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Abstract

Predictions of COVID-19 case growth and mortality are critical to the decisions of
political leaders, businesses, and individuals grappling with the pandemic. This
predictive task is challenging due to the novelty of the virus, limited data, and dynamic
political and societal responses. We embed a Bayesian nonlinear mixed model and a
random forest algorithm within an epidemiological compartmental model for empirically
grounded COVID-19 predictions. The Bayesian case model fits a location-specific curve
to the velocity (first derivative) of the transformed cumulative case count, borrowing
strength across geographic locations and incorporating prior information to obtain a
posterior distribution for case trajectory. The compartmental model uses this
distribution and predicts deaths using a random forest algorithm trained on COVID-19
data and population-level characteristics, yielding daily projections and interval
estimates for infections and deaths in U.S. states. We evaluate forecasting accuracy on a
two-week holdout set, finding that the model predicts COVID-19 cases and deaths well,
with a mean absolute scaled error of 0.40 for cases and 0.32 for deaths throughout the
two-week evaluation period. The substantial variation in predicted trajectories and
associated uncertainty between states is illustrated by comparing three unique locations:
New York, Ohio, and Mississippi. The sophistication and accuracy of this COVID-19
model offer reliable predictions and uncertainty estimates for the current trajectory of
the pandemic in the U.S. and provide a platform for future predictions as shifting
political and societal responses alter its course.

Author summary

COVID-19 models can be roughly classified as mathematical models that simulate
disease within a population, including epidemiological compartmental models, or
statistical curve-fitting models that fit a function to observed data and extrapolate
forward into the future. Bridging this divide, we combine the strengths of curve-fitting
statistical models and the structure of epidemiological models, by embedding a Bayesian
nonlinear mixed model for case velocity and a machine learning algorithm (random
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forest) into the framework of a compartmental model. Fusing these models together
exploits the particular strengths of each to glean as much information as possible from
the currently available data. We also identify the velocity of log cumulative cases as an
excellent target for modeling and extrapolating COVID-19 case trajectories. We
empirically evaluate the predictive performance of the model and provide predicted
trajectories with credible intervals for cumulative confirmed case count, active
confirmed infections and COVID-19 deaths for each of the 50 U.S. states. Combining
sophisticated data analytic methods with proven epidemiological models offers an
empirically grounded strategy for making realistic predictions and quantifying their
uncertainty. These predictions indicate substantial variation in the COVID-19
trajectories of U.S. states.

Introduction 1

Rapid spread of SARS-CoV-2 virus across the planet has precipitated a global 2

pandemic, infecting millions and killing hundreds of thousands. Governments around 3

the world have undertaken unprecedented interventions aimed at curtailing the spread 4

and lethality of the virus. These interventions and more recently proposals for relaxing 5

them have relied heavily on predictions of COVID-19 case growth and mortality. 6

COVID-19 prediction models can be roughly classified as mathematical models that 7

simulate disease within a population or statistical models that fit a function to observed 8

data and extrapolate forward into the future. We will discuss the features of both types 9

of models. Most COVID-19 models are compartmental models [1–61], a type of 10

mathematical model used by epidemiologists to simulate infectious disease epidemics for 11

over a century. Compartmental models divide a population into mutually exclusive 12

compartments that denote disease status and supply a set of differential equations that 13

define the flow of the population between compartments [62]. Traditionally they are 14

named after their compartments with the SIR (susceptible-infectious-recovered) [63] and 15

SEIR (susceptible-exposed-infectious-recovered) models classic examples. 16

In an infectious disease compartmental model, S(t) is the number of susceptible 17

individuals at time t, and new infections are represented by the flow of individuals out 18

of the S compartment. This is governed by the first derivative of S(t) with respect to 19

time, dS(t)/dt. Classic SIR and SEIR models express this as proportional to the 20

product of S(t), I(t), and a rate constant β, 21

dS(t)

dt
= βS(t)I(t), (1)

where I(t) is the number of infectious individuals at time t. The rate β is often 22

interpreted as disease transmissibility and may be expressed as a function of the 23

reproductive number R0—the expected number of individuals infected by an infectious 24

person—and contact rates between individuals. It may also be normalized in Eq 1 by 25

division with the total population size. 26

The simplest approach for simulating infections is to assume a value for β or its 27

constituent parts from the literature or other prior information [1–17]. While this is 28

convenient, the predictive accuracy can suffer. Another approach that has been used by 29

other studies is to estimate β (or a related quantity) by fitting a statistical model or 30

other optimization procedure to observed data [18–39]. This empirical approach can 31

make these models more realistic, but they still may be limited in their ability to 32

accurately model the COVID-19 pandemic. Disease transmission rates in COVID-19 33

have changed substantially over time depending upon the political and societal responses 34

and possibly other factors [54]. As a result, modelers operating within this framework 35
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often resort to modeling transmission rate changes by applying an adjustment factor 36

that modifies transmission rates upward or downward in a somewhat ad hoc manner. 37

This has motivated modeling efforts that allow the disease transmission rate to vary 38

over time, i.e., replacing β in Eq 1 with β(t) [40–50]. This is a promising approach, but 39

to be useful for forecasting, estimates of β(t) must extrapolate beyond the observed 40

data to describe transmission at unobserved times and not simply interpolate the 41

observed data, which is straightforward with a flexible model. Two studies have paired 42

machine learning algorithms with their COVID-19 compartmental models to model 43

time-varying effects, which is a promising approach at least when inference on the 44

inputs to β is not required. Yang et al. fit a long short-term memory neural network to 45

data from the 2003 SARS outbreak adjusted by the output of their SEIR model [45]. 46

