracy was assessed in 10-fold cross-validation, and the 

mean and standard deviation (sd) were calculated. 

Model evaluation by quasiindependent data 

Serum samples collected at other timepoints from a portion of the subjects in the cross-

sectional study, including 35 asymptomatic subjects, 65 nonsevere patients and 1 severe 

patient, were used as a quasiindependent dataset to evaluate the predictive performance 

of the multiclass classification model. These data were input into the model, allowing 

the model to predict the class of each sample in the quasiindependent data. The area 

under the curve (AUC) of each class was calculated to assess the performance of the 

model using the ‘pROC’ package of R software. 

Statistical analysis 

Continuous variables were expressed as the median values (interquartile ranges, IQRs), 

and the Mann-Whitney U test was used for comparisons; categorical variables were 

expressed as numbers (percentages), and the χ² test or Fisher’s exact test was used for 

comparisons. p < 0.05 was considered to indicate statistically significant differences, 

and p < 0.001 was considered to indicate highly statistically significant differences 

(shown as ***). Statistical analyses were performed using R software, version 3.6.0. 

 

Results 

Strategy for searching cytokine biomarkers for COVID-19 

Ideal cytokine biomarkers for COVID-19 should meet the following 3 criteria: (1) 

accurate, differentiating people with different statuses of SARS-CoV-2 infection with 

good sensitivity and specificity; (2) stable, accurately differentiating these people at 
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different stages during the infection; and (3) small in number, fewer cytokines means 

less expense and easier establishment of a testing system. With these criteria in mind, 

we used a screening strategy for searching cytokine biomarkers for COVID-19. In the 

1st round of screening, cross-sectional serum samples from people with different SARS-

CoV-2 infection statuses were tested for 48 cytokines. These cytokines were 

statistically tested by Wilcoxon analysis or/and ANOVA for their capacity to classify 

different groups. Overlapping cytokines meeting the screening criteria (described 

below) in the statistical analyses were selected for further screening. In the 2nd round of 

screening, the fluctuation and similarity in the fluctuation patterns of cytokines during 

illness were analyzed in sequential samples. The rationale for this step is as follows. (1) 

A smaller fluctuation (in a patient) means more stability over time, translating to less 

impact of the sampling timepoint on the level of cytokines. A prerequisite for this notion 

is that the levels of cytokines do fluctuate, which is evidenced by the following results. 

(2) A similar fluctuation pattern for different cytokines indicates that these cytokines 

are partially redundant, at least statistically, in classifying different populations. For an 

extreme example, simultaneously selecting 2 cytokines with 100% correlation would 

be completely redundant, contradicting criterion (3) for ideal cytokine biomarkers. 

Cytokines selected through the 2 rounds of screening were used to construct a 

multiclass classification model. Then, the obtained model was tested by partially 

dependent samples (Fig. 1). 

 

 

Fig. 1. Strategy for screening cytokine biomarkers of COVID-19. The figure 

shows the procedure to screen cytokine biomarkers of COVID-19. 
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Preliminary screening of cytokines in the cross-sectional samples 

Serum samples collected from 184 subjects were measured for the concentration of 48 

cytokines (Fig. 2A) by the system proven to be stable and repeatable (Fig. S1). 

Demographics and baseline characteristics of the subjects are summarized in Table S1. 

Wilcoxon analysis was used to identify cytokines with significant differences between 

the healthy control group and the other 3 groups. Eighteen cytokines were screened out 

by P<0.001 (Fig. 2B). ANOVA was used to screen cytokines that could classify the 3 

groups, and 22 cytokines were selected by the criteria of P < 0.001 and F > 10 (Fig. 

1C). Overlapping of the 2 sets of cytokines resulted in 10 cytokines, IL-6, IL-7, IL-8, 

IL-13, MIP-1α, eotaxin, M-CSF, IFN-γ, SCF and IL-R2α (Fig. 1D). 

 

 

Fig. 2. Preliminary screening of cytokines. A. Procedure of preliminary screening of 

candidate cytokines. B. Cytokines with the potential to discriminate the healthy control 

group and the other 3 groups. C. Cytokines with F > 10 and P < 0.01 in ANOVA. D. 

