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Abstract Timely information is key for decision-making. The ability to predict dengue19

transmission ahead of time would significantly benefit planners and decision-makers. Dengue is20

climate-sensitive. Monitoring climate variability could provide advance warning about dengue risk.21

Multiple dengue early warning systems have been proposed. Often, these systems are based on22

deterministic models that have limitations for quantifying the probability that a public health event23

may occur. We introduce an operational seasonal dengue forecasting system where Earth24

observations and seasonal climate forecasts are used to drive a superensemble of probabilistic25

dengue models to predict dengue risk up to six months ahead. We demonstrate that the system26

has skill and relative economic value at multiple forecast horizons, seasons, and locations. The27

superensemble generated, on average, more accurate forecasts than those obtained from the28

models used to create it. We argue our system provides a useful tool for the development and29

deployment of targeted vector control interventions, and a more efficient allocation of resources in30

Vietnam.31

32

Introduction33

Dengue is a mosquito-transmitted viral infection spread by Aedesmosquitoes in urban and peri-34

urban environments in tropical and subtropical countries (Powell and Tabachnick, 2013; Li et al.,35

2014; Kraemer et al., 2015). About half of the global population is at risk of dengue transmission36

(Brady et al., 2012; Bhatt et al., 2013). There is no specific antiviral treatment for dengue, and37

vaccination is restricted to seropositive individuals (World Health Organization, 2018). Dengue38

prevention relies on mosquito control measures which are primarily insecticide-based (Dusfour39
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et al., 2019). The increasing resistance to insecticides highlights the need for targeted and effective40

interventions (Moyes et al., 2017).41

Vietnam is particularly affected by dengue with an estimated burden of about two million yearly42

infections (Bhatt et al., 2013; Shepard et al., 2016), although, on average, only 95,000 cases have43

been reported annually to the Ministry of Health over the period 2002–2020. The economic impact44

of dengue in Vietnam is estimated to be USD 30–95 million per annum (Shepard et al., 2014, 2016;45

Hung et al., 2018). Dengue in Vietnam is primarily spread by Ae. aegypti and, to a lesser extent, by46

Ae. albpoictus (Tsunoda et al., 2014; Thi et al., 2017).47

In Vietnam, dengue is characterized by strong seasonality and substantial inter-annual and48

spatial variability (Supplementary Figure 1). Dengue exhibits different behaviour in different parts49

of the country. In the north, where temperatures are lower than in the rest of the country, most50

provinces have few or no cases. An exception is Hanoi, which has reported, on average, about51

8,700 dengue cases per year over the past ten years. In central and southern provinces where52

temperatures are warmer, many provinces report thousands of cases annually albeit with large53

interannual variation.54

Dengue control in the country primarily involves community engagement and mobilisation55

to reduce breeding sites, and outdoor low-volume insecticide spraying in the vicinity of reported56

dengue cases to kill adult mosquitoes (Cuong et al., 2013). One limitation of dengue control57

measures is that they are essentially reactive, meaning they take place after cases have occurred.58

This situation hampers the ability of public health professionals to reduce the magnitude and59

severity of outbreaks. Dengue surveillance is mostly passive, relying on clinical cases reported60

by patients seeking healthcare (Cuong et al., 2013). The diagnosis and reporting of dengue cases61

typically suffers delays which vary across time and space (Bastos et al., 2019). This situation hinders62

the timely generation and communication of information on when and where transmission occurs,63

limiting the ability of health professionals to plan and execute control measures.64

If accurate predictions are available, public health decision-makers and planners could design,65

implement and target interventions to the most at-risk places in a timely fashion. Disease mod-66

els driven by Earth observations have been valuable for predicting dengue risk ahead of time,67

supporting decision-making in multiple settings (Lowe et al., 2016, 2017; Colón-González et al.,68

2018a). Climate variation is one of the main drivers of dengue ecology. Temperature, for example,69

regulates the development, biting, and reproduction rates, and the spatial distribution of Aedes70

mosquitoes (Gage et al., 2008; Reinhold et al., 2018; Kraemer et al., 2019). The concentration and71

replication of dengue viruses within mosquitoes is also temperature dependent (Watts et al., 1987;72

Gage et al., 2008). Rising temperatures increase dengue transmission to an optimum range of73

26–29oC (Mordecai et al., 2017). Large diurnal temperature ranges (> 20oC) reduce transmission74

and increase mosquito mortality (Lambrechts et al., 2011). Precipitation modulates the creation75

or flush away of mosquito breeding sites (Stewart Ibarra et al., 2013). Rising humidity increases76

dengue risk (Colón-González et al., 2017) as relative humidity levels of at least 50-55% prolong77

mosquito survival (Simon-Oke and Olofintoye, 2015). Wind speed reduces the biting activity of78

mosquitoes reducing dengue risk (Sedda et al., 2018). Delayed effects of climate on dengue have79

been demonstrated and correspond to climatic influences on dengue through their effect on the80

life cycle of both mosquitoes and the dengue virus (Naish et al., 2014). Consequently, the climatic81

conditions during the low-dengue season may be indicative of dengue incidence in the following82

high-dengue season (Lauer et al., 2018; Lowe et al., 2018).83

Multiple studies have highlighted the potential usefulness of seasonal-climate-driven epidemio-84

logical surveillance for decision-making and planning (Lowe et al., 2014; Lauer et al., 2018; Tomp-85

kins and Di Giuseppe, 2015; Tompkins et al., 2019). These studies have used subseasonal (i.e.86

between two weeks and two months ahead) forecasts to inform disease models, and compute87

predictions of dengue risk. There has been limited progress in using subseasonal-to-seasonal88

climate forecasting to compute prospective forecasts on a routine basis. There are several chal-89

lenges for implementing operational and sustainable subseasonal (henceforth seasonal) early90
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warning systems (Thomson et al., 2014). Some of these challenges include the lack of multi-decadal91

health data sets with which to train and validate seasonal-climate-driven early warning systems,92

the common mismatch of scales between climate data outputs and data used for decision-making,93

and a general lack of consensus as to how to communicate uncertainties to users (Tompkins et al.,94

