A systematic review and meta-analysis of published research data on COVID-19 infection-fatality rates

Gideon Meyerowitz-Katz¹,², Lea Merone³,⁴
1. Western Sydney Local Health District
2. University of Wollongong
3. James Cook University
4. Apunipima Cape York Health Council

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Key messages:

- COVID-19 infection-fatality rate (IFR) is an important statistic for policy about the disease.
- Published estimates vary, with a ‘true’ fatality rate hard to calculate.
- Systematically reviewing the literature and meta-analyzing the results shows an IFR of 0.64% (0.50-0.78%).
Abstract

An important unknown during the COVID-19 pandemic has been the infection-fatality rate (IFR). This differs from the case-fatality rate (CFR) as an estimate of the number of deaths as a proportion of the total number of cases, including those who are mild and asymptomatic. While the CFR is extremely valuable for experts, IFR is increasingly being called for by policy-makers and the lay public as an estimate of the overall mortality from COVID-19.

Methods

Pubmed, Medline, SSRN, and Medxiv were searched using a set of terms and Boolean operators on 25/04/2020 and re-searched 14/05/2020 and 21/05/2020. Articles were screened for inclusion by both authors. Meta-analysis was performed in Stata 15.1 using the metan command, based on IFR and confidence intervals extracted from each study. Google/Google Scholar was used to assess the grey literature relating to government reports.

Results

After exclusions, there were 25 estimates of IFR included in the final meta-analysis, from a wide range of countries, published between February and May 2020.

The meta-analysis demonstrated a point-estimate of IFR of 0.64% (0.50-0.78%) with high heterogeneity (p<0.001).

Conclusion

Based on a systematic review and meta-analysis of published evidence on COVID-19 until May, 2020, the IFR of the disease across populations is 0.64% (0.50-0.78%). However, due to very high heterogeneity in the meta-analysis, it is difficult to know if this represents the ‘true’ point estimate. It is likely that different places will experience different IFRs. More research looking at age-stratified IFR is urgently needed to inform policy-making on this front.
Introduction

2020 saw the emergence of a global pandemic, the disease COVID-19, caused by the SARS-CoV-2 virus, which began in China and has since spread across the world. One of the most common, but difficult questions to answer during the COVID-19 pandemic has been regarding the true infection-fatality rate (IFR) of the disease. While case-fatality rates (CFR) are eminently calculable from various published data sources (1) – CFR being the number of deaths divided by the number of confirmed cases - it is far more difficult to extrapolate to the proportion of all infected individuals who have died due to the infection because those who have very mild, atypical or asymptomatic disease are frequently left undetected and therefore omitted from fatality-rate calculations (2). Given the difficulty of obtaining accurate estimates, it is not unexpected that there are wide disparities in the published estimates of infection. This is an issue for several reasons, most importantly in that policy is dependent on modelling, and modelling is dependent on assumptions. If we do not have a robust estimate of IFR, it is challenging to make predictions about the true impact of COVID-19 in any given susceptible population, which may stymie policy development and may have serious consequences for decision-making into the future. While CFR is a more commonly-used statistic, and is very widely understood among experts, IFR provides important context for policy makers that is hard to convey, particularly given the wide variation in CFR estimates. While CFR is naturally a function of the denominator – i.e. how many people have been tested for the disease – policy-makers are often most interested in the total burden in the population rather than the biased estimates given from testing only the acutely unwell patients.

This is particularly important when considering the reopening of countries post ‘lockdown’. Depending on the severity of the disease, it may be reasonable to reopen services such as schools, bars, and clubs, at different timings. Another salient point is the expected burden of disease in younger age groups – while there are likely long-term impacts other than death, it will be important
for future planning to know how many people in various age groups are likely to die if the infection becomes widespread across societies. Age-stratified estimates are also important as it may give countries some way to predict the number of deaths expected given their demographic breakdown.