Overlapping cytokines meeting the criteria of the 2 statistical analyses. 

 

Screening of cytokines by using sequential samples 

We followed up 38 confirmed COVID-19 patients to examine the dynamic change in 
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48 cytokines (Fig. 3A). The demographics and baseline characteristics of these patients 

are summarized in Table S2. Forty-eight cytokines in all the serum samples were 

detected in parallel, and the samples from one patient were detected in the same plate. 

The correlations among the dynamic changes in the 10 cytokines selected above were 

analyzed. To this end, we first normalized the concentrations of cytokines by dividing 

the concentrations of each cytokine at sequential points by the concentration of that 

cytokine at the first point (Fig. S2A). This step eliminated the variation in cytokine 

levels among different individuals. Correlation coefficients were calculated between 

each cytokine and each of the other 9 cytokines for each patient, leading to 38 

correlation coefficients (38 patients) for each correlation pair. The means of these 

correlation coefficients were calculated and used to cluster the cytokines. As shown in 

Fig. 3B, 3 clusters of correlated cytokines were found. Cluster 1 includes IL-6 and M-

CSF. Cluster 2 includes IL-7 and IL-8. Cluster 3 comprises IL-13, SCF, MIP-1α, 

eotaxin, IFN-γ and IL-2Rα. Relatively high correlations were found for the cytokine 

pairs IL-6/M-CSF (r=0.79) and IFN-γ/IL-2Rα (r=0.73). As examples, the fluctuating 

patterns of these two pairs of cytokines from 9 patients are shown in Fig. S3. 

Choosing 1 cytokine from each cluster would decrease redundancy since the 

correlations within the clusters were higher than those between clusters (Fig. 3B). To 

target the candidate cytokines, we analyzed the coefficient of variation (CV) of the 

cytokines in each cluster. The CV of each cytokine for each patient was calculated using 

the normalized concentrations of each cytokine described above, and the CVs of each 

cytokine from the 38 patients are plotted in Fig. 3C. All of the cytokines fluctuated in 

the sequential serum samples, as reflected by median CVs ranging from 15.5% (IQR 

5.8%-64.6%) (SCF) to 56.4% (IQR 22.1%-131.7%) (IL-6). The ranks of the mean CVs 

in each cluster are as follows: C1, IL-6 > M-CSF; C2, IL-7 > IL-8; and C3, IL-13 > 

eotaxin > IL-2Rα > MIP-1α > IFN-γ > SCF. The most stable cytokines in each cluster 

were M-CSF, IL-8 and SCF. Interestingly, these 3 cytokines also performed best in 

each cluster in classifying different populations by univariate multiclass classification 

model (Fig. 3D). Thus, we chose these cytokines for the construction of a multiclass 

classification model. 
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Fig. 3. Screening of cytokines by using sequential samples. A. Procedure of cytokine 
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screening. B. Correlation analysis of the 13 cytokines. C. CV of the levels of the 13 

cytokines during hospitalization. D. Accuracy of the cytokines in classifying 

populations with different states of SARS-CoV-2 infection. 

 

Construction and testing of a multiclass classification model 

The training dataset from the cross-sectional samples was used to construct a multiclass 

classification model. The estimated overall accuracy of classification in 10-fold cross-

validation was 77.4% (with a standard deviation of 5.2%). The estimated mean 

accuracy for the classification of the healthy control, asymptomatic and nonsevere 

groups in 10-fold cross-validation was 76.0%, 76.2 and 88.6%, respectively (Fig. 4A). 

Unfortunately, the model performed poorly for the classification of the severe group 

(Fig. 4A). The AUC calculated using the quasiindependent dataset of validation was 

0.883, 0.920, 0.920 and 0.923 for the healthy control, asymptomatic, nonsevere and 

severe groups, respectively (Fig. 4B). 

 
 

Fig. 4. Performance of the multiclass classification model. A. Performance of the 

model in the training dataset. B. Performance of the model in the quasiindependent 

dataset. 

