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Abstract

COVID-19 created a global public health and economic emergency. Policymakers acted quickly
and decisively to contain the spread of disease through physical distancing measures. However, these
measures also impact physical, mental and economic well-being, creating difficult trade-offs. Here we
use a simple mathematical model to explore the balance between public health measures and their
associated social and economic costs. Across a range of cost-functions and model structures, commitment
to intermittent and strict social distancing measures leads to better overall outcomes than temporally
consistent implementation of moderate physical distancing measures. With regard to the trade-offs that
policymakers may soon face, our results emphasize that economic and health outcomes do not exist in
full competition. Compared to consistent moderation, intermittently strict policies can better mitigate
the impact of the pandemic on both of these priorities for a range of plausible utility functions.
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1 Introduction

COVID-19 is a respiratory disease caused by the novel coronavirus SARS-CoV-2. Since identification

in December 2019, SARS-CoV-2 has spread rapidly around the world, with substantial morbidity and

mortality: as of May 7, 2020, there were more than 3,847,000 confirmed cases and 270,000 confirmed

deaths globally [1]. To slow the spread of disease and prevent overwhelming health care services, many

governments initiated non-pharmaceutical interventions (NPIs) that called for a high degree of physical

distancing. While effective in dampening disease spread, these measures have had dramatic economic and

social effects. The impact on unemployment has been particularly marked; in the week ending May 7,

2020, the US Department of Labor reported 33 million initial unemployment claims over the past 7 weeks

[2]. Due to these costs, there have been increasing calls to reduce physical distancing measures, leaving

policymakers with difficult trade-offs.

Previous research has argued that one-time interventions will be insufficient to maintain control of the

COVID-19 pandemic and highlighted the need for long-term application of physical distancing measures

[3, 4, 5]. At face value, it may seem reasonable to assume that adopting “moderate measures” may both

slow the spread of disease and simultaneously permit some level of normality which may help mitigate

against some of the adverse effects listed above. Nevertheless, it remains an open question whether it

is optimal to apply strong, intermittent measures or long-term moderate measures. One previous paper

advocated for a “severe lockdown” which tapers gradually based on an optimal control solution to an SIR

model [6]. Another proposed tapering lockdown based on age [7]. However, both papers used an SIR

model, which does not consider the incubation period of the disease, and considered only a single utility

function. By contrast, several epidemiological papers have noted that intermittent lockdowns may offer

a route to prevent critical care capacity from being overwhelmed while allowing for periods of greater

economic activity [4, 8]. Other optimal control papers have proposed both suppression and maintenance

strategies [5] or intermittent lockdowns [9]. However, these papers modeled only disease control and did

not explicitly consider non-disease costs.

In this paper, we combine a simple epidemiological model with a model of costs associated with

lockdown to compare intermittent and moderate lockdown strategies. We explore mathematically what

various assumptions about the utility function would imply about the optimal form of the long-term

strategy. We show that for a range of utility functions, committing to coordinated but intermittent stricter

physical distancing measures leads to better outcomes than consistent implementation of moderate physical

distancing measures over the same time period. While we use the example of “lockdowns,” these findings

could apply to a range of NPIs, including school closures and business re-openings. Our objective is not

to recommend a specific optimal strategy for a particular setting. Rather, our work highlights a general

finding: that under a range of plausible assumptions, stricter measures are more efficient relative to their

cost. This understanding is of particular importance for public acceptance of these measures, as well as

helping to inform and support the best policy decisions during this uncertain time.

1

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2020. ; https://doi.org/10.1101/2020.05.19.20107045doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.19.20107045
http://creativecommons.org/licenses/by/4.0/


2 Methods

2.1 Exponential growth model

We developed a simplified deterministic model that simulates a pandemic with exponential growth within

a closed population. Our model assumes (à la Reed-Frost [10]) that if an individual contracts the virus

during week n, then the individual will be exposed but not infectious for the remainder of week n, infectious

throughout the duration of week n+ 1, and no longer infectious (or safely quarantined) at all times after

week n+ 1.

R0 represents the basic reproductive number, which is the average number of secondary infections

arising from a single infectious case in a completely susceptible population. Although in general the

relationship between R0 and the weekly growth rate depends on the length of the incubation and infectious

periods [11], the very simple assumptions above imply that

pn+1 = R0pn.

where pn represents the fraction of people actively infectious during week n. With physical distancing

measures in place, our new equation becomes:

pn+1 = R0cnpn

where cn represents the fraction of normal social exposure on average during the nth week, due to social

restrictions, and REFF(n) = R0cn is the effective reproductive number in the nth week.

For clarity of exposition, this analysis includes two simplifications of common epidemiological models:

1. S remains constant

Our model investigates long-term management of low-level disease. Therefore, we assume that the

total infection rate (over the period studied) is small compared to the susceptible population. Similar

assumptions are commonly used to approximate early-stage SEIS or SEIR, when nearly everyone is

susceptible and one obtains a roughly linear ODE involving only the infected states E and I [11].

This approach (keeping S/N near 1 and R/N near zero) is used in a related COVID-19 analysis

evaluating intermittent strategies through a dynamic transmission model [8].

2. Time is discrete

Our simplified model assumes that, if an individual contracts the virus during week n, then the

individual will be exposed but not infectious for the remainder of week n, infectious throughout the

duration of week n+ 1, and either safely quarantined or no longer infectious at all times after week

n+ 1. This weekly “lag time” mimics the function of the exposed class E within transmission mod-

els. Although more rigid than a model solved in continuous time, it is similar to discretized dynamic

models that require policies to be fixed one week at a time, as detailed further in Appendices F and G.

We connect this epidemiological model to economic outcomes through a utility function U(c) which

encodes the cost of reducing the weekly disease transmission rate by a factor of c. The function U can in
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principle be determined experimentally, as more countries try different lockdown approaches and try to

observe both how expensive and how effective they are. An advantage of our simplified approach is that

an empirical study of the function U can be conducted without making additional assumptions about the

disease.

2.2 Model parameters

2.2.1 R0

We assume that with no government restrictions (but with general public awareness and voluntary behavior

changes), each infectious individual would infect 2.5 additional people. As a weekly growth factor, this

value is within the estimated range of R0 for COVID-19 in many countries [12, 13, 14]. It is also within

the range of the R0 values that arise from fitting SEIR models to empirical data, though we stress again

that R0 values do not correspond exactly to weekly growth factors in SEIR [11]. Our timescale, which

corresponds to roughly 3.5 days prior to infectiousness and a week of infectivity also roughly corresponds

to COVID-19 [15].

2.2.2 Physical distancing

Due in part to the social exposure of essential workers, cn = 0 will never be achieved. We assume that

cmin = 0.16 is the lowest possible value of cn. This reduction aligns with the observation that the extreme

measures taken in Wuhan reduced the effective reproductive number to 0.32 [16]. The latter number

would correspond to pn+1/pn being slightly smaller than 0.4, also similar to New Zealand’s estimates after

successful mitigation [17]. We assume that reductions beyond this point are not practical.

Therefore, in the intermittent model the strictest possible measures (cn = cmin = .4/R0 = .16) result

in pn+1 = .4pn, and the mildest reasonable measures (cn = 1) result in pn+1 = 2.5pn. In the “consistently

moderate” lockdown, intermediate measures (cn = 1/R0 = .4) would result in pn+1 = pn. While these

values are within the range of current COVID-19 estimates [18, 19, 20], they represent simplified rounded

estimates and are not proposed to be representative of any particular location. We consider variations

of these in sensitivity analysis to consider less strict “down” periods and milder “up” periods. We also

discuss how, in some cases, measures like contact tracing might reduce P without substantially affecting

U , thus allowing greater gains at lower costs.

2.3 Utility function

We consider a range of forms for the utility function U , with a particular focus on U(α) = cα for α ∈ (0, 1].

The simple case U(c) = c assumes that overall utility is reduced by the same proportion as social contacts.

Other choices of α account for the fact not all contacts are equal: some are more costly to eliminate than

others and some are more important to eliminate than others (e.g., those most likely to involve both an

infected and a susceptible individual) and hence one would not expect the slope of U (which encodes

the marginal cost of reducing the percentage of new infections) to be constant. The value α encodes the
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rate at which this marginal cost increases (if α < 1) or decreases (if α > 1) as more contacts are eliminated.