There are a number of methods for investigating the IFR in a population. One method used successfully for influenza has been retrospective modelling studies predicting the ‘true’ number of cases and deaths from influenza-like illness records and/or excess mortality estimates (3, 4). This is in part due to the general difficulty in attributing influenza cases to subsequent mortality, meaning that CFRs may both overestimate and equally underestimate the true number of deaths due to the disease in a population (5). The standard test for COVID-19 involves polymerase chain reaction testing (PCR) of nasopharyngeal swabs from patients suspected of having contracted the virus. This can produce some false negatives (6), with one study demonstrating almost a quarter of patients experiencing a positive result following up to two previous false negatives (7). PCR is also limited in that it cannot test for previous infection. Serology testing is more invasive, requiring a blood sample, however it can determine if there has been previous infection and can be performed rapidly at the point of care (PoC). Serology PoC testing cannot determine if a person is infectious, or if infection is recent and there is risk of misinterpretation of results (8).

Given the emergence of COVID-19 as a global pandemic, it is somewhat unlikely that these issues are directly mirrored for the newer disease, but there are likely similarities between the two. Some analysis in mainstream media publications and pre-prints has implied that there is a large burden of deaths that remains unattributed to COVID-19. Similarly, serological surveys have demonstrated that there is a large proportion of cases that have not been captured in the case numbers reported in the U.S., Europe, and potentially worldwide (9-11).
This paper presents a systematic effort to collate and aggregate these disparate estimates of IFR using an easily replicable method. While any meta-analysis is only as reliable as the quality of included studies, this will at least put a realistic estimate to the IFR given current published evidence.

Methods

This study used a simple systematic review protocol. PubMed, MedLine, and MedRxiv were searched on the 25/04/2020 using the terms and Boolean operators: (infection fatality rate OR ifr OR seroprevalence) AND (COVID-19 OR SARS-CoV-2). This search was repeated on 14/05/2020 and 25/05/2020. The preprint server SSRN was also searched on 25/05/2020, however as it does not allow this format the Boolean operators and brackets were removed. While MedRxiv and SSRN would usually be excluded from systematic review, given that the papers included are not peer-reviewed, during the pandemic it has been an important source of information and contains many of the most recent estimates for epidemiological information about COVID-19. Inclusion criteria for the studies were:

- Regarding COVID-19/SARS-CoV-2 (i.e. not SARS-CoV-1 extrapolations)
- Presented an estimated population infection-fatality rate (or allowed calculation of such from publicly-available data)

Titles and abstracts were screened for eligibility and discarded if they did not meet the inclusion criteria. GMK then conducted a simple Google and Google scholar search using the same terms to assess the grey literature, in particular published estimates from government agencies that may not appear on formal academic databases. LM assessed the articles to ensure congruence. If these met the inclusion criteria, they were included in the systematic review and meta-analysis. Similarly,
Twitter searches were performed using similar search terms to assess the evidence available on social media. Estimates for IFR and the confidence interval were extracted for each study.

All analysis and data transformation was performed in Stata 15.1. The meta-analysis was performed using the metan command for continuous estimates, with IFR and the lower/upper bounds of the confidence interval as the variables entered. This model used the DerSimonian and Laird random-effects method. The metan command in Stata automatically generates an I^2 statistic that was used to investigate heterogeneity. Histograms were visually inspected to ensure that there was no significant positive or negative skew to the results that would invalidate this methodology. For the studies where no confidence interval was provided, one was calculated.

A PRISMA flow diagram of the search methods
Sensitivity analyses were performed stratifying the results into the type of study – observational, modelling, or pre-print – by country, and by month of calculation. A further sensitivity analysis was conducted excluding outliers to examine the affect this had on the point estimate and range.

The metabias and metafunnel commands were used to examine publication bias in the included research, with Egger’s test used for the metabias estimation. Given that much of the research was preliminary, unpublished, and/or in preprint, nor formal analysis of risk of bias was conducted – it can be assumed that this is not a perfect estimate given the rapidity of evidence generation during the COVID-19 pandemic.

Due to a recent surge in the number of serological surveys being published, these were included in the infection-fatality estimate despite not formally calculating an IFR in the study text itself. Regional death rates were taken from the John Hopkins University CSSE dashboard (12) 10 days after the serosurvey completion where no IFR was calculated to account for right-censoring of these estimates (13), and used to estimate the IFR given the population.