 

Identification of cytokines discriminating severe from nonsevere COVID-19 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2020. ; https://doi.org/10.1101/2020.05.31.20118315doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.31.20118315
http://creativecommons.org/licenses/by-nc-nd/4.0/


To identify cytokines with better performance in discriminating severe from nonsevere 

COVID-19 patients, we screened the cytokines again from among those showing 

significant differences between these 2 groups. Seven cytokines, IL-8, MIP-1α, HGF, 

IL-16, IL-18, MCP-3 and SCGF-β, were screened out by Wilcoxon analysis. Among 

the 7 cytokines, HGF was apparently superior to the others in ANOVA, with a far 

greater F value than all the other cytokines (Fig. 5B). The accuracy of classification of 

severe case was also the highest when using HGF (Fig. 5C). Thus, HGF was ultimately 

used as the biomarker to discriminate severe from nonsevere COVID-19 patients. The 

sensitivity and specificity of HGF to classify severe patients were 84.6% and 97.9%, 

respectively, with an AUC of 90.5% (Fig. 5D). The cutoff value of HGF determined by 

the ROC curve was 1128 pg/ml. This result means that a COVID-19 patient with an 

HGF concentration over 1128 pg/ml has a great possibility of being severely ill. This 

cutoff classified falsely only 2 out of 97 nonsevere patients and 2 out of 13 severe 

patients (Fig. 5E). In addition, HGF levels were not associated with age within different 

groups (Fig. S4) and no significant correlation was found between the fluctuation 

pattern of HGF and those of other cytokines (data not shown), indicating HGF is a 

relatively independent factor. 
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Fig. 5. Screening of cytokines discriminating severe from nonsevere COVID-19. A, 

Cytokines at different concentrations in nonsevere and severe COVID-19 patients. B, 

Evaluation of the cytokines for their classification capacity by binomial regression 

model. C, Accuracy of the cytokines in classifying the 2 groups. D, ROC curve of HGF. 

E, Performance of the HGF cutoff value. 

 

Discussion 

Cytokines with significant differences in populations with different states of SARS-
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CoV-2 infection, including healthy controls and asymptomatic infection, nonsevere and 

severe COVID-19 patients, might be involved in the immune or inflammatory response 

induced by the virus. In our first step of searching for such cytokines, we identified 10 

in cross-sectional samples by using 2 statistical analyses. To narrow down candidates, 

we dissected the correlations among these cytokines after noticing the fluctuation of 

cytokines in the followed-up COVID-19 patients. 

The fluctuation in cytokine levels observed cannot be explained by a variation in the 

measurement. We assayed the sequential samples from a patient in one plate, and the 

within-run CVs (in one plate) of all the cytokine controls were less than 10% (Fig. S1), 

while the CV means of the 10 cytokines from the samples ranged from 15.5% to 56.4%. 

Indeed, cytokine fluctuation was clearly observed in a previous study, which showed 

that IL-6, IP-10, MCP-1 and IL-15 levels fluctuated significantly over several days in 

subjects experimentally infected with influenza A virus [16]. During chronic hepatitis 

B virus infection, some cytokine levels also fluctuate significantly over a span of 

several months [17]. The fluctuation raises a problem regarding when to sample for a 

cytokine assay since the concentrations of a specific cytokine may vary largely between 

samples. This consideration led to our strategy to find cytokines with minimal 

fluctuation. On the other hand, we speculate that the fluctuation might reflect to some 

extent the change in the intensity of the immune response, and similar fluctuation 

patterns might suggest that relevant cytokines might be modulated similarly. For 

example, if cytokine A fluctuated with a pattern similar to that of cytokine B, this 

correlation might mean that A and B were regulated by the same stimulus or that A 

might be a stimulus or product of stimulation of B. Under this condition, picking A and 

B simultaneously as biomarkers would be at least partially redundant. This 

consideration led to our strategy to select one cytokine from one closely correlated 

group (Fig. 2). 

The effectiveness of our strategy can be exemplified by the selection of M-CSF. This 

cytokine was clustered with IL-6 (Fig. 2B), indicating a relatively high correlation 

between them. Recent reports showed that IL-6 was associated with the severity of 

COVID-19 [10, 18]. According to our strategy, only 1 of the 2 cytokines would be 
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desirable to minimize redundancy. Further analysis showed that M-CSF fluctuated less 

and classified different populations more accurately than IL-6 (Fig. 2), suggesting that 

M-CSF should be a better choice than IL-6. 