In order to estimate the appropriate functional form for the costs of lockdown, existing work (reviewed

in Appendix A) typically has taken one of two approaches: top-down or bottom-up. In the first approach,

one estimates overall GDP contraction after lockdown measures were imposed; in the latter, one sums up

the estimated costs to individuals from each activity forgone. For our base case, we adopt the “bottom-up

approach.” In a simplified example, suppose our primary policy were to close some number of factories. If

k open factories produce k times as much utility (and also k times as many contacts) as one open factory,

then both utility and disease transmission rates would be linear functions of the number remaining open,

so that could we write U(c) = c (“linear policy tool”). On the other hand, if a random fraction of the

population were required to wear burdensome but perfectly effective masks, then the utility u could be

the fraction of people not required to wear them. If non-mask-wearer interactions were proportional to

u2, we could then write c = u2 so that U(c) =
√
c (“quadratic policy tool”). Vaccination and lockdowns

are sometimes modeled similarly [21, 22, 23]. If during a lockdown only a u fraction of workers are con-

sidered essential and allowed to work, then one could argue either that c = u (if the essential workers

have just as many contacts per worker as usual) or that c = u2 (if they have only u times as many

contacts per worker as usual), depending on the nature of the lockdown. In a complex society combin-

ing many different kinds of policies, U(c) = cα for some α between 1/2 and 1 might therefore be reasonable.

For technical readers, our analysis is further guided by the following observations:

1. Restricting the utility function domain: Some activities have very low value relative to the

amount of contact they require (e.g., because they have substitutes, such as online meetings, that

don’t require contact). Some interventions (hand-washing, masks) may also be low cost (compared

to school or business closings). It is safe to assume that during an “up period” these effective-

but-inexpensive measures (“low-hanging fruit”) would remain in place, but we consider these costs

as outside of the scope of our utility function. In other words, we assume that these inexpensive

measures are already taken in the c = 1 scenario.

2. Diminishing returns: It is possible that once the extremes are eliminated, there remains in the

interval [cmin, 1] a broad range of social activity that is roughly equal in value, so that U is approxi-

mately linear on this range. However, it is reasonable to guess that even within the interval [cmin, 1],

some contacts are less costly to cut than others, so that there are diminishing returns to cost. This

would suggest U is concave, like U(c) = cα with α < 1.

3. Crowding effects: For another perspective, one may imagine that the number/type of economic

activities is fixed, and that the only question is how to distribute them temporally. If α = 1 then

the utility of “full activity one week, zero activity next week” equals the utility of “half activity both

weeks.” In practice though, maintaining safety standards might be harder or more expensive during

a full activity week (e.g., if activities have to be moved to late or early hours to avoid crowding).

Choosing α < 1 would account for the associated cost.

4. Population effects: We do not explicitly address population inhomogeneity in this paper. However,

we note that if only a u fraction of workers are allowed to work, and after a short period of time
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most of the infections are among these workers, and if these workers have nearly as much contact as

usual (as they work hard to provide for those at home) then we might actually find c close to 1 even

when u is small. In particular, we might find c > u (as when α > 1).

5. Accelerating returns: While the first contacts one eliminates are less likely to be costly, they are

also more likely to be “redundant.” In other words, if a person inhales infected droplets multiple

times during the course of week, and each of these exposures is sufficient to transmit the disease, then

removing only one exposure does not prevent infection; one needs further measures before the impact

is felt. Because of this phenomenon, some disease transmission models actually suggest a convex U .

An example involving SEIR on a low-degree social network appears in Appendix G.2. For a simpler

example, imagine Activity A and Activity B would each expose 10 people if allowed to proceed, but

that there is some overlap; say 3 people would be exposed in both places. Then cancelling Activity

A alone only prevents 7 infections while cancelling both activities prevents 17 infections. If both

activities are equally valuable, then the second cancellation achieves more relative to its cost than

the first. This phenomenon might play a significant role if new infections occur largely among close

associates of individuals with high viral loads, and if “redundant exposures” among this vulnerable

group are common; see Appendix G. This is another reason to consider larger α values.

Based on the above, we consider three ranges of α values:

1. Convex: U(c) = cα for α > 1.

2. Moderate: U(c) = cα for α ∈ (0, 1].

3. Ultra-concave: U(c) = −cα for α < 0.

We focus primarily on the moderate scenario. That is, our baseline assumption is that diminishing

returns play a larger role than accelerating returns (so that α ≤ 1) but not so large that they lead to

α < 0. We stress that U depends both on the variation in economic value attached to different activities

and on the model governing the disease transmission; Appendix G considers a range of U obtained by

varying both parameters.

These results can also be generalized to utility functions outside of the U(c) discussed above. As

discussed in Appendix F, for any twice-differentiable function U we can define

α(c) := cU ′′(c)/U ′(c)

and say that U is convex, moderate or ultra-concave on an interval based on the value of α(c) on that

interval. The basic results in this paper (about the optimality of intermittent strategies) apply to intervals

on which U is convex or moderate. (Ultra-concavity is equivalent to concavity on a logarithmic scale, as

Appendix F explains.)

2.4 Strategy comparison

We assume that a vaccine will be available in a known period of time (72 weeks). Therefore, our focus is on

successfully managing the 72 week “holding period.” Specifically, we aim to minimize the total infection
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rate (P ) by implementing control measures while simultaneously maximizing productive activities or utility

(U), which in turn minimizes the social and economic “cost” associated with these control measures. Total

infection rate is given as

P = p1 + p2 + p3 + . . .+ p72,

and total utility is

U = U(c1) + U(c2) + U(c3) + . . .+ U(c72).

We presume that policymakers want to keep cases below a threshold. For example, hospital capacity

(e.g., the number of regular staffed beds or ICU beds) is a key limitation in successful disease control. This

is important both in terms of direct ability to treat COVID-19 patients and more generally as a proxy for

whether the health system is overburdened and unable to adequately treat patients with other conditions.

We therefore assume, based on American Hospital Association surveys, that if the infection rate exceeds

one case per 1000 (H = 0.001), then the hospitals will be above capacity [24]. For simplicity, we will

use “hospital capacity” as an absolute cut-off and aim to keep the infection rate below this threshold.

(This constraint prevents P from becoming large enough to produce substantial herd immunity.) We also

assume that once the virus reaches about 4 cases per million, it cannot be reduced any further, regardless

of any additional physical distancing measures (e.g., because there will always be a few infections from

unrecognized lingering illness, or from outside the country). We seek to choose cn in order to maximize

U subject to the constraints: pn ∈ [.000004, .001] for all n and cn ∈ [cmin, 1] for all n. For illustration, we

compare the following two strategies:

1. Steady “less extreme” physical distancing: Adopt moderate distancing (cn = .4) every week

for the whole 72 weeks. Note that in this case pn+1 = 2.5cnpn = pn (i.e. the number of people

affected remains constant from one week to the next; the effective R0 is 1), and hospital capacity

remains steady at H.

2. Intermittent strict lockdown: Start off with an extreme total lockdown (cn = .16) for six weeks

while the virus percentage decreases to its lowest level. Then relax the measures and allow normal

life to continue (cn = 1) until new patients reach the hospital capacity threshold. Then lockdown

again and repeat this cycle until the 72 weeks are up.

We also note underlying mathematical properties that make intermittent distancing preferable to steady

moderation.

2.5 Extension to SEIR model

We also present results from a standard SEIR (or SEIS) epidemiological framework with susceptible (S),

exposed (E), infectious (I), and recovered (R) compartments. We focus on the early-phase linearized ODE

(i.e., the large S, small R limit) in which only the exposed and infectious populations vary in time [11].

We simulate the same tradeoffs under a range of parameters, to reflect different values for the effective
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reproduction number during the up periods and the down periods.

In each case the mean incubation period is 4 days and the mean infectious (but not isolated) period

is set to 4 days, with durations that are Erlang with shape parameter 2, as in [8]. Erlang distributions

have been applied to COVID-19 in many places [25, 26, 27] and adopting an Erlang distribution with

parameter k is equivalent to subdividing a compartment into k sub-compartments (which leads in our

case to four states total: E1, E2, I1, I2, similar to [8]). One of the early papers on the incubation time

(based on cases in China) fit the incubation time to an Erlang distribution with shape parameter 6 [28],

which is equivalent to dividing E into six sub-states E1, E2, . . . , E6. However, this was a model of time

to symptom appearance, which is different from (and easier to directly measure than) time to infectiousness.

The relative lengths of the cycles were adjusted to produce peaks of approximately H = 0.001. In this

setting we focus on the ratio REFF/R0 during the nth period. The steady moderation strategy corresponds

to fixing REFF = 1 in each period. We also briefly discuss mathematical properties that determine the

optimal solution in this case, contrasting it to simple exponential model. We defined U by integrating

(REFF/R0)
α instead of cα. (We discuss a way to make sense of U as a function of c in this setting in

Appendix G.)

3 Results

For intuition, we first consider the model’s behavior under the two most extreme scenarios: complete inac-

tion and complete lockdown. Complete inaction (cn = 1 for all n) would result in the infection growing by

a factor of 2.5 weekly until most people are infected. It yields U = 72, the maximum value, indicating that

utility is “as normal” but generates an unacceptably large P and rapidly exceeds hospital capacity. And it

is worth noting that, in the real world, complete inaction would not yield the maximal U , because a large

number of infections and associated deaths would cause societal and economic disruption as a byproduct.