2019).95

Dengue early warning systems driven by Earth observations and seasonal climate forecasts96

have been proposed using a range of modelling approaches (Yamana et al., 2016), including auto-97

regressive integrative moving average (ARIMA) (Eastin et al., 2014), deterministic regression (Hii98

et al., 2013; Lauer et al., 2018), spatio-temporal Bayesian hierarchical models (Lowe et al., 2016,99

2017), least absolute shrinkage and selection operator (LASSO) regression (Chen et al., 2018), and100

machine learning (Stolerman et al., 2019). Often, models are validated using block cross-validation101

to select the model specification with the lowest out-of-sample predictive error (Lowe et al., 2016;102

Lauer et al., 2018). This approach takes advantage of all available data to make repeated out-103

of-sample model predictions, which increases the robustness of model adequacy and skill score104

statistics. One drawback of this method is that it does not preserve the time ordering of the data.105

Also, predictions are computed for some time periods using a model trained on data from a later106

time period (Bergmeir and Benítez, 2012).107

Previous dengue risk prediction studies have relied on outputs from one or two competing108

models (e.g. Lowe et al., 2016; Lauer et al., 2018). However, combining forecasts from multiple109

competing models into a superensemble can result in more accurate predictions than those from110

any individual model (see, for example, Yamana et al., 2016; Johansson et al., 2019). The use of111

model superensembles for the development of dengue early warning systems has been seldom112

explored. Moreover, predictions are typically made for a selected year or month (Lowe et al., 2014,113

2016; Lauer et al., 2018) rather than for a series of lead times into the future, or a whole season114

(Lowe et al., 2017). In some cases, systems are designed exclusively for research purposes in115

isolation from relevant stakeholders who may become potential users.116

Typically, dengue early warning systems are based on deterministic models (Hii et al., 2013;117

Eastin et al., 2014; Lauer et al., 2018) which may under-represent heterogeneity and stochastic118

cessation of transmission. However, decision-makers are increasingly interested in understand-119

ing the uncertainties related to the models used to develop decision-support tools, and in the120

probabilities that an event of public health concern may or may not take place (Lowe et al., 2014;121

Colón-González et al., 2018b; Lake et al., 2019). Spatio-temporal probabilistic models have the122

advantage of being able to quantify the probability that an event (e.g. an outbreak) may occur at123

specific times and for specific locations. Public health officials may be more inclined to take action if124

the probability of observing an outbreak exceeds a certain value (Lowe et al., 2016). Both modellers125

and decision-makers should pay attention to, and agree on the definition of outbreaks thresholds126

so that model predictions are a useful guide for planning and decision-making.127

In several countries, including Vietnam, outbreaks are defined using a so called endemic channel128

(Badurdeen et al., 2013; Runge Ranzinger et al., 2014) which corresponds to the mean number129

of cases per month or season over a long-term period (Brady et al., 2015). In Vietnam, endemic130

channels are defined for each province using the last five years of dengue surveillance data.131

Outbreak years are removed from the computation of the endemic threshold. When dengue cases132

exceed the mean plus two standard deviations, an outbreak is declared. One limitation of this133

approach is that often outbreak years are removed arbitrarily or quasi-quantitatively to increase the134

sensitivity of the outbreak threshold (Brady et al., 2015). In areas where dengue incidence is typically135

low (e.g. < 10 cases per month), the endemic channel may be frequently exceeded generating136

statistical alarms of little public health importance (Noufaily et al., 2019). Despite these limitations,137

endemic channels are widely used for dengue control decision-making in a variety of countries138

and provide a practical decision point around which forecasts can be targeted (Hussain-Alkhateeb139

et al., 2018; Olliaro et al., 2018).140

Here, we introduce a superensemble of probabilistic spatio-temporal hierarchical denguemodels141
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driven by Earth observations and seasonal climate forecasts. The model framework was co-142

designed with stakeholders from the World Health Organization, the United Nations Development143

Programme, the Vietnamese Ministry of Health, the Pasteur Institute Ho Chi Minh City, the Pasteur144

Institute Nha Trang, the Institute of Hygiene and Epidemiology Tay Nguyen (TIHE), and the National145

Institute of Hygiene and Epidemiology (NIHE). The system is designed to generate monthly estimates146

of dengue risk across Vietnam (331,210 km2) at the province level (n = 63) in near-real time (i.e. current147

time minus processing time). The superensemble is used in an expanding window time series148

cross-validation framework (Hyndman and Athanasopoulos, 2014) to generate probabilistic dengue149

forecasts, which allow us to calculate the probability of exceeding pre-defined dengue outbreak150

thresholds for a forecast horizon (i.e. lead time) of one to six months.151

The superensemble constitutes the dengue fever component of a forecasting system called152

D-MOSS (i.e. Dengue forecasting MOdel Satellite-based System. The system operates using a suite153

of Earth observation data sources from satellites, and has its first implementation in Vietnam.154

Vietnam is divided into 63 provinces which are subdivided into 713 districts and has an estimated155

population of 95.5 million people. The D-MOSS system produces results at the province level and156

is accompanied by a skill assessment that is applied consistently across the whole of Vietnam.157

The intention is to give an overall evaluation of the performance of our method, rather than an158

assessment that pertains to the characteristics of any particular province.159

Results160

We fitted a total of 14,592 different models (128 unique model specifications across 114 forecast161

months, i.e. January 2007 to December 2016). Dengue data was modelled using Earth observations162

of mean monthly values of minimum temperature, maximum temperature, precipitation amount163

per day, specific humidity, diurnal temperature range, wind speed, and sea surface temperature164

anomalies for the Niño 3.4 Region (i.e. 5◦S–5◦N and 170◦–120◦W) as explanatory variables. Each165

variable was included in isolation, as well as with all possible combinations (see Methods and166

Materials). Models included the proportion of people living in urban, periurban and rural areas167