All code and data files are available (in .do and .csv format) upon request.

Results

Initial searches identified 252 studies across all databases. Later searches on Google and social media, as well as resampling the included databases revealed a further fifteen estimates to include in the study. These came from a variety of sources, with some appearing from blog posts, others posted on twitter, and some government documents being found through Google. There were no duplicates specifically, however two pre-prints had been published and so appeared in slightly different forms in both databases. In this case, the published study was used rather than the pre-print. Results are collated in table 1.
Studies were excluded for a variety of reasons. Some studies only looked at COVID-19 incidence, rather than prevalence of antibodies, and were thus considered potentially unreliable as population estimates (14). The most common reason for exclusion was selection bias – many studies only looked at targeted populations in their seroprevalence data, and thus could not be used as population estimators of IFR (10, 15-22). For some data, it was difficult to determine the numerator (i.e. number of deaths) associated with the seroprevalence estimate, or the denominator (i.e. population) was not well defined and thus we did not calculate an IFR (23, 24). One study explicitly warned against using its data to obtain an IFR (25). Another study calculated an IFR, but did not allow for an estimate of confidence bounds and thus could not be included in the quantitative synthesis (26).

After screening titles and abstracts, 227 studies were removed. Many of these looked at case-fatality estimates, or discussed IFR as a concept and/or a model input, rather than estimating the figure themselves. 40 papers were assessed for eligibility for inclusion into the study, resulting in a final 25 to be included in the qualitative synthesis.

Studies varied widely in design, with 6 entirely modelled estimates (27-32), 5 observational studies (9, 33-35), 5 pre-prints that were challenging to otherwise classify (2, 36-39), and a number of serological surveys of varying types reported by governments (40-49). For the purposes of this research, an estimate for New York City was calculated from official statistics and the serosurvey, however this was correlated with a published estimate (26) to ensure validity.

The main result from the random-effects meta-analysis is presented in Figure 1. Overall, the aggregated estimate across all 25 studies indicated an IFR of 0.64% (95% CI 0.50-0.78%), or 64 deaths per 10,000 infections. Heterogeneity was extremely high, with the overall I^2 exceeding 99% ($p<0.0001$).

The sensitivity analysis by month from Figure 3 showed that earlier estimates of IFR were lower, with later estimates showing a higher figure (although not lower heterogeneity).
Analysing by country of origin did not appear to have a substantial effect on the findings, with both those studies from within and outside of China showing similar aggregate estimates in Figure 2. There was lower heterogeneity in studies published using Chinese data ($I^2 = 0\%, p>0.5$).

Of note, there was some difference in estimates of IFR between estimates based on serosurveys and those of modelled or PCR-based estimates. The overall estimates from serosurvey studies was 0.53% (0.35-0.71%), although again with very high heterogeneity, as can be seen in Figure 4.
Meta-analysis of infection fatality rates of COVID-19 by country where data originated