At the other extreme, a completely strict lockdown (cn = .4 for all n) minimizes P but yields a low U ,

indicating unacceptably large societal and economical costs.

Figure 1 compares two competing strategies in the exponential model: a “consistently moderate”

lockdown corresponding to REFF = 1, and an alternation between six-week strict lockdown periods and

six-week periods without major restrictions. While we do not focus here on optimizing prevalence be-

yond H, the hospitalization threshold, we note that the first measure yields P = .072 (so 7.2 percent

of the population is ultimately infected) while the second yields P ≈ .014 (1.4 percent). If we adopt

the simple utility function U(c) = c (which assumes that the cost of eliminating some amount of social

exposure is proportional to the amount) then we find U = .4 · 72 = 28.8 under steady moderation and

U = .16 · 36 + 36 = 41.76 under intermittent lockdown. If instead we take U(α) = cα for some α > 0

then steady moderation yields U = 72(.4)α while intermittent lockdowns yield U = 36(.16)α + 36. In

fact, for any utility function of this form, strict intermittent distancing would dominate steady, moderate
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distancing because of a mathematical theorem called the alpha-geometric mean inequality.1

With a simple exponential model, an optimal solution would involve short cycles. For example, an-

other strategy is even better than the one illustrated in Figure 1: namely, first 6 weeks down, then 30

1-week-up-1-week-down cycles, and then 6 weeks up. This would achieve the same U as the strategy in

Figure 1 but with a lower P . However, we will explain in see Figure 3 that there is in fact a cost (not

accounted for in the model above) to increasing the number of cycles, which would make it less efficient

to have many very short cycles.

When we expand this analysis to SEIR models, Figure 2 illustrates that (at least for α > 1/2) intermit-

tent strict lockdowns always resulted in larger U and smaller P than steady moderation. However, gains

decrease substantially when either physical distancing is less strict during down periods or productivity

during up periods is smaller. In Appendix G.2, we discuss mathematically why intermittent strategies

dominate steady moderation in these models, noting that the utility gains may be diminished if the up

and down periods are very short, as shown in Figure 3.
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0.0004

0.0006

0.0008

0.0010
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20
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U

Figure 1: Left: comparison of pn with steady moderation (orange) and intermittent lockdown measures
(blue). Right: utility under steady moderation (orange) and intermittent lockdown (blue) when U(c) = cα.

4 Discussion

In this paper we explored the utility of different physical distancing lockdown cycles. We use a simplified

transmission model to evaluate the effect of different lengths of strict measures (lockdowns) and “free”

periods on both disease progression and non-disease utility. Our analysis shows that (unless U is ultra-

concave) the consistently moderate lockdown is worse, for both public health and utility, when compared to

intermittent cycles of strict physical distancing followed by periods of (relative) normality. As others have

noted, if regular lockdowns are simple to implement and predictable for people to follow, they may be a

useful tool, particularly if it were difficult to maintain steady moderation near the threshold, necessitating

1The arithmetic-geometric mean inequality implies that for any choice of α > 0 “steady moderation” (i.e., maintaining
REFF = 1 over a long period) results in a lower U value than any variable program that achieves the same final pn value.
More generally, if U is either convex or moderate on some interval (a, b), then keeping cn equal to a constant in this interval
over an extended period is more costly (in both utility and infection rates) than alternating between cn ≤ a and cn ≥ b.
Appendix F explains more generally the mathematical properties of U that cause this behavior.
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(a) Orange: REFF = 1 throughout. Blue: extreme down (5.33 weeks), extreme up (6.67 weeks). Green: extreme down
(3.6 weeks), milder up (8.4 weeks). Red: milder down (9.65 weeks) extreme up (2.35 weeks).
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α
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(b) Orange: REFF = 1 throughout. Blue: extreme down (2.745 weeks), extreme up (3.255 weeks). Green: extreme
down (1.24 weeks), milder up (4.76 weeks). Red: milder down (4.245 weeks), extreme up (weeks 1.755).

Figure 2: Left figures show evolution under various intermittent strategies with 12-week periods (above)
or 6-week periods (below). In each case either REFF = 2 (extreme up), REFF = 1.25 (milder up), REFF = 1
(moderate), REFF = .7 (milder down) or REFF = .3 (extreme down). Right figures show corresponding U
as function of α, with same colors. Mean incubation and infection times set to 4 days in a linearized ODE
derived from two-state Erlang SEIR. At time zero, E1, E2, I1, and I2 are all equal; the plots illustrate I2.

lockdowns to ensure containment even when attempting steady moderation [9].

These results provide a utility-based justification of epidemiological papers that recommend intermit-

tent lockdowns [4, 29, 3] and characterize the conditions under which intermittent lockdowns are likely to

be preferable to steady moderation. However, our results differ from optimal control models [23, 7] that

recommend steady moderation. Some of this difference is explained by their use of an SIR model without

an incubation period, which allows for a type of “continuous compounding” not seen in our models, effec-

tively leading to an ultra-concave U ; see Appendix G.
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Figure 3: Zooming in on the upturns (left) and downturns (center) of an analog of Figure 2 in which
REFF = 2.2 during up and .33 during down periods (which leads to roughly steady peaks if one has exactly
6-week up and 6-week down periods). The transitions (viewed on a log scale) are “rounded,” unlike the
sharp transitions in (the log scale version of) Figure 1. After removing a lockdown (left) it takes about
6 days for pn to return to the original height and the steady state increasing slope. After imposing a
lockdown (center) it takes nearly 8 days for pn to return to the original height and the steady state
decreasing slope. Alternating 6.15 days up, 7.85 days down (right) keeps the peaks roughly steady. But
it requires more lockdown days overall than the longer-period alternation (42 days up, 42 days down)
in Figure 2b. Nonetheless, even this rapid oscillation still yields a larger U than steady moderation if
U(c) = cα and α > .63.

4.1 Contextualizing our results in the rapidly evolving pandemic

In the fast-moving COVID-19 pandemic, it can be difficult to contexualize model findings in light of de-

velopments that may arise, for example, in testing and contact tracing programs, therapeutics, and new

understanding about seroprevalence. We show how our results may be impacted by these in Figure 4,

which illustrates that combating the virus can be viewed metaphorically as walking the wrong way on a

moving sidewalk. Inaction results in a steady drift to the left (toward high death rates and greater immu-

nity), while distancing measures involve walking or running to the right at different speeds. As one drifts

toward the left endpoint, the fraction of infected individuals grows large enough so that the susceptible

population can no longer be treated as constant, and some level of herd immunity is acquired. Near the

right endpoint, contact tracing and targeted quarantine may prove less costly. For example, suppose that

when an individual tests positive all of the 1000 or so remotely connected individuals are immediately

quarantined. As extreme as that would be, if testing were widespread and the number of weekly confirmed

positives were low (say 4 per million) it would still be less disruptive than a national lockdown.

10−1 10−2 10−3 10−4 10−5 10−6 10−7

be developed, slowing sidewalk
at potential cost of high death rate

Significant herd immunity may Aggressive contact tracing
and targeted lockdowns

may become less costly

Figure 4: Numbers indicate disease prevalence. Inaction yields exponential growth (steady drift left).

The model in this paper does not address either endpoint and focuses only on the most efficient way to
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navigate the middle range, finding that (for a range of qualitatively plausible utility functions) alternating

speeds is more efficient than maintaining position in a steady way. If it turns out that maintaining position

near the right end is less costly than in the middle, then the subsequent peaks in Figures 1 and 2 might be

unnecessary, and a larger value of U might be possible. Similarly, if it proves possible to acquire significant

herd immunity while shielding the vulnerable (e.g., with prophylactics or treatment) then this would lead

to slower leftward drift, which could be navigated in a less costly way. Within the context of SEIR, if 20

percent of the population were immune, then an infectious person would only have 80 percent as many

contacts with non-immune people, which would suggest an REFF only 80 percent as large as otherwise.

We stress that in a society that acquires significant herd immunity (deliberately or otherwise), it would

still be possible to adopt an intermittent strategy later on, and at that point it would be possible to do so

with shorter lockdowns and longer up periods. The model in this paper applies after one has determined

not to allow a large number of additional infections but before it has become possible to inexpensively

maintain position on the right.

Finally, despite evidence for temperature and climate variation [30, 31, 32], it is unclear if the pathogen’s

transmissibility will exhibit seasonal effects. In contrast to [4], we do not assume seasonal changes in the

disease spread; that is, our model will produce the same magnitude of effect no matter where one places

the lockdowns in the calendar year. If the SARS-CoV-2 virus displays the same seasonality as SARS or

the influenza virus, this would “slow the sidewalk” during the summer months, and the required lockdown

durations would vary seasonally.