(henceforth land-cover data). Land-cover data were included in all models as they change annually168

and not monthly (see Methods and Materials). Predictions up to six months ahead were made at169

each time step starting in January 2007 using seasonal climate hindcasts (retrospective forecasts)170

data from the UK Met Office Global Seasonal Forecasting System version 5 (MacLachlan et al., 2015;171

Scaife et al., 2014).172

Model superensemble173

Models were evaluated against five verification metrics: continuous rank probability score (CRPS),174

root mean squared error (RMSE), mean absolute error (MAE), deviance information criterion (DIC),175

and Watanabe-Akaike information criterion (WAIC). We selected the best two models within each176

verification metric to create a model superensemble. Verification metrics were computed for each177

model specification at each time step and averaged across the whole time series. For all verification178

metrics, lower values indicate a smaller difference between the forecasts and the observations.179

The five models with the lowest values for the selected verification metrics (i.e. best performing)180

were selected to generate a superensemble (Table 1). Combining all best performing models into a181

model superensemble led to a lower CRPS and MAE than any of the five competing models. The182

RMSE of the superensemble, however, was higher than two of the five models.183

When stratified by forecast horizon time, the predictive ability of the superensemble was greater184

than or comparable to that of the best performing competing models (Figure 1). Across all metrics,185

the predictive ability of the superensemble deteriorated as the forecast horizon increased from one186

to six months ahead. This situation is also evident where the forecast ensemble mean and its 95%187

credible interval (i.e. the interval in the domain of the posterior probability distribution) are plotted188

against the observed number of dengue cases (Supplementary Figure 2). Notice that the accuracy189

of the predictions worsens as the forecast horizon expands. We noted that the credible intervals190
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Table 1. Verification metrics and seasonal climate predictors of the model superensemble, and the best

performing models.

Model CRPS RMSE MAE DIC WAIC Seasonal climate predictors

Superensemble 78.7 110.9 80.9 - - Models 1:5

1 79.8 112.0 81.6 45866.7 46077.6 SH, WS, DTR, SST

2 80.2 110.2 81.1 45865.1 46076.4 SH, DTR

3 82.1 110.6 82.6 45862.1 46071.6 WS

4 112.0 146.3 115.7 45854.9 46065.7 Tmin, Tmax

5 115.9 154.0 120.2 45855.6 46066.2 Tmin, DTR, SST

Table 1–source data 1. Tmin: mean monthly minimum temperature (◦C), Tmax: mean monthly maximum

temperature (◦C), DTR: diurnal temperature range (◦C), SH: specific humidity (dimensionless), WS: wind speed

(m s−1), SST: sea surface temperature anomalies in the Niño region 3.4 (◦C). CRPS: continuous ranked probability

score, RMSE: root mean squared error, MAE: mean absolute errror, DIC: deviance information criterion, WAIC:

Watanabe–Akaike information criterion.
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Figure 1. Forecasting metrics of five competing models (blue) compared against a model superensemble

(orange). Metrics shown are (A) continuous rank probability score (CRPS), (B) root mean squared error (RMSE),

and (C) mean absolute error (MAE). All metrics are shown as a function of the forecast horizon.

of the predictions gradually became narrower as the number of months used to train the models191

increased (Supplementary Figure 2).192

The predictive ability of the model also varied with the month of the year (Figure 2). Overall,193

larger discrepancies between observed and predicted values were observed between July and194

December, when typically more cases are reported. Similar patterns were observed for the CRPS,195

RMSE and MAE (Supplementary Figure 3).196

The skill of the forecast showed significant spatiotemporal variation. Skill was evaluated using197

the continuous rank probability skill score, CRPSS (Bradley and Schwartz, 2011) comparing the198

CRPS of the superensemble to that of a baseline model (see Methods and Materials). CRPSS values199

larger than zero indicate a better predictive skill than that of the baseline model. Figure 2 shows200

that the CRPSS was consistently better than the baseline across the whole country for the period201

December to July. From August to November the skill is reduced for selected provinces in the central202

and southern regions characterised by larger dengue incidence variability.203

Supplementary Figure 4 shows the observed and posterior predictive mean dengue cases204

across the 63 provinces computed one month ahead using the model superensemble. The model205

superensemble is able to reproduce the spatiotemporal dynamics of dengue fever with reasonable206

skill although predictions tend to underestimate the number of cases particularly during large207

outbreaks.208
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Figure 2. (A) Continuous rank probability score (CRPS) of the model superensemble arranged by month and

forecast horizon, averaged across Vietnam. (B) Spatiotemporal variation of the continuous rank probability skill

score (CRPSS) of the model superensemble. Gray and blue shaded areas indicate a better performance of the

superensemble compared to a baseline model. Orange areas indicate a lower performance of the

superensemble compared to the baseline model.
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Outbreak detection209

The skill of the model for outbreak detection was evaluated using the Brier score (Brier, 1950).210

For the Brier score, smaller values are better. Four moving outbreak thresholds were defined to211

evaluate the skill of the superensemble for outbreak prediction: i) the endemic channel plus one212

standard deviation, ii) the endemic channel plus two standard deviations, iii) the 75tℎ percentile of213

the distribution of dengue cases, and iv) the 95tℎ percentile of the distribution of dengue cases. The214

endemic channel was calculated as the number of dengue cases per month and per province over215

the previous five years in agreement with current practice at the Vietnamese Ministry of Health.216

The 75tℎ and 95tℎ percentiles were calculated over the whole observational period at each time step217

(see Methods and Materials). We then calculated the probability of exceeding the moving outbreak218

threshold based on the posterior marginal distribution of the predicted number of cases.219

Predictive skill was evaluated by comparing the predicted probability of exceeding the moving220

outbreak threshold to observed outbreaks. Observed outbreak months were defined as months221

where the number of recorded dengue cases exceeded the moving outbreak thresholds. Figure222

3 shows the observed outbreaks and their corresponding predicted probabilities based on the223

marginal posterior distribution of the model output. Figure 4 depicts the outbreak detection skill of224

the superensemble across the forecast horizon (top) and time of the year (bottom).225