<table>
<thead>
<tr>
<th>Study</th>
<th>Month</th>
<th>ES (95% CI)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russell et al</td>
<td>March</td>
<td>0.60 (0.20, 1.30)</td>
<td>2.82</td>
</tr>
<tr>
<td>CEBM</td>
<td>March</td>
<td>0.20 (0.10, 0.36)</td>
<td>4.85</td>
</tr>
<tr>
<td>New York City</td>
<td>April</td>
<td>0.93 (0.91, 0.94)</td>
<td>5.06</td>
</tr>
<tr>
<td>Bendavid et al</td>
<td>April</td>
<td>0.18 (0.12, 0.20)</td>
<td>5.04</td>
</tr>
<tr>
<td>Nishiara et al</td>
<td>Feb</td>
<td>0.45 (0.36, 0.54)</td>
<td>4.96</td>
</tr>
<tr>
<td>Rinadi et al</td>
<td>April</td>
<td>1.29 (0.89, 2.01)</td>
<td>2.78</td>
</tr>
<tr>
<td>Roques et al</td>
<td>April</td>
<td>0.80 (0.45, 1.25)</td>
<td>3.57</td>
</tr>
<tr>
<td>Villa et al</td>
<td>April</td>
<td>1.60 (1.10, 2.10)</td>
<td>3.06</td>
</tr>
<tr>
<td>Modi et al</td>
<td>April</td>
<td>0.95 (0.47, 1.70)</td>
<td>2.54</td>
</tr>
<tr>
<td>Batu</td>
<td>May</td>
<td>1.30 (0.60, 2.10)</td>
<td>2.04</td>
</tr>
<tr>
<td>Streck et al</td>
<td>May</td>
<td>0.36 (0.26, 0.45)</td>
<td>4.98</td>
</tr>
<tr>
<td>Saie et al</td>
<td>May</td>
<td>0.70 (0.40, 1.00)</td>
<td>4.19</td>
</tr>
<tr>
<td>Spenn</td>
<td>May</td>
<td>1.15 (1.00, 1.30)</td>
<td>4.78</td>
</tr>
<tr>
<td>Indiana</td>
<td>May</td>
<td>0.58 (0.57, 0.59)</td>
<td>5.07</td>
</tr>
<tr>
<td>Iran</td>
<td>May</td>
<td>0.09 (0.08, 0.10)</td>
<td>5.07</td>
</tr>
<tr>
<td>Sweden (Stockholm)</td>
<td>May</td>
<td>0.65 (0.59, 0.66)</td>
<td>5.05</td>
</tr>
<tr>
<td>Strenghi et al</td>
<td>May</td>
<td>0.50 (0.44, 0.56)</td>
<td>5.01</td>
</tr>
<tr>
<td>Snoeck et al</td>
<td>May</td>
<td>0.84 (0.67, 1.00)</td>
<td>4.74</td>
</tr>
<tr>
<td>Slovenia</td>
<td>May</td>
<td>0.16 (0.13, 0.19)</td>
<td>5.05</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>May</td>
<td>0.68 (0.60, 0.75)</td>
<td>4.99</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>0.64 (0.48, 0.81)</td>
<td>85.57</td>
</tr>
</tbody>
</table>

China
- Tian et al, Feb: 1.15 (0.60, 2.43), 1.04
- Jung et al, Feb: 0.70 (0.50, 0.92), 2.98
- Ventry et al, March: 0.66 (0.30, 0.93), 8.21
- Ferguson et al, March: 1.00 (0.92, 1.09), 2.53
- Wu et al, May: 0.35 (0.23, 0.47), 5.06
- **Subtotal** (I-squared = 55.1%, p = 0.063): 0.62 (0.31, 0.9), 14.43
- **Overall** (I-squared = 99.9%, p = 0.000): 0.64 (0.50, 0.78), 100.00

NOTE: Weights are from random effects analysis.

Figure 2
Figure 3
There were not sufficient data in the included research to perform a meta-analysis of IFR by age. However, qualitatively synthesizing the data that was presented indicates that the expected IFR below the age of 60 years is likely to be reduced by a large factor. This is supported by studies examining the CFR which were not included in the quantitative synthesis, as well as studies examining IFR in selected populations younger than 70 years of age, that demonstrate a strong age-related gradient to the death rate from COVID-19.

Plotting the studies using a funnel plot produced some visual indication of publication bias, with more high estimates than would be expected, however the Egger’s regression was not significant (p=0.74).
Discussion

As pandemic COVID-19 progresses, it is useful to use the IFR when reporting figures, particularly as some countries begin to engage in enhanced screening and surveillance, and observe an increase in positive cases who are asymptomatic and/or mild enough that they have so far avoided testing (50). It has been acknowledged that there is significant asymptomatic carriage – potentially up to 50% of all patients - and that asymptomatic transmission may also be possible with COVID-19 (29, 51) and use of IFR would aid the capture of these individuals in mortality figures. IFR modelling, calculation and figures, however, are inconsistent.