4.2 Caveats and limitations

Our work is also subject to a number of limitations.

1. Strict distancing is very strict: The “moderate” measures required to achieve R0 ≈ 1 might still

be tremendously strict on an objective scale. In many countries, one cannot say for sure whether it

will even be possible to pursue a strategy like the one proposed here before new tools are assembled,

and the benefits of intermittent strategies are much lower if RDOWN cannot be reduced considerably

below 1. Likewise, if individuals take additional precautions (beyond policy recommendations) or are

hesitant to engage in economic activity during the “up” periods then the benefits may be diminished

as well. It might be easier to initiate productive up periods when the infection rates are legitimately

low (so that people know they have less to fear). It may also pose additional logistical challenges

to implement an intermittent strategy, due to both transition costs not modeled here and to risks

associated with underestimating transmission during ”up” periods.

2. Inhomogeneity: Limited COVID-19-specific information about the distribution of incubation times

or infectiousness patterns has led us to consider basic Erlang SEIR approximations. If it turns out

that a significant subgroup of people remain infectious for very long periods of time, this would make

it harder to reduce infection rates quickly. Likewise, we do not account for subgroup differentiation
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in infectious rates or other random fluctuations or superspreader events.

3. Utility function uncertainty: Due to absent empirical data, it is hard to assess the impact of

“accelerating return” and “diminishing return” effects. In particular, we cannot rule out the pos-

sibility that U is ultra-concave, which would lead to steady moderation being an optimal strategy;

see Section F for more details. Moreover, we have not treated the possibility that U itself may

change gradually over time, due e.g. to the increased availability of personal protective equipment;

the improvement of test-and-trace technology; or the gradual improvement of safety protocols within

schools and businesses.

5 Conclusions

In light of all of the caveats above, we stress that we are not arguing that the specific pattern that appears

in Figure 1 is likely to appear in our future. Nonetheless, this simple model illustrates a few key points:

1. Full measures beat half measures: In certain situations, our normally healthy aversion to ex-

treme measures can lead us badly astray. Reducing the virus 99 percent one month achieves the

same reduction as two 90-percent-reduction months, or nearly seven 50-percent-reduction months.

If expensive measures are being undertaken, then going the extra mile to make those measures as

airtight as possible might significantly increase their effectiveness, and thereby greatly decrease the

amount of time they have to be in place. For a considerable range of utility functions, it appears to

be better to alternate between stricter periods and more relaxed periods than to try to produce a

single sustainable policy.

2. Coordinating lockdowns may increase returns: It is often better to combine similarly costly

restrictions in the same time period than to space them out over different periods. Instead of only

asking “Which kinds of work are inessential or doable from home?” policy makers should also ask

“Which kinds of work can be staggered (e.g., 60 hour weeks during up periods, no work during down

periods, assuming that this does not substantially change spacing and other safety requirements in

place)?” The more that work can be staggered (packed into up periods, left out of down periods)

the closer the down periods get to the zero transmission ideal, and the more impactful they become.

3. Containment is ideal: Although alternating between slower and faster speeds may be more effi-

cient, swimming against an “exponential current” for 72 weeks is costly. An aggressive test-and-trace

program (if successful) might be the only way to simultaneously achieve a low P and a high U and

reduce the losses associated with physical distancing measures.

The simple models presented here support stricter, intermittent lockdowns compared to moderate,

consistent distancing strategies. This evidence suggests that, for a certain range of utility functions, strict

intermittent measures are more efficient for public health as well as social and economic well-being. To

achieve optimal utility, the timing of distancing measures and the identification of permitted activities in
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“up” and “down” periods should be considered in future research. Successful implementation of intermit-

tent lockdowns will not only require coordination and cooperation from the public, but additional, clear

policy leadership and government financial support will be essential for the necessary adjustments to be

made. As companies and individuals adjust to this new intermittent way of life, the cost of lockdowns and

the corresponding utility will likely change. With new data every day, we urge for models to be updated

and policy measures reviewed during this maintenance period. As stated previously, this work does not

attempt to forecast or recommend any specific policy. Instead, we emphasize the potential for intermittent

strategies to truly make lockdowns count.

Appendix A A Brief Review of Literature on Lockdown Cost

As mentioned earlier, there are two ways to estimate the costs associated to a lockdown: “top down” (esti-

mating overall GDP or economic sector contraction after lockdown measures are imposed) or “bottom up”

(summing estimated costs to individuals from each activity forgone, for instance lost wages). Several papers

follow the former approach, with [33] estimating that a flu pandemic which costs 1.4 million lives would

reduce total output by almost 1 percent. They also showed that as the scale of the pandemic increases, so

does the economic cost. Focusing on disruption to supply chains, consumption distortion and the financial

market, [34] models the COVID-19 pandemic and estimates a GDP loss for the USA ranging from $16

billion if 1 percent of the population are infected and 0.02 percent die, to $1,769 billion if 30 percent are

infected and 0.9 percent die. Others use data from past epidemics to calculate costs; during the 2003

SARS epidemic, the total loss to China’s economy due to reduced travel and tourism was estimated to be

$25.3 billion [35]. The “bottom up” approach allows specific focus on physical distancing measures. A case

study on the 2003 SARS outbreak in Toronto quantified quarantine costs as a function of administration

costs, forgone daily wages of quarantined workers, and the number of contacts each infected person has,

with estimated savings of $232 million Canadian dollars when compared to no containment mechanism [36].

Appendix B Another normalization of the utility function

If one defines utility by U(c) = cα then it is automatically the case that the utility differences between

different strategies involving c ∈ [cmin, 1] become small as α → 0. In order to keep the difference from

becoming trivial as α → 0 we can replace U by an affine function of U chosen so that 0 corresponds to

the utility Umin achieved when c = cmin throughout and 1 corresponds to the utility Umax achieved when

c = 1 throughout. This is implemented in Figure 5 below, which better illustrates the extent to which

consistent moderation is better when α is very small or negative. We stress that if the difference between

the extreme values Umax and Umin is very large (the equivalent of many trillions of dollars and/or millions

of lives) then even differences that appear small (as a percentage of this difference) may be tremendously

important.
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Figure 5: Left: utility chart from Figure 2. Right: same but with U replaced by V := U−Umin
Umax−Umin

.

Appendix C Understanding the price of adding an extra cycle

Figure 6 uses the same parameters as Figure 3 and illustrates the full state vector (E1, E2, I1, I2) over the

course of two 6-week-down-6-week-up cycles. The standard early-phase linearization of SEIR (or SEIS)

with Erlang parameter 2 (see [8, 11]) is given by:

∂

∂t


E1(t)

E2(t)

I1(t)

I2(t)

 =


−2σ 0 β β

2σ −2σ 0 0

0 2σ −2γ 0

0 0 2γ −2γ



E1(t)

E2(t)

I1(t)

I2(t)


where σ−1 and γ−1 are the mean durations of the incubation and infectious periods and R0 = β/γ so that

β = γR0. If σ and γ are fixed, we then we write mR to denote the above matrix with β chosen so that

β/γ = R. Here R represents the effective value REFF.

When a policy change is made, so that REFF changes, the red curve (corresponding to E1) is the first

to change direction: this is the “leading indicator” that the other curves lag behind. The fact that the

space between the curves is roughly constant on the log scale (except for shortly after a policy change)

corresponds to the fact that the ratios (E2/E1 and I1/E1 and I2/E1) are roughly constant, which in turn

corresponds to the fact that (E1, E2, I1, I2) (interpreted as a column vector) is close to a multiple of the

Perron-Frobenius eigenvector of emR , which is also the eigenvector of mR corresponding to the maximal

real eigenvalue λR [11].

The quantity λR is called the Malthusian parameter of R, and indicates the asymptotic slope of the

lines in Figure 6 during a period when REFF = R [11]. We stress that unlike the basic reproduction

number R0 (which describes the early-phase discrete exponential growth rate w.r.t. generation number)

the Malthusian parameter encodes a continuum exponential growth rate w.r.t. time.

When the eigenvectors of mR are denoted by vj , we let QR denote the projection operator that takes
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Figure 6: Same parameters as Figure 3: REFF = 2.2 during 6-week-long up periods and REFF = .33 during
6-week-long down periods, and periods of six weeks up, six week down, incubation/infection periods Erlang
with mean of four days, shape parameter two. Two cycles (24 weeks) shown. All four states illustrated:
E1(t) (red), E2(t) (green), I1(t) (orange), and I2(t) (blue).

v =
∑
ajvj to a1v1, where v1 is the eigenvector with dominant eigenvalue λR. Note that

(etmR)v =
∑

(aje
tλj )vj ,

and that the RHS terms corresponding to j 6= 1 grow exponentially more slowly in t than the leading term,

which implies that

(etmR)(QR)v ≈ (etmR)v

when t is large. Consider what happens between the 12 week mark and the 24 week mark of Figure 6.