As expected, the highest skill was achieved at a lead time of one month, after which the skill of226

the superensemble gradually declines. Across the forecast horizon, the highest skill was observed227

when using an outbreak threshold based on the 95tℎ percentile of the distribution of dengue cases,228

followed by the endemic channel plus two standard deviations. Stratified by month of the year, the229

skill of the superensemble was generally greater between April and October. We noted that using230

the endemic plus one or two standard deviations results in a significant decrease in skill between231

June and July. This situation is not observed when using percentiles. When stratified by month, skill232

was larger using the 95tℎ percentile of the distribution of dengue cases followed by the endemic233

channel plus two standard deviations.234

There was significant spatial variation in the outbreak detection skill of the superensemble.235

Figure 5 shows that across all moving outbreak thresholds, skill was greater in the northern236

provinces compared to the central and southern provinces. Note that using the 95tℎ percentile as a237

threshold results in a larger number of provinces with a low Brier score (< 0.1).238

Public health officials may be more likely to take preventive action if the probability of observing239

an outbreak exceeds a certain value (Lowe et al., 2016). We investigated different probability240

thresholds to define the optimal cut-off value that maximised the sensitivity and specificity of the241

superensemble. As a metric of the accuracy of the forecasts, we computed the area under the242

receiver operating characteristic curve (AUC) where an AUC value of 1 represents perfect skill, and a243

value of 0.5 represents no better skill than a random guess. Supplementary Figure 5 indicates that244

the forecasts always performed better than randomly guessing. As expected, the AUC decreased as245

the forecast horizon increased. The AUC values ranged between 0.91 and 0.72.246

Relative economic value247

A cost-loss analysis of the relative economic value of the superensemble was undertaken using the248

value index (Richardson, 2000; Thornes and Stephenson, 2001). The value index ranges between249

zero and one, with one indicating a perfect forecast. The relative economic value of the superensem-250

ble can be interpreted as the cost of using the system relative to the cost of either never preventing251

outbreaks or always taking action. Location- and time-specific costs and losses may be difficult to252

quantify. Therefore, our figures are only illustrative.253

We defined a range of theoretical epidemic thresholds ranging between the 51st and the 99tℎ254

percentiles of the distribution of dengue cases for the whole time series. Outbreak thresholds were255

province- and month-specific. Figure 6 shows that the superensemble has a theoretical relative256

economic value in multiple provinces across a range of cost-loss ratios (i.e. the ratio of the expenses257

derived of taking preventive action to the potential losses averted) and outbreak thresholds. As258
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Figure 3. Predicted probability of exceeding the (A) mean plus two standard deviations, and (B) 95tℎ percentile

moving outbreak thresholds one month ahead. The X axis represents each of the forecast months. The Y axis
indicates each of the provinces arranged from north (top) to south (bottom). Observed outbreaks (i.e. observed

dengue cases above the outbreak threshold) are marked with a cross. Darker red colours represent a higher

probability of exceeding the outbreak threshold.
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Figure 4. (A) Variation in the Brier score of the superensemble predictions for a forecast horizon (lead time)

from one to six months calculated for four different outbreak thresholds. (B) Variation in the Brier score of the

superensemble predictions per calendar month, and for four different outbreak thresholds. Scores correspond

to their mean values for the period January 2007 to December 2016 (n = 114 months), and across 63
Vietnamese provinces. Lower scores indicate a greater accuracy for detecting outbreaks.
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months calculated for four different outbreak thresholds for the period January 2007 to December 2016 (n =
114) for each of the 63 Vietnamese provinces. Lower Brier scores (in blue) indicate a greater accuracy for

detecting outbreaks.
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Figure 6. Relative economic value of using the dengue forecasting superensemble one month ahead under a

range of cost-loss ratios (X axis) and outbreak thresholds (Y axis) for 42 Vietnamese provinces where the
superensemble showed value at for multiple cost-loss ratios. Orange colours indicate a greater economic value,

and blue colours a lower value.

the outbreak threshold increases and outbreaks become rarer, the superensemble has relative259

economic value at lower cost-loss ratios. Overall, larger values were observed when the cost-loss260

ratio was between 0.2 and 0.3 (i.e. the cost of taking preventive action is between 1/3 and 1/5 of the261

potential losses caused by not taking action). Supplementary Figure 6 shows the spatiotemporal262

variation in relative economic value across Vietnam for the forecast horizon of one to six months.263

Note, the superensemble has relative economic value in areas where dengue is typically endemic264

such as the central and southern provinces. The superensemble had no relative economic value265

for northern provinces where dengue is typically absent. The relative economic value gradually266

declined from an average value of 0.31 one month ahead across 75% (n=47) of the provinces, to an267

average value of 0.13 six months ahead across 62% (n=39) of the provinces .268

Prospective predictions of dengue risk269

The model superensemble was driven by seasonal climate forecasts to generate dengue forecasts270

for the period April to September 2020 using near-real time seasonal climate forecast data from271

the UK Met Office’s Global Seasonal forecasting system version 5 (GloSea 5) (MacLachlan et al.,272

2015; Scaife et al., 2014). The posterior mean of the predicted values for each ensemble member273

are shown on Figure 7 (solid lines) for all Vietnamese provinces along with the corresponding 95%274

credible interval (dashed lines). The upper bound of the shaded areas represent percentile-based275

moving outbreak thresholds computed using observed dengue case data over the period August276

2002 to March 2020.277

There is little spread between the 42 ensemble members indicating little between-member278

variability. It is noted that, as expected, the credible intervals increase as the forecast horizon279

increases, reflecting the uncertainties associated with the seasonal climate models used to generate280

the forecasts. For multiple provinces, the predicted mean number of dengue cases is above the281

75tℎ percentile outbreak threshold (i.e. yellow and orange shaded regions). This suggests that he282