The main finding of this research is that there is very high heterogeneity among estimates of IFR for COVID-19 and therefore it is difficult to draw a single conclusion regarding the number. Aggregating the results together provides a point-estimate of 0.64% (0.50-0.78%), but there remains considerable uncertainty about whether this is a reasonable figure or simply a best guess. It appears likely, however, that the true population IFR in most places from COVID-19 will lie somewhere between the lower bound and upper bounds of this estimate.

One reason for the very high heterogeneity is likely that different countries and regions will experience different death rates due to the disease. One factor that may impact this is government response, with more prepared countries suffering lower death rates than those that have sufficient resources to combat a large outbreak (52). Moreover, it is very likely, given the evidence around age-related fatality, that a country with a significantly younger population would see fewer deaths on average than one with a far older population, given similar levels of healthcare provision between the two. For example, Israel, with a median age of 30 years, would expect a lower IFR than Italy, with a much higher median age (45.4 years). The sensitivity analysis by country hinted at this possibility –
while there were too few studies from any one individual country to aggregate except for China, the studies only using Chinese data came to very similar conclusions.

Some included studies (2, 38) compared fatality during COVID-19 pandemic with previous years’ average fatality, determining that mortality has been higher during pandemic and whilst correlation doesn’t necessarily equate to causation, it is reasonable to link the events as causal given the high CFR observed across countries. It is highly likely from the data analysed that IFR increases with age-group, with those aged over 60 years old potentially experiencing the highest IFR, in one case close to 15% (38). Given the elderly are the most vulnerable in society to illness and likely to carry a higher disease burden owing to increased susceptibility and comorbidity (53, 54), the lower IFRs observed in the younger populations may skew the figure somewhat. There are some reasonable estimates of fatality in younger age-groups that were not included in the population estimates (10, 18, 21), which imply a substantially lower rate of death in the population under 70. While these studies were not considered applicable for quantitative synthesis, they imply that the IFR for <70 year olds is likely lower than 0.1%, and may be less than 10x the rate of death in over-70s.

While not included in the quantitative synthesis, one paper did examine the extreme lower bound of IFR of COVID-19 in situations where the healthcare system has been overwhelmed. This is likely to be higher than the IFR in a less problematic situation but demonstrates that the absolute minimum in such a situation cannot be lower than 0.2%, and is likely much higher than this figure in most scenarios involving overburdened hospitals.

Of note, there appears to be a divergence between estimates based on serosurveys and those that are modelled or inferred from other forms of testing, with the IFR based purely on serosurveillance being 0.53% (0.35-0.71%). Some have argued that serological surveys are the only proper way to estimate IFR, which would lead to the acceptance of this slightly lower IFR as the most likely estimate (55). However, even these estimates are very heterogeneous in quality, with some extremely robust data such as that reported from the Spanish and Swedish health agencies (41, 42), and some that
have clear and worrying flaws such as a study from Iran where death estimates are reportedly substantially lower than the true figure (49). It is also often challenging to calculate an IFR using sera survey information and publicly available death information alone – for example, results from a Brazilian sera survey were reported for a specific region of the country, however finding a reasonable estimate of the number of deaths 10 days after the survey was conducted and thus determining an IFR was challenging (23). There is also enormous heterogeneity in the reporting of these sera surveys, with some occupying a single page on a government website while others are made up of detailed reports. Even many of the preprinted studies on these surveys are of very low quality, as has been noted in a preprint systematic review on the topic (56), which makes inferring a realistic IFR from this data even more challenging.

There are a number of limitations to this research. Importantly, the heterogeneity in the meta-analysis was very high. This may mean that the point-estimates are less reliable than would be expected. It is also notable that any meta-analysis is only as reliable as the data contained within – this research included a very broad range of studies that address slightly different questions with a very wide range of methodological rigor, and thus cannot represent certainty of any kind. While the studies were not formally graded, at least one (9) has already been critiqued for simple mathematical errors, and given that many were pre-prints it is hard to ascertain if they have provided accurate representations of the data.