At the beginning, v12 is approximately an eigenvector of mRDOWN
with RDOWN = .33. But then (setting

t = 6) we find

v24 = (etmRDOWN )(etmRUP )v12

≈ (etmRDOWN )(etλUP )(QRUP
)v12

≈ (etλDOWN+tλUP)(QRUP
)(QRDOWN

)v12.

Let C(R1, R2) denote the log of the non-zero eigenvalue of QR2QR1 (and observe that v12 is approxi-

mately an eigenvector of this matrix), so that:

v24 ≈ exp
(
tλDOWN + tλUP + C(RDOWN, RUP)

)
v12.
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If the vector were simply growing at an exponential rate of λDOWN during down periods and λUP during

up periods, then the above would hold without the C(RDOWN, RUP) term. The term C(RDOWN, RUP)

represents an additional adjustment or “cost” associated to the switching of policies back and forth. Pre-

cisely, assuming all cycle lengths are reasonably long, C(RUP, RDOWN)/(λRUP
− λRDOWN

) approximates

the amount of time one would have to swap from “up” to “down” in order to compensate for increasing

the number of up-down cycles by one.

Let us work out this calculation in the simple example above. Using weeks as our unit, we have

σ = γ = 7/4 and β = R0/γ so that, if .33 and 2.2 are the two effective R0 values, the corresponding two

matrices become


−7/2 0 .33 · 7/4 .33 · 7/4
7/2 −7/2 0 0

0 7/2 −7/2 0

0 0 7/2 −7/2

 and


−7/2 0 2.2 · 7/4 2.2 · 7/4
7/2 −7/2 0 0

0 7/2 −7/2 0

0 0 7/2 −7/2


Entering these into an eigenvalue calculator we find λRDOWN

≈ −.941 and λRUP
≈ .892.
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Figure 7: Same parameters as Figure 3: REFF = 2.2 during 6-week-long up periods and REFF = .33 during
6-week-long down periods, and periods of six weeks up, six week down, incubation/infection periods Erlang
with mean of four days, shape parameter two. All four states illustrated: E1(t) (red), E2(t) (green), I1(t)
(orange), and I2(t) (blue).

The four ending values on the LHS side of Figure 7 exceed their counterparts on the RHS by about

log 1.3068 ≈ .26758. Dividing by (λRUP
− λRDOWN

) ≈ 1.833 we obtain .146 which is reasonably close to

1/7. This suggests that adding an extra up-down cycle has about the same cost (in terms of its impact

on the final values) as switching one day from down to up. (This cost per extra cycle would be different

if the periods were short enough that vt could not be well approximated by an eigenvector at the end of

each.) In Figure 3, switching from 6 cycles (of 12 weeks each) to 36 cycles (of 30 weeks each) means that

one pays a price of about 30 extra days of lockdown (or 5/6 of a day per each two-week period) which is

roughly what Figure 3 shows.
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In this example, the takeaway is that if the public prefers shorter cycle lengths (and hence a larger

number of cycles), then this can be accommodated, but at the cost of about one extra day of lockdown

for each extra cycle added.

Appendix D Changing the Erlang parameter

An Erlang distribution with an integer shape parameter k and a positive real rate parameter λ (or equiva-

lently a scale parameter µ = 1/λ) is a probability density function defined for t ∈ [0,∞) by

f(t) =
λke−λttk−1

(k − 1)!
. (1)

This is equivalent to a Gamma distribution, except that it comes with the extra requirement that k be

an integer. When k = 1, (1) is the density function of an exponential random variable with rate λ (and

expectation µ = 1/λ). For general k, (1) is the density function of a sum of k independent exponential

random variables, each with rate λ (and expectation µ = 1/λ); the overall sum then has expectation kµ.
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t
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0.10

0.15

0.20

f

Figure 8: Erlang distibution with shape parameter k = 6 and scale parameter µ = .88.

The incubation period for COVID-19 was studied in [28], based on early data from China, and was fit

to (among other things) an Erlang distribution with scale parameter µ = .880 and shape parameter k = 6

(which would correspond to a mean incubation time of 5.28) as shown in Figure 8. Per this distribution,

the incubation period would have a low probability of being less than 2 days (about 2.85 percent) or greater

than 14 days (about .15 percent).

However, the study in [28] considered only the time from first exposure until the development of

symptoms among individuals who ultimately became symptomatic. We are interested in a harder-to-

measure quantity: the time until a person becomes infectious (and subsequently the time between infection

and isolation). In Figure 2, we implemented SEIR with incubation and infectious periods given by Erlang

distributions with shape parameter of 2. However, in light of [28], one might propose a higher shape

parameter (say k = 4 or k = 6) as potentially more realistic. Although it might be less realistic, one could

also consider a shape parameter of 1 to correspond to the classical formulation of SEIR. The corresponding

density functions would be as in Figure 9.
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Figure 9: Erlang with mean kµ = 4 and shape parameter k = 1 (left), k = 2 (center) and k = 4 (right).
The one on the right is more similar to incubation distributions observed empirically.
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Figure 10: Left: same as Figure 6 except with Erlang shape parameter 4 instead of 2, and with cycles of
6.4 weeks up and 5.6 weeks down. All eight states illustrated: E1 (yellow), E2 (light blue), E3 (brown),
E4 (purple), I1 (red), I2 (green), I3 (orange), and I4 (blue). Right: utility normalized as in Figure 5.

In a conventional SEIR or SEIS model, adopting an Erlang distribution for the law of the time an

individual spends in state E is equivalent to replacing E with k separate states E1, E2, . . . , Ek that one

moves through sequentially. (Same for state I.) As Figure 10 illustrates modifying the Erlang parameter

in the more realistic direction (to k = 4) strengthens the case for intermittent strategies (they become

superior for smaller α); and Figure 11 illustrates that modifying it in the less realistic direction (to k = 1)

weakens case for intermittent strategies (one requires a larger α for intermittent strategies to be superior).

Appendix E Changing incubation and infectious period lengths

The length of the infectious-but-not-isolated period is influenced by policy as well as the underlying dynam-

ics of the disease. In Figure 2 we assumed that mean incubation and infectious-but-not-isolated periods

were both 4 days. What would happen if we reduced mean incubation time to 3.5 days and increased

mean infectious-but-not-isolated time to 7 days (so that now the mean infectious period is twice the mean

incubation period)?
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Figure 11: Left: same as Figures 6 and 10 except with Erlang shape parameter 1 instead of 2 or 4, and
with cycles of 5.45 weeks up and 6.55 weeks down. Both states shown: E (yellow) and I (blue). Right:
utility normalized as in Figure 5.

The answer, as illustrated in Figure 12, is that it does not affect the fundamental picture very much

if one does this while holding the REFF values constant. The tradeoffs evident in Figure 12 are essentially

the same as those in Figure 2.

But two things are worth pointing out. The first is that Figure 12 begins (like Figure 2) with “equal

prevalence in all four states.” But this balance changes quickly even in the steady moderation case, since

one now tends to spend twice as much time in the I states as the E states; so initially more people enter I

than leave it. That is the reason that all of the curves in the left graph of Figure 12 rise at the beginning.

In the REFF = 1 steady state equilibrium, there should be twice as many people in the infectious state as

in the exposed state (since it lasts twice as long on average).

The second point to emphasize is that in practice, measures that encourage infected individuals to self-

isolate more quickly are fundamentally important because they decrease REFF and changing REFF makes

a large difference to required lockdown lengths. It is simply a technical observation that “changing mean

infectious-but-not-isolated length while holding REFF constant” seems to have a less pronounced effect.

Appendix F Lagrange Multipliers and Utility Optimization

We consider different choices for the function U and consider what conditions on U are necessary in order

for intermittent strategies to be preferable to steady moderation.

It will be convenient to work on a logarithmic scale, so we write bn = − log cn for the amount that the

negative log of the infection rate changes (beyond its default change) over the nth period. Let F (b) denote

the utility associated to setting bn = b (or equivalently setting cn = e−b). Then

F (b) = U(e−b).