Guided by the 2 strategies, we finally narrowed down the candidate cytokines to 3, M-

CSF, IL-8 and SCF. A multiclass classification model constructed with these cytokines 

accurately predicted 77.4% of people in the healthy control group and asymptomatic 

and nonsevere groups for quasiindependent samples. However, this model was not 

successful in predicting severe cases, with an accuracy of only 1.7%, indicating the 

difficulty in finding cytokines that can discriminate the entire spectrum of COVID-19 

simultaneously. We adjusted our strategy by screening for cytokines that showed 

significant differences between nonsevere and severe patients. This effort resulted in a 

single cytokine, HGF, which predicted severe patients with a significantly improved 

accuracy (84.6% vs 1.7%). This finding is consistent with 2 recent studies showing that 

the increase of HGF was associated with disease severity during COVID-19 

progression [13, 14].  

HGF is a potent antiinflammatory factor that ameliorates inflammation and dysfunction 

in a wide variety of experimental animal models [19]. It inhibits inflammation by 

interfering with proinflammatory NF-κB signaling [20, 21]. Considering its function, 

the increase in HGF in severe COVID-19 must not be a reason for but rather a 

consequence of excessive inflammation. Of note, HGF levels did not increase in 

asymptomatic patients and even decreased in nonsevere patients compared with those 

in healthy controls, suggesting that it might be unnecessary to upregulate HGF to 

control a moderate inflammatory response (Fig. 6). This result explains why HGF was 

ruled out from the candidate cytokines used to classify the 4 populations (Fig. 1). 

Presumably, HGF might significantly increase only when inflammation mounts 

toward an uncontrolled storm. If this is the case, HGF might be considered a curb of 

the cytokine storm and a candidate treatment for critical COVID-19 patients. Indeed, 

HGF treatment showed benefits for inflammatory bowel disease in an animal model 

and has been used to attenuate the inflammatory response to spinal cord injury in a 

clinical trial [22]. 
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As suggested above, a covibration might imply a modulation relationship among 

cytokines: either the cytokines could be modulated by the same regulators or the 

cytokines could be regulators of the correlated cytokines. Interestingly, there was 

evidence supporting this hypothesis: an experiment conducted in canine endothelial 

cells demonstrated that M-CSF dose-dependently induced IP-10 mRNA expression, 

consistent with our finding that M-CSF fluctuated with a high correlation to IP-10 

(r=0.73, data not shown). This result implies the possibility that M-CSF could be a 

modulator of IP-10 in the immune response. Statistically high correlations also existed 

between M-CSF and IL-6 (r=0.79) and IFN-γ and IL-2Rα (r=0.73). It is interesting to 

investigate whether a functional relationship exists between these pairs of cytokines. 

A limitation of this study is that the sample size, especially that of severe patients, was 

small, and no critical and fatal cases were included. The accuracy of the cytokine 

biomarkers to classify populations with different states of SARS-CoV-2 infection needs 

to be tested further in a large and totally independent population. In addition, since all 

the cytokines were tested only when the patients had already been in corresponding 

states, it is not known how these cytokine biomarkers would predict which patients 

could develop severe illness. 

 

Fig. 6. HGF might be a curb for cytokine storms in COVID-19 patients. HGF 
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levels significantly decreased in the nonsevere patients but increased in the severe 

patients compared with those in the other 2 groups. 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2020. ; https://doi.org/10.1101/2020.05.31.20118315doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.31.20118315
http://creativecommons.org/licenses/by-nc-nd/4.0/


Reference 

 

1. WHO. Coronavirus disease (COVID-19) Situation Report – 131 2020. Available from: 

https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200530-

covid-19-sitrep-131.pdf?sfvrsn=d31ba4b3_2 

2. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new 

coronavirus of probable bat origin. Nature. 2020 Feb 3. doi: 10.1038/s41586-020-2012-

7. PubMed PMID: 32015507. 

3. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and 

international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling 

study. Lancet. 2020 Jan 31. doi: 10.1016/S0140-6736(20)30260-9. PubMed PMID: 

32014114. 