April to September transmission season may be above normal conditions in multiple areas across283
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Vietnam and particulary in Binh Doung, Dong Nai and Ho Chi Minh, all of which are located in the284

southern part of the country, characterised by endemic transmission.285

Discussion286

We introduced a probabilistic dengue early warning system based on a model superensemble,287

formulated using Earth observations, and driven by seasonal climate forecasts. The system is288

able to generate accurate probabilistic forecasts of dengue metrics that could guide policy- and289

decision-making processes. We demonstrate that using a model superensemble results in better290

forecasts than using individual models.291

Deciding which predictive model is the best from a suite of competing models is not a straightfor-292

ward task. Each model carries somewhat different information of the modelled processes. Here, we293

present a method for reconciling between-model disagreements while improving forecast accuracy.294

The combination of models into a superensemble helps offset individual model biases across295

time and space (Krishnamurti et al., 2016). Superensembles were initially developed for climate296

modelling (Krishnamurti et al., 1999), and have gradually gained popularity in disease modelling297

(see for example Yamana et al., 2016, 2017; Johansson et al., 2019).298

Our novel dengue early warning system relies on probabilistic models to properly reflect forecast299

uncertainty, and to explicitly assign probabilities to outcomes (Held et al., 2017). The system has300

been developed to aid policy- and decision-making processes in Vietnam with the guidance of key301

stakeholders in the Ministry of Health of Vietnam, the World Health Organization regional office, the302

Pasteur Institutes in Nha Trang and Ho Chi Minh, Province-level Ministries of Health, the Vietnamese303

National Institute of Hygiene and Epidemiology, and the Tay Nguyen Institute of Hygiene and304

Epidemiology. A range of stakeholder engagement workshops, face-to-face meetings with users,305

and surveys were conducted to tailor the system to the users’ needs. Our results demonstrate that306

our spatio-temporal superensemble could guide changes to the current practice in dengue control307

towards a more preventative approach allowing bespoke and targeted public health interventions,308

and a more efficient allocation of scarce resources.309

We demonstrate that the superensemble outperforms the predictive ability of any individual310

probabilistic model from a suite of top performing models in line with previous research (Krish-311

namurti et al., 1999; Yamana et al., 2016, 2017; Johansson et al., 2019). Model performance was312

assessed using a range of proper verification metrics across time and space to ensure the quality313

of our probabilistic predictions. To our knowledge, this is one of the first early warning systems314

informed by Earth observations to demonstrate skill for prospective year-round dengue prediction315

in a robust out-of-sample framework. It is also one of the first prototypes for routine dengue early316

warning at multiple time leads.317

We found that the performance of the superensemble varied with geographic location, forecast318

horizon, and time of the year. The system showed skill in predicting spatiotemporal variations in319

dengue cases and outbreak occurrence at forecast horizons of up to six months ahead. Predictions320

deteriorated, and uncertainty increased as the forecast horizon expanded, in line with previous321

research (Reich et al., 2016; Chen et al., 2018; Funk et al., 2019; Tompkins et al., 2019). Forecasts322

improved, and credible intervals decreased as time progressed and dengue data increased likely due323

to an improvement in the associations learned by the superensemble. Forecast skill is lower for the324

onset and peak of the transmission season due to substantial interannual variation (Supplementary325

Figure 7).326

Relative to a baseline seasonal predictive model (see Methods and Materials), the superensem-327

ble made, on average, more accurate predictions across most provinces, and for most of the328

year in agreement with previous studies (Lowe et al., 2016; Chen et al., 2018). This observation,329

however, conflicts with the results obtained by Lauer et al. (2018) and Johansson et al. (2019) for330

whom climate-naïve models had better skill than seasonal-climate-informed ones. Johansson et al.331

(2019) noted that incorporating seasonal climate data into predictive models may increase model332

complexity at the expense of lower out-of-sample forecast skill.333
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Figure 7. Predicted dengue cases for the period April to September 2020 for all Vietnamese provinces using a

model superensemble. The forecast was issued on 5 April 2020. The X axis indicates the forecast horizon. The
Y axis indicates the predicted number of dengue cases. Solid lines indicate the mean estimate for each of 42
forecast ensemble members. The dashed lines indicate the upper and lower bounds of the 95% credible

intervals. The upper bound of the shaded areas indicates the month- and province-specific percentiles based

on dengue data for the period August 2002 to March 2020.
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Outbreaks are difficult to predict, even more so at forecast horizons of several months ahead.334

Nevertheless, our superensemble demonstrated skill for outbreak detection up to a lead time of six335

months, evaluated using proper scores over a suite of moving outbreak thresholds. One of the best336

performing outbreak thresholds was the endemic channel plus two standard deviations, computed337

using data from the previous five years. This method is currently in use across Vietnam (Badurdeen338

et al., 2013; Runge Ranzinger et al., 2014) although with the difference of excluding outbreak years339

from the computation of the threshold. Following our results, however, we recommend the use340

of the 95% percentile as a threshold for outbreak detection as it gave better and more consistent341

results, likely due to its ability for detecting very large outbreaks. Recognizing the limitations of the342

province-level data, it is encouraging that our predictions are skillful in most provinces up to six343

months in advance.344

In disease forecasting, each decision (e.g. to prevent or not to prevent an outbreak) has an345

associated cost that will lead to a benefit or a loss depending on the outcome. Decision-makers have346

the task of selecting the action that minimises potential losses. We used a simple cost-loss analysis347

(Thornes and Stephenson, 2001) to assess the relative economic value of the superensemble. Our348

figures are only illustrative. Still, they highlight that using a dengue early warning system has relative349

economic value compared to not using a forecast. The superensemble had considerable value350

across most provinces. However, in northern provinces, where dengue is essentially absent, the351

forecast is predicted to have limited relative economic value compared to always preparing for an352

outbreak or never preparing for it. The assessment of the relative economic value of the dengue353

early warning system may help stakeholders justify public investment in the development and354

generation of seasonal forecasts, or to help raise awareness of their potential value.355