Note that since U can be assumed to be an increasing function, F will be a decreasing function. For each

19

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2020. ; https://doi.org/10.1101/2020.05.19.20107045doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.19.20107045
http://creativecommons.org/licenses/by/4.0/


10 20 30 40 50 60 70
n

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

p_n

0.5 1.0 1.5 2.0
α

30

40

50

60

70

U

-1.0 -0.5 0.5 1.0 1.5 2.0
α

0.2

0.3

0.4

0.5

0.6

0.7

0.8

V

Figure 12: Same as the upper two graphs in Figure 2 (with the alternate utility normalization from
Figure 5 on the right) except that mean incubation time is 3.5 and mean infection length is 7. The up-
period lengths were reduced slightly to keep the peaks roughly stable: from 6.67 to 6.48 (blue), from 3.6
to 3.5 (green) and from 9.65 to 9.55 (red) and down-period lengths were increased accordingly (so cycle
length remains 12 weeks).

given b, the marginal cost of an infinitesimal increase in b is given by the negative derivative

f(b) = − ∂

∂b
F (b) = − ∂

∂b
U(e−b) = e−bU ′(e−b).

For example, if U(x) = xα then f(b) = αe−be−(α−1)b = e−αb. If we imagine α = 1 and a hard cutoff at

b = − ln(1/8) = ln(8) then this could be expressed formally by stating that the marginal cost becomes

infinite beyond that point, i.e.,

f(b) =

e−b 0 ≤ b ≤ ln(8)

∞ b > ln(8).

Thus the function f starts with f(0) = 1 and then decays exponentially until a threshold at which it

sharply jumps to ∞. One might argue that this choice of f is unrealistic for at least two reasons. First,

there are probably certain measures that have low cost relative to their impact. We could account for this

“low-hanging fruit” by modifying f so that f(0) = 0 (while f remains otherwise positive and continuous).

Second, instead of asserting that it is impossible to go beyond b = − ln(1/8) it might be more reasonable

to allow f to vary continuously but sharply increase beyond that point. Qualitatively, one might see a

curve like Figure 13.

However, in Section 2.3 we stated that we would restrict the domain so as to exclude the extreme

endpoints (so inexpensive measures like masks hand-washing would stay in place during a c = 1 scenario,

while unrealistically expensive measures that go beyond cmin would never be considered). Doing this

would amount to recentering so that b = 0 corresponded to a location where f was positive and that

bmax = − log cmin would be the largest value we would consider.

Recall also that in Section 2.3 we defined α(c) := cU ′′(c)/U ′(c) and considered three scenarios: convex

(α > 1), moderate (0 < α ≤ 1) and ultra-concave (α < 0). Assuming U is twice-differentiable, differentiat-

ing with the chain rule shows that U is ultra-concave at a point c if and only if F is concave at b = − log c,

which amounts to f having negative first derivative at b.
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relaxed intermediate strict

F (b)

bmin bmax

Figure 13: Left: the range of b values is divided into a relaxed interval (where f is increasing) an
intermediate interval (where f is decreasing) and a strict interval (where f is increasing again). The values
bR, bI , bS shown (one from each region) satisfy f(bR) = f(bI) = f(bS). Right: possible shape for F . Recall
however that we generally restrict the domain for F in order to exclude the very low slope part to the left
or the very negatively steep slope part to the right. If we let F̃ be the smallest concave function satisfying
F̃ (b) ≥ F (b) then part of the graph of F̃ will trace the dotted red line.
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Figure 14: The function F corresponding to the disease transmission model from Figure 2 when (from left
to right) α = .25, α = .5, α = .75, and α = 1. The transition from concave to convex happens somewhere
between α = .25 and α = .5. One can assume that these graphs are horizontally translated so that bmin

corresponds to the point 0.

As we have seen in Appendix C, within the linearized SEIR (or SEIS) models, the price of decreasing

the number of infections by a certain factor (over the course of a week) actually depends on the vector

representing the fraction of people in each state at the beginning of the week. To avoid having to account

for this in the function F , we simply define F (b) to be the asymptotic long-term cost per time unit of a

steady policy that decreases the log of the infection number by b units during each unit of time (i.e., a

policy that has −b as the Malthusian parameter, in the language of Appendix C). In other words, F does

not account for the “switching cost” described in Appendix C. (In Appendix G we will explain how to

explicitly derive the F corresponding to scenarios like the one in Figure 2, as illustrated see Figure 14.)

A natural optimization question can be posed as follows. Suppose policy makers demand that the

virus prevalence equal exactly (or at most) some fixed value (say 1/1000) in 12 weeks. Leaving aside the

question of total infections for now, how can a constraint like p12 = 1/1000 be satisfied with the lowest

social cost (i.e., the highest U)? To address this, note that fixing pn is equivalent to fixing
∑
bn = B for

some B ≥ 0.

Write b = B/n. If b ∈ [bmin, bmax] then we can consider a strategy that adopts bmax for a (b −
bmin)/(bmax − bmin) fraction of the time bmin for the remainder of the time. If we define F̃ as in Figure 13,

then the utility per unit of time would be F̃ (b) > F (b) if we ignore the cost of the policy change and we
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assume that any real length for the time intervals is possible. This is perhaps the clearest way to see why

long-term intermittent strategies are beneficial when b lies in an interval on which F is convex.

Note that the up-period time duration specified above, namely (b−bmin)/(bmax−bmin), is not necessarily

an integer. If we insist that policies be set one week at a time (and that there are n weeks total) then

we can also use the standard theory of Lagrange multipliers, which says that the minimum of the cost∑n
j=1 F (bj) with respect to the constraint

∑n
j=1 bj = B is achieved at a (b1, b2, . . . , bn) vector for which

all f(bj) values are equal to the same value λ. (It is not hard to see that unless B = 0 this minimum

will never be achieved with one of the bj at the place where f is zero, since otherwise shifting that point

infinitesimally to right, and any other point infinitesimally left, would reduce the total cost.) Similarly,

at most one of the bj values can lie in the “intermediate range” of Figure 13 where the slope of f is

negative (since if there were two, one could decrease the cost by adding an infinitesimal amount to one and

subtracting it from the other; note that F is convex in the relaxed and strict regions but concave in the

intermediate region). Thus, for any optimal (b1, . . . , bn) at most one of the bj can lie in the intermediate

region. Although we have been informal, the basic conclusion is this:

Proposition 1. Oscillating strategies will appear as optimal solutions to the problem above, for at least

some boundary data and n ≥ 3, whenever f (which we assume to be continuous) is decreasing on some

interval, or equivalently whenever F is convex on some interval.

The interesting thing is that whenever B/n lies in the intermediate range, the most costly choice (among

all strategies in which all bj are in the intermediate range) is the consistent one in which bj = B/n for all

j ∈ {1, 2, . . . n}.2 The least costly solution meanwhile involves at most one intermediate bj — all the other

periods are either relaxed or strict. In other words consistent moderation is (among all “intermediate-

valued” strategies) the worst possible approach while the best approach involves solely relaxed and strict

periods (with at most one intermediate period). Once we find the optimal Lagrange multiplier solution,

we may as well (if we ignore the lower bound on pn) arrange to put all of the strict periods first and all of

the relaxed periods last (so that the trajectory of log pn follows a V shape, with a possible intermediate

period in the middle of the V). The analysis is a bit more complicated if instead of maximizing U one aims

to maximize U − sP for some constant s > 0 (so that we are taking the infection in account). Although

we do not give details here, we note that one might expect that once P is taken into account, the log pn

trajectory should lie below this V shape, so that there is an even deeper oscillation in this case.

Appendix G Specific utility function and disease-timing-law examples

In the absence of empirical data on the shape of the utility function, it is important to consider what kinds

of functions might be plausible (in “micro” as well as “macro” settings) and what kinds of assumptions

underlie the choices. Write r = ψ(u) for a continuous “disease transmission rate” achieved when the

lockdown intensity is chosen so that the utility per week is u. Appendix G.1 will present several different

possibilities for this function. Our simple model satisfies the simple timing assumption (STA) that an

2This fact is known in mathematics as Jensen’s inequality.
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individual who acquires the disease during weak n is infectious throughout week n+ 1 and never infectious

thereafter. Under STA, we had r = c and U(c) = ψ−1(c). In Appendix G.2 we will consider what happens

if replace STA with other assumptions, such as those that appear in (linearized) SEIR or SEIS models; in

these cases the relationship between r and c (the effective growth factor over the course of a whole week)

will be a bit more complicated.

In general, U should always be an increasing function of c on the interval [0, 1] (or at on least some

subset corresponding to “plausible” values). We make no claims about how empirically plausible the

stories below are, but we hope they help illustrate the ways that different ψ functions might be expected

in different settings.

G.1 Other rate functions

1. Linear policy tool: ψ(u) = u. Suppose the disease is restricted to children, and our only way to

fight the disease is to cancel children’s activities. If u is the fraction of activities allowed to take place,

we would expect ψ(u) = u. In this case, we call the cancellation of activities a linear policy tool

since disease transmission is a linear function of u. The closure of factories discussed in Section 2.3

is plausibly (to first order) a linear policy tool.