Moreover, the quality of included sera survey estimates was often questionable, with at least one (45) having clear political motivations for presenting a lower estimate. Some have also been criticized for sampling issues that would likely lead to a biased overestimate of population infection rates (9). It has also been demonstrated that official death counts – which were used in this analysis – are often underestimates due to under-counting during a crisis (38).

Accounting for right-censoring in these estimates was also a challenge. Using a 10-day cutoff for deaths is far too crude a method to create a reliable estimate. In some cases, this could be an
overestimate, due to the seroconversion process taking almost as much time as the median time until death. Conversely, there is a long tail for COVID-19 deaths (13), and therefore it is almost certain that some proportion of the ‘true’ number of deaths will be missed by using a 10-day cutoff, biasing the estimated IFRs down. This may be why serosurvey estimates at first appear to result in somewhat lower IFRs than modelled and observational data suggests.

It is also important to recognize that this is a living estimate. With new data being published every single day during this pandemic, in a wide variety of languages and in innumerable formats, it is impossible to collate every single piece of information into one document no matter how rigorous. Moreover, this aggregated estimate is only as correct as the most recent search – the point estimate has not shifted substantially due to the inclusion of new research, but the confidence interval has changed. It is almost certain that, over the course of coming months and years, the IFR will be revised a number of times. In particular, it is vital that future research stratifies this estimate by age, as this appears to be the most significant factor in risk of death from COVID-19.

This research has a range of very important implications. Some countries have announced the aim of pursuing herd immunity with regards to COVID-19 in the absence of a vaccination. The aggregated IFR would suggest that, at a minimum, you would expect 0.45-0.53% of a population to die before the herd immunity threshold of the disease (based on R0 of 2.5-3 (35)) was reached (57). As an example, in the United States this would imply more than 1 million deaths at the lower end of the scale.

This also has implications for future planning. Governments looking to exit lockdowns should be prepared to see a relatively high IFR within the population who are infected, if COVID-19 re-emerges. This should inform the decision to relax restrictions, given that the IFR for people infected with COVID-19 appears to be not insignificant even in places with very robust healthcare systems.

Conclusions
Based on a systematic review and meta-analysis of published evidence on COVID-19 until May, 2020, the IFR of the disease across populations is 0.64% (0.50-0.78%). However, due to very high heterogeneity in the meta-analysis, it is difficult to know if this represents the ‘true’ point estimate. It is likely that, due to age and perhaps underlying comorbidities in the population, different places will experience different IFRs due to the disease. More research looking at age-stratified IFR is urgently needed to inform policy-making on this front.

Author declarations

The Authors declare no conflicts of interest. No funding was received for this study. A preprint version can be found here: https://www.medrxiv.org/content/10.1101/2020.05.03.20089854v1

6. Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction-Based SARS-CoV-2 Tests by Time Since Exposure. Annals of Internal Medicine.0(0):null.
7. Xiao AT, Tong YX, Zhang S. False-negative of RT-PCR and prolonged nucleic acid conversion in COVID-19: Rather than recurrence. Journal of Medical Virology. n/a(n/a).
8. Winter AK, Hegde ST. The important role of serology for COVID-19 control. The Lancet Infectious Diseases.

41. ESTUDIO NACIONAL DE SERO-EPIDEMIOLOGÍA DE LA INFECCIÓN POR SARS-COV-2 EN ESPAÑA. Instituto de Salud Carlos III; 2020.
43. IU, ISDH release preliminary findings about impact of COVID-19 in Indiana. Indiana: Indiana University.
45. First study carried out on herd immunity of the population in the whole territory of Slovenia. In: Slovenia Ro, editor. Slovenia: Republic of Slovenia.
47. Wu X, Fu B, Chen L, Feng Y. Serological tests facilitate identification of asymptomatic SARS-CoV-2 infection in Wuhan, China. Journal of Medical Virology. n/a(n/a).
Table 1: Results of systematic review of published research data on COVID-19 infection-fatality rates