Although our proposed early warning system provides useful information for public health356

preparedness and response, it has some limitations worth mentioning. First, whilst our modelling357

framework incorporates important determinants of dengue occurrence such as climate and urban-358

isation, it does not explicitly incorporates, at this stage, the potential effects of other important359

determinants of disease such as the deployment of mosquito control interventions, vector indices,360

serotype-specific circulation, herd-immunity, and the mobility of people and goods all of which361

may lead to significant changes in the level of risk experienced locally (Reiter, 2001). Stakeholders362

in Vietnam have recently started collecting supporting data on vector indices and dengue virus363

serotypes. However, it is noted that there is a lack of publicly available, continuous, and long-term364

data sets that could be used to inform modelling efforts. In this study, we account for some of the365

variation that might be attributed to these factors by using spatio-temporal random effects in each366

of the models included in the superensemble. Future developments of the system may incorporate367

some of these factors if data are made available. Second, the quality and consistency of the dengue368

data are affected by the limited confirmation of suspected cases through laboratory diagnostic test,369

leading to large uncertainties that are difficult to quantify. Third, our computations of dengue risk370

do not take into consideration uncertainties due to the potential under- or misreporting of dengue371

cases. Consequently, our model superensemble forecasts may underestimate the real number of372

cases occurring at any given time.373

Conclusion374

We have demonstrated that a probabilistic dengue early warning model, formulated using Earth375

observations and driven by seasonal climate forecasts, to produce probabilistic predictions of376

exceeding pre-defined outbreak-detection thresholds. A theoretical cost-loss analysis showed that377

the system has relative economic value for a range of cost-loss ratios across most of the country,378

indicating that such a system may be useful for decision-making processes. The dengue forecasting379

system presented here has been rolled out across Vietnam and could be tailored for other dengue-380

endemic countries. Further work may include investigating the feasibility of producing probabilistic381

forecasts with sufficient skill at the district or commune levels.382
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Methods and Materials383

Dengue surveillance data384

Monthly dengue cases were obtained from the Vietnamese Ministry of Health. Data were retrieved385

for the period August 2002 to December 2019 at the province level (n = 63). Data comprised386

suspected and confirmed dengue cases although there was no indication as to how many cases fell387

within each category. The data set did not contain serotype-specific information.388

Historical Earth observation data389

Minimum, maximum and mean air temperature at 2 metres above ground (◦C) were derived from390

MODIS daily L3 global land surface temperature products (Wan et al., 2015) with a spatial resolution391

of 1 km2. Precipitation amount per day (mm day−1), was initially retrieved from from the Tropical392

Rainfall Measurement Mission (Hijmans, 2011) at a spatial resolution of 25 km2 up to April 2014.393

After April 2014, precipitation data were obtained from the Global Precipitation Mission (Huffman394

et al., 2019) at a spatial resolution of 10 km2. Daytime specific surface humidity (kg kg−1) was395

calculated using the daytime MODIS L2 water vapour near infrared MOD 5 products (Gao, 2015)396

with a spatial resolution of 1 km2. Average daily wind speed at 10 metres above ground (m s−1)397

was retrieved from the European Centre for Medium-range Weather Forecasts (ECMWF) ERA-5398

reanalysis (Copernicus, 2019) for the period 2002-2011, at a spatial resolution of 31 km2. After 2011,399

wind speed data were obtained from the NOAA Climate Forecast System (Saha et al., 2014) at a 20400

km2 resolution. Monthly sea surface temperature anomalies for the Niño region 3.4 (5◦S–5◦N, and401

170◦–120◦W) were obtained from the NOAA Center for Weather and Climate Prediction, Climate402

Prediction Center (NOAA, 2020) for the period 2002 to 2020. Population weighted monthly averages403

for each climate variable were calculated for each province.404

Population data from the Worldpop project (WorldPop, 2018) at a 100 m2 spatial resolution was405

used to calculate annual gridded weights for each province. At the time of processing, Worldpop406

data were only available for the years, 2009, 2010, 2015, 2020. Intervening years were generated407

using linear interpolation.408

Historical demographic and land-cover data409

Total population per province were retrieved from the Socioeconomic Data and Applications Center410

(SEDAC) Gridded Population of the World project version 4.11 (CIESIN, 2019) at a 1 km2 resolution,411

5-yearly for the period 2000 to 2020. Intervening years were generated using linear interpolation.412

The percentage of urban, peri-urban and rural land-cover per province for the period 2002-2019413

was derived from the ESA CCI Land-cover project (ESA, 2017; Copernicus, 2019) which describes the414

land surface into 22 classes at a spatial resolution of 0.00277 degrees.415

Seasonal climate forecasts416

Seasonal climate forecasts of minimum temperature, maximum temperature, daily precipitation,417

specific humidity, wind speed and sea surface temperature anomalies for the Niño region 3.4418

were obtained from the UK Met Office Global Seasonal Forecasting System version 5 (GloSea5)419

(MacLachlan et al., 2015; Scaife et al., 2014). GloSea5 comprises 42 ensemble members built420

around a high resolution climate prediction model (HadGEM3). Ensemble members differ due421

to small stochastic physics perturbations provided by the Stochastic Kinetic Energy Backscatter422

v2 (Bowler et al., 2009). GloSea5 has a resolution of 0.83 degrees in latitude and 0.56 degrees423

in longitude for the atmosphere, and 0.25 × 0.25 degrees for the ocean. GloSea5 has two major424

components, the forecast itself and the associated hindcasts or historical re-forecasts, which are425

used for calibration and skill assessment.426

Seasonal climate hindcasts427

Hindcast data (i.e. historical forecasts) were retrieved from the Copernicus Climate Data Store428

(Copernicus, 2019) at monthly time steps for each of the 28 ensemblemembers. Data were obtained429
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using the GloSea5 system (MacLachlan et al., 2015; Scaife et al., 2014) across a forecast horizon430

of one to six months ahead for the period January 2012 to December 2016. At the time of the431

computations, data for the period May to October 2016 were unavailable.432

Modelling approach433

Let Yi,t be the number of dengue cases for province i = 1,⋯, I at time t = 1,⋯, T be modelled using434