2. Quadratic policy tool: ψ(u) = u2. In Section 2.3 we mentioned that if all but a u fraction of the

population wore perfectly effective masks, then one might expect ψ(u) = u2. We hence call the mask

policy a quadratic policy tool. However, if the masks were only effective in one direction (offering

no protection to the wearer but perfect protection from the wearer) then this would be a linear policy

tool. And let us mention one additional subtlety: if the masks were perfectly effective both ways,

but it were always the same people wearing the masks, then eventually only non-mask-wearers would

be infected; at that point the fraction of new infections prevented by masks would be linear in the

number of masks.

3. Intermediate policy tool: U(c) = cα. If a global policy involves a complex mixture of linear and

quadratic policies, then one might consider ψ(u) = u1/α for some α ∈ [1/2, 1] as a compromise.

4. Convex policy tool: This story is a bit harder to tell for a constant rate ψ(u), so let us phrase

it terms of U and c. Suppose a disease only spreads to close friends of infected individuals (and

each such individual has at most one infected friend) and that the policy decreases the time u that

close friends spend together. Then the probability that the friend of an infected individual remains

uninfected is e−ku for some friend transmission rate k. So we could set c = 1 − e−ku and find

e−ku = 1 − c and solve to get and u = U(C) = − log(1 − c)/k. In this case U is convex (meaning

that as one adopts measures to decrease c, the marginal cost of decreasing c further decreases), i.e.,

this is an example of accelerating returns. This function only makes sense for c ∈ [a, 1] for some

a < 1, since there is an upper bound to the time friends can spend together. A similar phenomenon

appears in the discussion of SEIR on a three-regular tree in Section G.2.

Remark on α = 1 versus α = 1/2: In the context of SEIR, the infection rate is said to be proportional

to SI/N . If we formally interpret a “lockdown” as a measure that temporarily decreases S and I (by a
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factor proportional to utility) then the lockdown would be a quadratic tool, as in [23]. If we formally

interpret a lockdown as a measure that temporarily decreases S, I, and N by the same factor then it

would be a linear tool. It is not clear what the correct answer should be because it depends on whether

non-locked-down people continue to have the usual number of contacts per day or have fewer because

there are fewer people for them to interact with. Sample empirical question: if one closes half the bars in

a town and locks down half the customers, what do the other customers do? Do half of the

non-locked-down customers stay home—because their favorite bar is closed—or do all non-locked-down

customers find open bars and have as much social contact as usual? In the former case, how is the

absence of the non-locked-down customers who stay home accounted for in the utility function? Are they

“effectively locked down”? If it is the same customers locked down each week, then after a couple of

weeks, most of the increase in cases would come from the non-locked-down population and (if they were

interacting with each other at normal rates) the overall growth rate might be similar to what it would be

if there were no measures in place at all. To model an “inhomogeneous” scenario like this, one could to

introduce separate compartments (e.g., for essential and non-essential workers) but we will not do this

here.

G.2 The timing of the infectious period and power law utility

We will now explicitly derive U and F in a few very simple examples. Recall that when translated into

probabilistic language, the SIR model effectively assumes that there is no incubation period and that the

disease duration is an exponential random variable. In SEIR (with Erlang parameter 1) the incubation

period is also an exponential random variable. As a simple example in this section we will consider a

linearized version of SEIR/SEIS in which the incubation time has Erlang parameter 2 (so E is divided

into two states E1 and E2) but the infectious time is exponential (so I is not divided into two states).

One (possibly unrealistic) aspect of all three of these models is that there is no lower bound on the

incubation period, which in principle means there is no upper limit to the number of “hops” a virus can

make during a unit of time. This allows for a type of “continuous compounding” that does not appear

when the incubation time is bounded below. SIR has incubation times of length zero, but short incubation

periods are less likely in SEIR when the exposed state has Erlang parameter 1, and even less likely when

the Erlang parameter is higher. On the other hand, STA assumes (perhaps unrealistically) that there

is an upper bound on the length of time an individual is infectious but not quarantined (although one

could alternatively reinterpret the lower bound on c as corresponding to a positive fraction of infectious

individuals who remain infectious for the next week).

We now consider these four timing rules (STA, SIR, SEIR, Erlang SEIR) along with an additional

example involving SEIR on a three-regular tree; and by way of illustration we will check explicitly how

they effect the calculation of U in the power law case where r = ψ(u) = u1/α and α > 0.

In the examples below, we will interpret c as the exponential of the Malthusian parameter of the

given disease dynamics. Since the Malthusian parameter describes the asymptotic continuous exponential

growth rate, its exponential is the growth factor over a single period. In contrast to the first model in

the paper, the examples below will take c (rather than 2.5c) to represent the (asymptotic) weekly growth
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factor pn+1/pn corresponding to a given strategy. This simplifies the formulas slightly, and also means

that in order to calculate U(c) we will not necessarily need to specify the minimal and maximal growth

factors cmin and cmax.

1. Simple Timing Assumptions (STA): The conditions presented at the beginning of this paper

were obviously contrived to allow for a simple discretization of the problem. On the other hand, these

conditions have two features worth highlighting: first a lag time (of some part of a week) between

exposure and infectiousness. And second an upper bound on the length of time an individual is able

to be infectious. Recall that with this duration law we have:

U(c) = cα

F (b) = −e−αb

f(b) = αe−αb

Note here that cα and (2.5c)α agree up to a constant factor, so we can still use cα as the expression

for U(c) now that we are using cn instead of 2.5cn to represent pn+1/pn. Note also that f is a

strictly decreasing function for any α > 0. Recalling Proposition 1, this means that under STA and

any power law ψ, it is always the case that optimal strategies alternate between the most extreme

allowable values.

2. Linearized SIR or SIS: The classical SIR model can be derived from the assumption that an

individual who catches a virus is instantly infectious, with an infection duration that is an exponential

random variable. If we take the S → ∞ limit, we obtain a linearized version of the model in which

no herd immunity develops and I grows exponentially, with a rate given by a difference between

the infection rate and the recovery rate. If I starts out at 1 at time 0, then its value at time 1 is

the exponential of an affine function of r. To choose an arbitrary example, say c = er−1. Then

r = 1 + log(c), and since u = rα we obtain

U(c) =
(
(1 + log c)

)α
F (b) = −(1− b)α

f(b) = α(1− b)α−1

on the range of plausible c values. In this case f is increasing only if α > 1.

3. Linearized SEIS or SEIR: The standard SEIR model can be derived from the assumption that

the exposed and infectious periods for an individual are independent exponential random variables.

Once again we can take the S → ∞ limit to obtain a linearized version of the model in which no

herd immunity develops, and we can discretize it by assuming that policy is set one week at a time.

In this case E and I, interpreted as functions of t, evolve according to a linear ODE. Even this

linearized version of SEIR is more complicated than the linearized version of SIR above because it

has two parameters to keep track of instead of 1. If we let β denote the infection rate (and set other
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parameters equal to one, for illustration) we obtain

∂

∂t

(
E(t)

I(t)

)
=

(
−1 β

1 −1

)(
E(t)

I(t)

)
.

The standard theory of linear ODEs says that if we denote the above matrix by Mβ, and we start

with E = E0 and I = I0, then the values at time t will be given by

etMβ

(
E(0)

I(0)

)
.

The value of E(t) + I(t) at time t depends on both E0 and I0. But regardless of the initial values, as

t gets larger, standard linear algebra implies that this quantity grows asymptotically like a constant

times eλt where λ = λβ is the largest eigenvalue of Mβ. This λβ is called the Malthusian parameter

as we mentioned earlier, see [11].

We can quickly compute the eigenvalues (type Eigenvalues({{-1,b},{1,-1}}) into wolframal-

pha.com) and the matrix eM (type matrixexp(t {{-1,b},{1,-1}}) into wolframalpha.com) and

we find that the largest eigenvalue of M is
√
β−1. Write A(t) = E(t)+I(t) for the total virus carriers

at stage t if the parameter β remains fixed. A glance at the matrix shows that if A(t) = E(t) + I(t)

then regardless of what E(t) and I(t) are, the value A(t) will be within some fixed constant factor

of et(
√
β−1) for all t.

In order to avoid having to think too hard about non-commutative matrices (and the “switching

costs” discussed in Figure 3 and Section C), let us assume that the constant-β periods we consider

are long (as in the V shape considered Section F). If this is the case, then the effective multiplicative

factor at each step is (very close to) e
√
r−1 where r = β. Taking this point of view puts us back in a

similar framework to the (linearized) SIR problem. Solving we find r = (1 + log c)2 and combining

this fact with u = rα we obtain the following (defined on the interval where (1 + log c) is positive):

U(c) = (1 + log c)2α

F (b) = −(1− b)2α

f(b) = 2α(1− b)2α−1.