<table>
<thead>
<tr>
<th>Study</th>
<th>Location</th>
<th>Study period</th>
<th>Method and sample size</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bassett et al 2020</td>
<td>New York (NYC), Madrid, Lombardy</td>
<td>Until 22nd April 2020 (commence date not provided)</td>
<td>Utilised R_0 of 2.4 to calculate a predicted infection rate of 81% (UK and USA).</td>
<td>Over the 3 regions, the IFR (using predicted total infection rate of 81%) was calculated at 0.17%, for each region specifically, using the same predicted infection rate: NYC 0.22%, Lombardy 0.15%, Madrid 0.14%.</td>
</tr>
<tr>
<td>Basu et al 2020</td>
<td>USA</td>
<td>Analysis commenced from the first US case (January 21st) until April 20th 2020</td>
<td>Used a binomial statistic model to COVID-19 CFRs to estimate IFR in symptomatic cases.</td>
<td>IFR estimated to be 1.3% in the USA (95% CI 0.6-2.1%) with variable county-specific rates ranging 0.5-3.6%. Stated IFR likely to be lower when accounting for mild/asymptomatic cases.</td>
</tr>
<tr>
<td>Bendavid et al 2020</td>
<td>Santa-Clara Country</td>
<td>2 days</td>
<td>Serological testing of 3,300 local adults and children. Volunteer sampling.</td>
<td>Crude prevalence rate 1.5% (95%CI 1.1-2.0%), unweighted population.</td>
</tr>
<tr>
<td>Study</td>
<td>Location</td>
<td>Methodology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bootstrap</td>
<td></td>
<td>Bootstrap procedure used for weighted and unweighted prevalence estimates.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEBM 2020</td>
<td>Global</td>
<td>Updating as pandemic progresses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Utilises data available from official sources in countries listed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferguson et al 2020</td>
<td>USA/Great Britain (GB)</td>
<td>Not specified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Utilised data from China to produce age-stratified IFR. Assumptions of severity and critical care requirements based upon expert opinion.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government of the Czech Republic</td>
<td>Czech Republic</td>
<td>Unspecified start date, concluded May 1st 2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tested 26,549 people for antibodies (serology).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government (State) of Indiana, USA</td>
<td>Indiana, USA</td>
<td>7 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tested >4,600 using viral PCR and serum for antibodies; 3600 randomly selected individuals and 900 volunteers.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Prevalence**
 - Iceland infection rate 0.5-1%; IFR 0.05%
 - UK IFR 0.9% (95%CI 0.4-1.4%)
 - Diamond Princess Cruise ship IFR 1.2% (95%CI 0.38-2.7%) and CFR 2.3% (95%CI 0.75-5.3%)
 - China CFR 1.1% (95%CI 0.3-2.4%) and IFR 0.5% (0.2-1.2%)
- **IFR**
 - Using R$_0$ of 2.4, estimated 81% of GB and USA populations will be infected over the course of the epidemic. IFR calculated to be in the range 0.25-1.0%.
 - 1.7% tested positive for COVID-19 on PCR plus an additional 1.1% who tested positive for antibodies.
 - Estimated IFR 0.1%, 45% of positive cases report no
<table>
<thead>
<tr>
<th>Government of Slovenia</th>
<th>Slovenia</th>
<th>Not specified</th>
<th>1367 swabs and 1367 blood samples collected from a representative sample of the population. 41 people (3.1%) tested positive for COVID-19 antibodies.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government of Spain</td>
<td>All provinces of Spain</td>
<td>27/04/2020-11/05/2020</td>
<td>60,983 participants invited, of which so far 37,992 (62.3%) have responded 5% positive on serology, with death rates varying by region. Calculated IFR between 1-1.3%</td>