4. Yang Yang Q-BL, Ming-Jin Liu, et al. Epidemiological and clinical features of the 2019 

novel coronavirus outbreak in China. medRxiv. 2020. doi: 

https://doi.org/10.1101/2020.02.10.20021675. 

5. Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel 

Coronavirus-Infected Pneumonia. N Engl J Med. 2020 Jan 29. doi: 

10.1056/NEJMoa2001316. PubMed PMID: 31995857. 

6. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on 

ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 

Mar 4. doi: 10.1016/j.cell.2020.02.052. PubMed PMID: 32142651. 

7. Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of the SARS-CoV-2 by full-

length human ACE2. Science. 2020 Mar 4. doi: 10.1126/science.abb2762. PubMed PMID: 

32132184. 

8. Yu Zhao ZZ, Yujia Wang, Yueqing Zhou, Yu Ma, Wei Zuo. Single-cell RNA expression 

profiling of ACE2, the putative receptor of Wuhan 2019-nCov. bioRxiv. 2020. doi: 

https://doi.org/10.1101/2020.01.26.919985. 

9. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. 

N Engl J Med. 2020 Feb 28. doi: 10.1056/NEJMoa2002032. PubMed PMID: 32109013. 

10. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel 

coronavirus in Wuhan, China. Lancet. 2020 Jan 24. doi: 10.1016/S0140-6736(20)30183-5. 

PubMed PMID: 31986264. 

11. Perlman S, Dandekar AA. Immunopathogenesis of coronavirus infections: implications for 

SARS. Nat Rev Immunol. 2005 Dec;5(12):917-27. doi: 10.1038/nri1732. PubMed PMID: 

16322745. 

12. Bo Diao CW, Yingjun Tan, Xiewan Chen, Ying Liu, Lifen Ning, Li Chen, Min Li, Yueping Liu, 

Gang Wang, Zilin Yuan, Zeqing Feng, Yuzhang Wu, Yongwen Chen. Reduction and 

Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19). 

medRxiv. 2020. doi: https://doi.org/10.1101/2020.02.18.20024364. 

13. Yang Y, Shen C, Li J, et al. Plasma IP-10 and MCP-3 levels are highly associated with 

disease severity and predict the progression of COVID-19. J Allergy Clin Immunol. 2020 

Apr 29. doi: 10.1016/j.jaci.2020.04.027. PubMed PMID: 32360286. 

14. Yingxia Liu CZ, Fengming Huang, Yang Yang, Fuxiang Wang, Jing Yuan, Zheng Zhang, 

Yuhao Qin, Xiaoyun Li, Dandan Zhao, Shunwang Li, Shuguang Tan, Zhaoqin Wang, Jinxiu 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2020. ; https://doi.org/10.1101/2020.05.31.20118315doi: medRxiv preprint 

https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200530-covid-19-sitrep-131.pdf?sfvrsn=d31ba4b3_2
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200530-covid-19-sitrep-131.pdf?sfvrsn=d31ba4b3_2
https://doi.org/10.1101/2020.02.10.20021675
https://doi.org/10.1101/2020.01.26.919985
https://doi.org/10.1101/2020.02.18.20024364
https://doi.org/10.1101/2020.05.31.20118315
http://creativecommons.org/licenses/by-nc-nd/4.0/


Li, Chenguang Shen, Jianming Li, Ling Peng, Weibo Wu, Mengli Cao, Li Xing, Zhixiang Xu, 

Li Chen, Congzhao Zhou, William J. Liu, Lei Liu, Chengyu Jiang. Elevated plasma level of 

selective cytokines in COVID-19 patients reflect viral load and lung injury. National 

Science Review. 2020. doi: https://doi.org/10.1093/nsr/nwaa037. 

15. Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in patients with 

COVID-19. Nat Med. 2020 Apr 29. doi: 10.1038/s41591-020-0897-1. PubMed PMID: 

32350462. 

16. McClain MT, Henao R, Williams J, et al. Differential evolution of peripheral cytokine levels 

in symptomatic and asymptomatic responses to experimental influenza virus challenge. 