Bayesian generalised linear mixed models (GLMM). Models were fitted using a negative binomial435

specification to account for potential over-dispersion in the data. The general algebraic definition436

of the models is given by:437

Yi,t ∣ �i,t, � ∼ NegBin(�i,t, �),

where �i,t is the expected number of dengue cases for province i and time t, and � > 0 is the438

negative binomial dispersion parameter. A logarithmic link function of the expected number of439

cases is modelled as:440

log(�i,t) = � + log(Pi,a[t]) + � log(Y ∕Pi,t−1) +
∑

k
�kXi,t,k + i,a[t] + �i,m[t] + ui + �i,

where � corresponds to the intercept; log(Pi,a[t]) denotes the logarithm of the population at risk441

for province i and year a[t], included as an offset to adjust case counts by population; � is the442

auto-regressive coefficient; log(Y ∕Pi,t−1) is the logarithm of the observed dengue incidence rate in443

the previous month with regression coefficient �; X is a matrix of k seasonal Earth observation444

(meteorological and land-cover type) explanatory variables with regression coefficients �. Long-445

term trends are modelled using province-specific unstructured random effects for each year446

(i,a[t]). Seasonality is accounted for by using province-specific structured random effects for each447

calendar month (�i,m[t]) with first order auto-regressive prior to allow each month to depend on448

the previous one. Unknown confounding factors, such as interventions and spatial dependency449

structures representing, for example, human mobility, were incorporated using structured (�i) and450

unstructured (ui) random effects for each province i. Spatial random effects were specified using a451

Besag-York-Mollie model (Besag et al., 1991) which incorporates a spatial effect with a Gaussian452

exchangeable prior to account for unstructured variation, and a spatial effect with an intrinsic453

conditional auto-regressive prior to account for spatially-structured variability. Delayed effects454

of meteorological factors on dengue were accounted for by incorporating the moving average455

of temperature, precipitation, specific humidity, and diurnal temperature range (DTR) all of them456

lagged zero to two months, and sea surface temperature anomalies in the Niño region 3.4 lagged457

three months based on previous research (e.g. (Petrova et al., 2019; Colón-González et al., 2018a;458

Lowe et al., 2018) and exploratory analyses. No delayed effects were considered for wind speed.459

Flat priors were set to regression coefficients (�, �, �) and penalising complexity priors were assumed460

for both the dispersion parameters and the precision for all random effects (Simpson et al., 2017).461

Models were fitted in R version 3.6.1 using the INLA package (Rue et al., 2009). The relevant R code462

is available at https://github.com/FelipeJColon/paper_dengue_superensemble.463

Model selection464

The best subset of seasonal climate predictors leading to the lowest observed-prediction discrepan-465

cies for a given model was obtained using an expanding window time series cross-validation (TSCV)466

algorithm (Hyndman and Athanasopoulos, 2014). Land-cover variables were included in all models467

as they varied annually. We iteratively fitted all possible models containing one seasonal climate468

predictor at the time, then two seasonal climate predictors, and so on, until all seasonal climate469

variables were included in a full model (Colón-González et al., 2018a). The predictive ability of each470

model was evaluated using the continuous rank probability score (CRPS), root mean squared error471

(RMSE), mean absolute error (MAE) deviance information criterion (DIC) and the Watanabe-Akaike472
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information criterion (WAIC). Verification metrics were computed in R using the SpecsVerification473

and ModelMetrics packages (Siegert, 2017; Hunt, 2018).474

TSCV was implemented using an expanding window approach dividing the data set into multiple475

training and testing sets. The initial training set comprised data from August 2002 to December476

2006. Each time step (k), a further month of data was added to the training set until the training set477

contained n−6 observations. The testing set comprised the climate hindcast data for the six months478

immediately after the last observation in the training set for each geographical area. Seasonal479

climate hindcast data comprised 28 ensemble members.480

We calculated the mean CRPS, RMSE, MAE, DIC and WAIC for each model specification across all481

time steps and ensemble members. The best two performing models for each verification metric482

were selected to create a superensemble.483

Accounting for autocorrelation in disease transmission484

The number of dengue cases occurring at time t is directly dependent on the number of cases485

that occurred in the recent past. Previous research suggests that including the logarithm of the486

number of cases in the previous month log(Yt−1) helps accounting for such temporal correlation in487

disease transmission (Imai et al., 2015). Additionally, incorporating log(Yt−1) as a covariate improves488

the predictive ability of seasonal-climate-informed disease models by reducing residual dispersion489

(Imai et al., 2015). One complication of accounting for the number of cases in the previous month490

in an operational system is that log(Yt−1) in the temporal window of the forecast can only be known491

up to time t + 1. More specifically, to generate dengue forecasts one month ahead, log(Yi,t−1) for492

time t + 1 corresponds to the logarithm of the number of dengue cases at time t. To generate the493

forecasts two months ahead we first fitted a climate naïve model with the following specification:494

log(�it) = � + log(Pi,a[t]) + � log(Y ∕Pi,t−1) + i,a[t] + �i,m[t] + ui + �i,

with � as the intercept; log(Pi,a[t]) as the population at risk in province i at time a[t], included as495

an offset; log(Y ∕Pi,t−1) is the logarithm of the observed dengue incidence rate in the previous496

month with regression coefficient �; i,a[t] as province-specific unstructured random effects; �i,m[t]497

as province-specific structured random effects with an AR1 auto-correlation term; and ui and �i as498

province-specific structured and unstructured random effects. We then predicted the number of499

dengue cases for time t + 1. The logarithm of the predicted number of cases at time t + 1 was then500

used as log(Yi,t−1) for time t + 2. We repeated these steps for each lead time in the forecast. Given501

the high number of zero counts in the set, we used the logarithm of the number of dengue cases502

lagged 1 month plus one.503

Baseline model504

A baseline model was developed for comparison purposes. The algebraic definition of the model is505

given by:506

log(�it) = � + log(Pi,a[t]) + i,a[t] + �i,m[t] + ui + �i,

where � is the intercept; log(Pi,a[t]) is the population at risk in province i at time a[t], included as an507

offset; i,a[t] are province-specific unstructured random effects; �i,m[t] are province-specific structured508

random effects with an AR1 auto-correlation term; and ui and �i as province-specific structured and509

unstructured random effects.510

Model superensemble511

Given a number of competing models, we generated a model superensemble (Yamana et al., 2016)512

using Bayesian model averaging (BMA) implemented in the INLABMA package (Bivand et al., 2015).513