</tr>
<tr>
<td>Government of Sweden</td>
<td>Stockholm county</td>
<td>27/04/2020-3/05/2020 (week 18)</td>
<td>1,200 weekly samples. Initial analysis was reported from 1,104 samples. 7.3% tested positive on serology in Stockholm county. Data reported on Swedish government dashboard indicates 1,070 deaths in the county at this time, giving an IFR of 0.63%</td>
</tr>
<tr>
<td>Jung et al. 2020</td>
<td>Cases exported from China and diagnosed outside China</td>
<td>16 days</td>
<td>A total of 51 cases diagnosed between 24/09/2020 and 09/02/2020. Data collected from government websites or media quoting government announcements. Mean time from illness onset to death was 20.2 days. Estimated incidence in China on 24/01/2020 was 4718 (95%CI 3328-6278) and CFR 5.3% (95%CI 3.5-7.6%). IFR 0.5-0.8%.</td>
</tr>
<tr>
<td>Modi et al. 2020</td>
<td>Italy (1688 towns)</td>
<td>Used data from 01/01/2015-28/03/2020</td>
<td>Utilised data from the Italian Institute of Statistics. Compared death rates during the COVID-19 pandemic to previous death rates by age and region. Clear increase in deaths was noted for early 2020. IFR increases with age. Range 0.02% (40-49 years old) to 15.1% (>90 years old).</td>
</tr>
<tr>
<td>Nishiura et al.</td>
<td>Japanese</td>
<td>3 days</td>
<td>A total of 565 A total of 8</td>
</tr>
<tr>
<td>Year</td>
<td>Authors</td>
<td>Location/Description</td>
<td>Data Collection</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2020</td>
<td>Rinakli et al</td>
<td>Northern Italy (10 municipalities in Lombardy)</td>
<td>Utilised 5-year death data until April 2020</td>
</tr>
<tr>
<td>2020</td>
<td>Roques et al</td>
<td>France</td>
<td>54 days</td>
</tr>
<tr>
<td>2020</td>
<td>Russel et al</td>
<td>Diamond Princess Cruise Ship</td>
<td>14-17 days</td>
</tr>
<tr>
<td>Salje et al.
2020</td>
<td>France (hospital data) and Diamond Princess Cruise Ship</td>
<td>Data available up to 7th May 2020</td>
<td>Modelling analysis of COVID-19 transmission in France. This included 95,210 hospitalisations and 719 infections from the Diamond Princess Cruise Ship.</td>
</tr>
<tr>
<td>Shakiba et al.
2020</td>
<td>Iran</td>
<td>1 month</td>
<td>Cluster randomised sampling utilised to obtain 551 rapid antibody tests for COVID-19. 22% antibody seropositivity. 18% (65 subjects) were asymptomatic. IFR 0.08-0.12%.</td>
</tr>
<tr>
<td>Snoeck et al.
2020</td>
<td>Luxembourg</td>
<td>Data collection commenced April 15th 2020</td>
<td>Recruited voluntary residents of Luxembourg. Performed PCR for COVID-19 in 1842 participants and serology testing in 1820 participants. Low prevalence of carriers (0.3%). Seroprevalence of IgA was 11%, and 2% for IgG. Of 1842 PCR tests, only 6 were inconclusive (0.3%). Time prevalence of COVID-19 was 0.32 (95%CI 0.02-0.63).</td>
</tr>
<tr>
<td>Streek et al.
2020</td>
<td>Germany</td>
<td>7 days</td>
<td>A sero-epidemiological CGP and GEP-compliant study in a town exposed to a super-spreading event. Utilised a questionnaire and PCR-serology testing 6 weeks after outbreak. A sample of 919 individuals had evaluable infection status. Infection rate or 15.5% (95% CI 12.3-19.0%); this was 5-fold reported cases in the community (3.1%). Estimated IFR 0.36% (95% CI 0.29-0.45).</td>
</tr>
<tr>
<td>Study</td>
<td>Location</td>
<td>Duration</td>
<td>Cases</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Tian et al 2020</td>
<td>Beijing, China</td>
<td>21 days</td>
<td>262</td>
</tr>
<tr>
<td>Verity et al 2020</td>
<td>Mainland China and 37 countries outside of mainland China</td>
<td>56 days</td>
<td>1334</td>
</tr>
<tr>
<td>Villa et al 2020</td>
<td>Italy</td>
<td>32 days</td>
<td></td>
</tr>
<tr>
<td>Wu et al 2020</td>
<td>Wuhan, China</td>
<td>12 days</td>
<td></td>
</tr>
</tbody>
</table>