Clin Exp Immunol. 2016 Mar;183(3):441-51. doi: 10.1111/cei.12736. PubMed PMID: 

26506932; PubMed Central PMCID: PMCPMC4750592. 

17. Dunn C, Brunetto M, Reynolds G, et al. Cytokines induced during chronic hepatitis B virus 

infection promote a pathway for NK cell-mediated liver damage. J Exp Med. 2007 Mar 

19;204(3):667-80. doi: 10.1084/jem.20061287. PubMed PMID: 17353365; PubMed Central 

PMCID: PMCPMC2137916. 

18. Diao B, Wang C, Tan Y, et al. Reduction and Functional Exhaustion of T Cells in Patients 

With Coronavirus Disease 2019 (COVID-19). Front Immunol. 2020;11:827. doi: 

10.3389/fimmu.2020.00827. PubMed PMID: 32425950; PubMed Central PMCID: 

PMCPMC7205903. 

19. Molnarfi N, Benkhoucha M, Funakoshi H, et al. Hepatocyte growth factor: A regulator of 

inflammation and autoimmunity. Autoimmun Rev. 2015 Apr;14(4):293-303. doi: 

10.1016/j.autrev.2014.11.013. PubMed PMID: 25476732. 

20. Berrebi D, Bruscoli S, Cohen N, et al. Synthesis of glucocorticoid-induced leucine zipper 

(GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism 

shared by glucocorticoids and IL-10. Blood. 2003 Jan 15;101(2):729-38. doi: 

10.1182/blood-2002-02-0538. PubMed PMID: 12393603. 

21. Ayroldi E, Migliorati G, Bruscoli S, et al. Modulation of T-cell activation by the 

glucocorticoid-induced leucine zipper factor via inhibition of nuclear factor kappaB. Blood. 

2001 Aug 1;98(3):743-53. doi: 10.1182/blood.v98.3.743. PubMed PMID: 11468175. 

22. Fleming JC, Norenberg MD, Ramsay DA, et al. The cellular inflammatory response in 

human spinal cords after injury. Brain. 2006 Dec;129(Pt 12):3249-69. doi: 

10.1093/brain/awl296. PubMed PMID: 17071951. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2020. ; https://doi.org/10.1101/2020.05.31.20118315doi: medRxiv preprint 

https://doi.org/10.1093/nsr/nwaa037
https://doi.org/10.1101/2020.05.31.20118315
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgments. This work was supported by the Emergency Project from the 

Science & Technology Commission of Chongqing; The Major National S&T program 

grant (2017ZX10202203 and 2017ZX10302201) from Science & Technology 

Commission of China. 

 

Competing interests. The authors declare no competing interests. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2020. ; https://doi.org/10.1101/2020.05.31.20118315doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.31.20118315
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S1. Demographics and baseline characteristics of the subjects in the cross-

sectional analysis. 

Characteristics 
Healthy 

(N=37) 

Asymptomatic 

(N=37) 
Mild (N=97) 

Severe 

(N=13) 

Age (median, IQR) 35 (30-51) 41 (27-50) 46 (37-55) 69 (54-79) 

Sex (Male/Female)     

    Male 16 (43.2%) 15 (40.5%) 52 (53.6%) 6 (46.2%) 

    Female 21 (56.8%) 22 (59.5%) 45 (46.4%) 7 (53.8%) 

Exposure     

    From wuhan - 9 (24.3%) 40 (41.2%) 7 (53.8%) 

    Close contacts - 28 (75.7%) 57 (58.8%) 6 (46.2%) 

Days after exposure or 

symptoms onset (median, 

IQR) 

- 28.5 (28-30) 9 (6-13) 10 (9-19) 

Comorbidities     

    Hypertension - 7 (13.5%) 14 (14.4%) 1 (7.7%) 

    Cardiovascular 

disease 
- - 3 (3.1%) 1 (7.7%) 

    Diabetes - 1 (2.7%) 6 (6.2%) 2 (15.4%) 

    COPD - 0 (0.0%) 1 (1.0%) 1 (7.7%) 

    Chronic kidney 

disease 
- 0 (0.0%) 1 (1.0%) 0 (0.0%) 