BMA relies on the weighted sum of the conditional marginals obtained from a group of competing514

models (Gómez-Rubio et al., 2019). The posterior distribution given data D is estimated as follows:515
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�(Δ|D) ≃
K
∑

i=1
�(Δ|D,Mk)wi

with Δ as the quantity of interest;Mk indicates theM1 …MK competing models that will form the516

superensemble; and the weights wi computed based on the maximum likelihood (ML) and deviance517

information criterion (DIC) of the competing models. The weights wi were calculated as follows:518

wi =
exp(Xk − max(X))

∑K
i=1 exp(Xk − max(X))

× 0.5,

where X is a vector of ML or DIC values for each of the competing models k. The vector of ML519

and DIC weights were multiplied by 0.5 so that the resulting superensemble weights would sum to520

one, and then added together into a single vector wi. A new set of superensemble weights were521

computed each time a forecast was issued using training data from all previous years.522

The predictive ability of the superensemble was evaluated using the CRPS, RMSE and MAE. In523

addition, we evaluated the skill of the obtained forecasts using the continuous rank probability skill524

score (CRPSS). CRPSS is defined as:525

CRPSS = 1 −
CRPSf
CRPSb

,

where CRPSf is the continuous rank probability score (CRPS) of the forecast and CRPSb is the526

CRPS of a baseline model used as a reference (Bradley and Schwartz, 2011).527

Outbreak detection evaluation528

The skill of themodel for detecting dengue outbreaks was evaluated using the Brier (Brier, 1950) and529

logarithmic scores (Good, 1952) both of which are strictly proper scoring rules based on probability530

densities. The Brier score was calculated as follows:531

BS = 1
N

N
∑

t=1
(ft − Ot)2,

where N is the number of predictions; ft is the forecast probability that an outbreak may happen;532

and Ot takes the value of one if there was an outbreak, or zero if there was no outbreak. The533

logarithmic score was calculated as follows:534

LS = 1
N

N
∑

t=1
log(pt),

where pt denotes the probability assigned to the observed outcome over N predictions. Scores535

were computed in R using the scoring package (Merkle and Steyvers, 2013).536

Relative economic value537

Unlike skill, the relative economic value (V ) of the model superensemble depends on requirements538

set by the user (Thornes and Stephenson, 2001). Typically, V is evaluated in monetary terms and is539

particularly useful when the probability of occurrence of an adverse event (e.g. a major outbreak)540

is known. If the probability of occurrence of an outbreak is greater than the ratio of the cost of541

taking preventive action divided by the loss incurred by not taking action (C/L ratio) and an outbreak542

occurs, then it will pay off to take action. If the probability of occurrence of an outbreak is lower543

than the C/L ratio, then it does not pay off to take preventive action. If the probability is equal to544

the C/L ratio, it does not matter if action is taken or not.545

V was estimated for a range of theoretical C/L ratios following (Thornes and Stephenson, 2001)546

by comparing the mean cost of using the forecasting system for outbreak detection compared547

to the mean expense incurred by either never preventing outbreaks or, on the contrary, taking548

preventive action every month of the year. V takes a value of one if the forecast is perfect, and549
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a value of zero if it is no better than the default action plan. If V is negative, it indicates that the550

forecast is so poor that it would be more cost effective not to use it. V is represented as follows:551

V =
E(S) − E(A)
E(S) − E(P )

,

where E(S) is the expense incurred by taking preventive action each month of the year or the losses552

incurred by no taking action at all even when an outbreak occurred, whichever is the cheapest553

method when not using the forecast; E(A) represents the total cost of the forecast calculated as554

the cost of type 1 (false positive) and type 2 (false negative) errors plus the cost of acting when the555

forecast was correct; and E(P ) indicates the cost incurred with a perfect forecast (i.e action is taken556

only when there is an outbreak).557
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Appendix 1 Figure 1. Time series of monthly dengue cases from the 63 provinces in Vietnam (Aug 2002

to March 2020). Provinces are ordered from north (top) to south (bottom) according to the latitude

coordinates of their centroid. White boxes indicate missing data.
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Appendix 1 Figure 2. Observed (solid black lines) and predicted (solid red lines) dengue cases across

Vietnam aggregated at the national level. Shaded areas represent the 95% credible interval. Predictions

are shown for the forecast horizons of one (top), three (middle), and six (bottom) months ahead. Data

corresponds to the period January 2007 to December 2016.
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Appendix 1 Figure 3. Continuous rank probability score (A), root mean squared error (B), and mean

absolute error (C) of the model superensemble by month and forecast horizon.
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Appendix 1 Figure 4. Observed (solid black lines) and predicted (solid blue lines) dengue cases across

63 Vietnamese provinces computed one month ahead. Data corresponds to the period January 2007 to

December 2016. Shaded areas represent a range of month- and province-specific percentiles to guide

public health decision-making.
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Appendix 1 Figure 5. Area under the curve (AUC) for different probabilities of exceeding four different

moving outbreak thresholds: one (A) and two (B) standard deviations above the mean, 75tℎ (C) and 95tℎ

(D) percentiles.
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Appendix 1 Figure 6. Spatial variation of the relative economic value of the model superensemble over

the forecast horizon of one to six months. Orange shaded areas indicate provinces where there is

relative economic value (based on a range of theoretical cost-loss ratios and outbreak thresholds). Blue

shaded areas indicate provinces where the superensemble had no relative economic value.
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Appendix 1 Figure 7. Month-specific variability in dengue cases across Vietnam. The X axis indicates
the month of the year. The Y axis indicates increases in the number of dengue cases (square root
transformed). The upper and lower limits of each box represent the inter-quartile range of the

distribution of dengue cases for each month. The middle solid line indicates the median value. The

upper and lower whiskers indicate the maximum and minimum values of the dengue case distribution

(excluding outliers which are indicated in orange circles). Outliers are values beyond ±1.5 times the
inter-quartile range.
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