Although we have not worked out the very optimal solution, the above is enough to show that if

f is decreasing over its range (as it is when α > 1/2) then there is a “strict-then-relaxed” solution

(analogous to the V-shaped one in Section F) that is better than a solution in which β is held constant

throughout. In other words alternating strict then relaxed beats steady moderation (at least over

sufficiently long periods—long enough so that the “switching costs” detailed in Section C are small

compared to the total costs).

4. Linearized SEIS or SEIR with Erlang parameter 2 for exposed state: To illustrate one

more example, consider a type of Erlang SEIR in which each individual who acquires the virus

passes through two exposed states before reaching a single infectious state. In such a setting, the
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total length of the incubation period is the sum of two independent exponential random variables. For

example, if X1 and X2 are independent exponential random variables, each with density function

e−t on [0,∞), then their sum has density function te−t on [0,∞). The sum is called an Erlang

(or gamma) random variable, and the fact that the density is zero at zero encodes the fact that

“extremely short” incubation periods are unlikely. (A similar gamma random variable is used to

model the incubation period of the flu in [37].) Erlang SEIR is still a simplified example, but as

noted earlier its incubation period law may be more realistic than the one with Erlang parameter

1. As before, when we take the S → ∞ limit we obtain a linearized version of the model which

follows a linear ODE where β denotes the infection rate (and we set other parameters equal to one,

for illustration):

∂

∂t

E1(t)

E2(t)

I(t)

 =

−1 0 β

1 −1 0

0 1 −1


E1(t)

E2(t)

I(t)


and if we type Eigenvalues[{{-1, 0, b}, {1, -1, 0}, {0, 1, -1}}] into wolframalpha.com we

find the largest eigenvalue is 3
√
b − 1. So setting β = r and following the same analysis as in the

previous example we get c = e(
3√β−1). Solving we find r = (1 + log c)3 and combining this with

u = rα we obtain the following (defined on the interval where (1 + log c) is positive):

U(c) = (1 + log c)3α

F (b) = −(1− b)3α

f(b) = 3α(1− b)3α−1

In this case f is increasing provided α > 1/3. Although we have only worked out only simplified cases

in this section, the idea that α = 1/3 is the cutoff for linearized SEIR/SEIS (with Erlang parameter

2) and α = 1/2 for ordinary SEIR (with Erlang parameter 1) seems roughly in line with Figures 2

and 11. It is also not surprising that higher (and possibly more realistic) Erlang parameters lead to

intermittent strategies being optimal for even smaller values of α, as in Figure 10.

5. Linearized SEIR on a three-regular tree: When a disease spreads mainly among close asso-

ciates of infected individuals, it can in principle lead to U being convex (or at least somewhat less

concave). We include here an analytically simple example (not intended to be realistic) to illustrate

that point. Imagine a scenario in which each individual has exactly three very close associates (e.g.,

a work colleague, a spouse, and one other friend). For simplicity, let us imagine that the associate

graph does not have short cycles, so that it looks locally like a three-regular tree. (Allowing some

short cycles would not necessarily change the basic story, but it would make the math more compli-

cated.)

As the disease spreads on the tree, we will keep track only of the number of infected individuals

who have at least one susceptible neighbor (since these are the individuals who could still spread

the disease to others). Precisely, we consider three states: exposed with two susceptible neighbors

(E2), infected with two susceptible neighbors (I2), and infected with one susceptible neighbor (I1),
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evolving according to the ODE

∂

∂t

E2(t)

I2(t)

I1(t)

 =

−1 2β β

1 −1− 2β 0

0 2β −1− β


E2(t)

I2(t)

I1(t)

 .

A key thing to note here is that (unlike in the linearized SEIR examples above) no matter how large

β is, there is an upper bound to how fast the disease can spread: if β is very close to infinity, then

of the people in the three categories above, nearly everyone will be in the E2 state (since as soon

one transitions from E2 to I2, one almost immediately exposes two more neighbors and eliminates

oneself, effectively increasing E2 by 1) and E2 grows with exponential rate close to 1.

Setting β = r, we enter Max[Eigenvalues{{-1,2r, r},{1,-1-2r ,0},{0,2r, -1-r}}] into wol-

framalpha.com and find the largest eigenvalue is 1
2

(
−r +

√
r2 + 8r − 2

)
. As above, we set c =

exp
(−r+√r2+8r−2

2

)
. Entering Solve[c = E^(.5 (-r + sqrt(r^2 + 8r) - 2)), r] we then find

r =
(1 + log(c))2

1− log(c)
,

and combining this with u = rα we obtain the following (defined on the interval where e−1 < c < e,

or equivalently where −1 < b < 1):

U(c) =
((1 + log(c))2

1− log(c)

)α
F (b) =

((1− b)2

b+ 1

)α
f(b) = −F ′(b)

The function U is then convex for a range of α values, as Figure 15 shows. (Note that we have not

specified values for cmin and cmax.)
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Figure 15: U(c) for 3-regular-tree SEIR when (from left to right) α = .25, α = .5, α = .75, and α = 1.

Finally, we remark that the examples above can be generalized to involve any number of E and I

states, and any discrete or continuous time Markov chain [11], as well as other types of differentiated

compartments (e.g., accounting for different disease phases or different demographic categories).
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G.3 Linearized SIR vs. STA in a simple example

To illustrate the distinction between timing laws further, suppose (in a somewhat extreme scenario) that

there are 400 infectious people, and that with no intervention the number would quadruple to 1600 in a

week, but that with the maximum possible intervention it would decline to 100. Define a “half measure”

to be an intervention half as costly as the maximum. How many infectious people would there be after a

half measure?

Under STA with a linear policy tool, the answer is 850 (the arithmetic mean of 100 and 1600). Under

(linearized) SIR with a linear policy tool, the answer is 400 (the geometric mean of 100 and 1600), be-

cause in this case it is the “exponential growth rate” that is linear in cost. Under (linearized) SIR with a

quadratic policy tool the answer is 200. Under STA with a convex policy tool, the answer would be some

value greater than 850.

Appendix H Mathematica code

The reader who wants to experiment with different parameters may cut and paste the following code into

Mathematica, which generates Figure 6. Other figures in this paper use similar code. This code is not

optimized for computational efficiency (since Mathematica presumably computes the matrix exponentials

separately for each point it plots) and researchers using much larger matrices (to represent models with

more compartments) may wish to solve the ODEs a different way. To parse the code, note that the first two

lines instruct Mathematica to always interpret the 0th power of a matrix as the identity, which is not true

by default in Mathematica when a matrix is (nearly) singular. The Jacobian matrix is then written as m (a

function of the effective R0 parameter, here called R) and the exponential as M = etm (a function of R and

t). These matrices are applied on the left to column vectors, and the initial vector is written as {1, 1, 1, 1}
(multiplied by .001). Note that typing N [X] instructs Mathematica to produce a numerical approximation

of X, that Re[X] is the real part of X (which eliminates some small complex-valued numerical errors that

arise in the matrix operations) and that the period symbol is used to denote both matrix multiplication

and dot product.

Unprotect[MatrixPower]; MatrixPower[m_?SquareMatrixQ, 0]:=IdentityMatrix[Length[m]];

Protect[MatrixPower];

periods = 2; weeksup = 6; weeksdown = 6; Rup = 2.2; Rdown = .33; incubationdays = 4; infectiousdays = 4;

m[R_] := {{-14/incubationdays, 0, 7 R/infectiousdays, 7 R/infectiousdays},

{14/incubationdays, -14/incubationdays, 0, 0},

{0, 14/ incubationdays, -14/infectiousdays, 0},

{0, 0, 14/infectiousdays, -14/ infectiousdays}};

M[R_, t_] = Re[N[MatrixExp[t m[R]]]]; len = weeksup + weeksdown;

MFullPeriod = M[Rup, weeksup].M[Rdown, weeksdown];

MPartPeriod[r_] = If[r < weeksdown/len, M[Rdown, r len], M[Rup, r len - weeksdown].M[Rdown, weeksdown]];

LogPlot[{

.001 N[{0, 0, 0, 1}.MPartPeriod[a/len - Floor[a/len]].MatrixPower[MFullPeriod, Floor[a/len]].{1, 1, 1, 1}],

.001 N[{0, 0, 1, 0}.MPartPeriod[a/len - Floor[a/len]].MatrixPower[MFullPeriod, Floor[a/len]].{1, 1, 1, 1}],

.001 N[{0, 1, 0, 0}.MPartPeriod[a/len - Floor[a/len]].MatrixPower[MFullPeriod, Floor[a/len]].{1, 1, 1, 1}],
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.001 N[{1, 0, 0, 0}.MPartPeriod[a/len - Floor[a/len]].MatrixPower[MFullPeriod, Floor[a/len]].{1, 1, 1, 1}]},

{a, 0, len*periods}, Exclusions -> None, AxesLabel -> {n, p_n}, ImageSize -> 600]
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