    Chronic liver disease - 2 (5.4%) 3 (3.1%) 1 (7.7%) 

    Tuberculosis - 0 (0.0%) 2 (2.1%) 0 (0.0%) 

    Any - 9 (24.3%) 26 (26.8%) 5 (38.5%) 

Signs and symptoms     

    Fever - - 47 (48.5%) 6 (46.2%) 

    Fatigue - - 18 (18.6%) 7 (53.8%) 

    Dry cough - - 44 (45.4%) 6 (46.2%) 

    Anorexia - - 9 (9.3%) 7 (53.8%) 

    Myalgia - - 12 (12.4%) 2 (15.4%) 

    Dypnea - - 5 (5.2%) 6 (46.2%) 

    Expectoration - - 22 (22.7%) 5 (38.5%) 

    Pharyngalgia - - 14 (14.4%) 0 (0.0%) 

    Diarrhea - - 7 (7.2%) 2 (15.4%) 

    Nausea - - 5 (5.2%) 3 (23.1%) 

    Dizziness - - 4 (4.1%) 2 (15.4%) 

    Headache - - 5 (5.2%) 2 (15.4%) 

    Vomiting - - 1 (1.0%) 1 (7.7%) 

    Abdominal pain - - 1 (1.0%) 0 (0.0%) 

    Chill - - 10 (10.3%) 2 (15.4%) 

    Nasal congestion - - 4 (4.1%) 1 (7.7%) 

    Rhinorrhea - - 8 (8.2%) 0 (0.0%) 

    Chest stuffiness - - 12 (12.4%) 2 (15.4%) 
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Table S2. Demographics and baseline characteristics of the subjects providing 

sequential samples. 

Characteristics 
Sequential serum patients 

(N=38) 

Age (median, IQR) 50 (44-63) 

Sex (Male/Female)  

    Male 20 (52.6%) 

    Female 18 (47.4%) 

Exposure  

    From wuhan 8 (21.1%) 

    Close contacts 30 (78.9%) 

Days after exposure or symptoms onset (median, IQR) 7 (5-10) 

Comorbidities  

    Hypertension 10 (26.3%) 

    Cardiovascular disease 3 (7.9%) 

    Diabetes 3 (7.9%) 

    COPD 1 (2.6%) 

    Chronic kidney disease 1 (2.6%) 

    Chronic liver disease 2 (5.3%) 

    Tuberculosis 1 (2.6%) 

    Any 17 (44.7%) 

Signs and symptoms  

    Fever 17 (44.7%) 

    Fatigue 6 (15.8%) 

    Dry cough 12 (31.6%) 

    Anorexia 3 (7.9%) 

    Myalgia 6 (15.8%) 

    Dypnea 4 (10.5%) 

    Expectoration 7 (18.4%) 

    Pharyngalgia 4 (10.5%) 

    Diarrhea 2 (5.3%) 

    Nausea 1 (2.6%) 

    Dizziness 3 (7.9%) 

    Headache 1 (2.6%) 

    Vomiting 1 (2.6%) 

    Chill 2 (5.3%) 

    Nasal congestion 3 (7.9%) 

    Rhinorrhea 3 (7.9%) 

    Chest stuffiness 1 (2.6%) 
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Figure S1 

 
 

Fig. S1. Coefficients of variation of cytokine controls in the assay. The CVs of the 

cytokine controls of each cytokine assayed in the same plate (A) or in different plates 

(B) are shown. 
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Figure S2. 

 

 

 

Fig. S2. Some cytokines fluctuated with a similar pattern. The concentration of each 

cytokine from each patient was normalized against that of the first sample, and the 

fluctuation patterns were analyzed (A and B). C, Examples showing covibration in the 

fluctuations of IL-6 and M-CSF during illness. These examples also demonstrate 

generally higher amplitudes of fluctuation of IL-6 than those of M-CSF. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2020. ; https://doi.org/10.1101/2020.05.31.20118315doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.31.20118315
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure S3. 

 

Fig. S3. IFN-γ and IL-2Rα fluctuated with a similar pattern in some patients. 
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Figure S4. 

 

 
Fig. S4. HGF levels are not associated with ages in different groups. 
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