Dandekar and Barbastathis augmented their compartmental models with a neural 47

network that models time-varying transmission by estimating intervention efficiency 48

from reported data as a function of time [42]. 49

Recovery, death, and other states (e.g., hospitalization) may be incorporated into the 50

model as separate compartments. Solutions to the differential system provide values for 51

each compartment at each time, allowing for easy joint modelling of disease states once 52

their derivative is specified. This is an advantage of compartmental models over many 53

other approaches, which may require separate models for each quantity. 54

A number of agent-based COVID-19 models have been developed or adapted from 55

influenza pandemic models to simulate the individuals of a population and their 56

interactions [64–68]. This provides a mechanism for modelling interventions that target 57

contacts between individuals and does not assume the population exists in homogeneous 58

compartments as compartmental models generally do, but also requires a number of 59

assumptions to be made on the behavior and interactions within a population as well as 60

the infectivity of COVID-19. 61

Serial growth models for COVID-19 simulate an epidemic by expressing the number 62

of new infections at a given time as a weighted sum of new infections on previous days 63

usually scaled by the reproductive number, which may be time-varying [69–73]. The 64

weights are sampled from a probability distribution defining the amount of time between 65

an individual being infected and infecting another person. Deaths or other outcomes 66

may be modelled as a second step, for example using a negative binomial model that 67

predicts daily deaths conditional on the number of infections in recent days [70]. 68

Statistical models often eschew deterministic population dynamics and fit the 69

observed data as a function of time and possibly other covariates in a regression (or 70

equivalent) framework. Log-linear [74], generalized Richards [75], ARIMA [76,77], 71

exponential [78], Gaussian CDF [79], and logistic [80–82] models, which all 72

accommodate the generally sigmoidal shape of the cumulative infection count that is 73

often observed in epidemics, as well as various other models [83–86] including machine 74

learning algorithms [87–89] have been proposed for COVID-19. Murray et al. and 75

Woody et al. take similar approaches for modeling COVID-19 deaths using the error 76

function (ERF) [90,91]. Modeling deaths is appealing, because COVID-19 deaths have 77

been more reliably reported than infections. However, because deaths lag infections by 78

some amount of time, it may not enable projections to incorporate the latest 79

information on disease spread. 80

Within the framework of a statistical (or other regression-like) model, it is easier to 81

fit observed data, assuming an appropriate functional form is selected, but it may be 82

challenging to accurately project the future trajectory of an epidemic. Time-varying 83

covariates like mobile phone tracking data [91], Google trends [89,92], and social 84

media [93] are easily incorporated into such a model and may be quite predictive, but 85

they are often unknown in the future, requiring assumptions to be made regarding their 86

future values when forecasting. Such approaches can only model one outcome (e.g., 87
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D
Fig 1. The SIRD Model. Each of the four compartments quantifies the number of
population members with that disease status: S for susceptible, I for infected, R for
recovered and D for dead. The arrows indicate possible transitions between disease
states.

infections or deaths) and additional steps must be taken to predict other quantities. 88

Here we present an approach to projecting COVID-19 cases and deaths that employs 89

sophisticated data analytic methods to learn transition functions for a compartmental 90

model. We fit a Bayesian mixed model to the velocity of COVID-19 case growth, 91

providing location-specific trajectories that extrapolate well within a full probability 92

model that includes uncertainty quantification. We use a random forest algorithm for 93

the death transition function that learns the relationship between COVID-19 cases and 94

population characteristics to predict deaths. The remaining sections of this paper lay 95

out the SIRD compartmental model, the Bayesian mixed model for case velocity, the 96

random forest death model, and close with results and a discussion. 97

Materials and methods 98

The SIRD Compartmental Model 99

We model the spread and progression of COVID-19 through a population using a SIRD
compartmental model named after the four compartments into which it partitions the
population: S for susceptible, I for infectious, R for recovered, and D for dead. The
number of population members in each compartment is a function of time, t, and these
functions are linked by a system of ordinary differential equations (ODEs) that govern
the flow of the population through the different disease states:

dS(t)

dt
= −ξ(t)

dI(t)

dt
= ξ(t)− ρI(t)

dR(t)

dt
= ρI(t)− θ(t)

dD(t)

dt
= θ(t)

(2)

Figure 1 graphically depicts the SIRD model with arrows between compartments 100

indicating possible transitions between compartments. Only deaths due to COVID-19 101

are permitted within this framework under the assumption that ignoring other causes of 102

death, as well as the influx of new susceptible persons through birth or immigration, 103

will not substantially alter inference in the short term. 104

The transition rates between compartments are determined by the functional forms 105

and parameter values in Eq 2. Given these and initial conditions for the system, S(t0), 106
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I(t0), R(t0), and D(t0), the system of ODEs in Eq 2 is deterministic, but in general 107

does not accommodate analytical solutions. Consequently, we compute numerical 108

solutions using the lsoda solver in the deSolve package [94] of R [95]. 109

Due to the novelty of the SARS-CoV-2 virus and a desire to empirically ground the 110

compartmental model, we fit transition functions that can vary in time and incorporate 111

covariates and other information. The transition between S and I is determined by ξ(t), 112

which describes the number of individuals becoming confirmed COVID-19 cases and is 113

presented in the next section. In many locations there is no reliable data on the 114

transition of individuals out of I into R, except for hospitalized patients in some places. 115

We follow the standard SIR approach and model transition out of I with a rate 116

parameter ρ that is the inverse of the number of days a person is expected to be 117

infected. The destination of individuals transitioning out of I is determined by the 118

death model θ(t). 119

Initial conditions for the model were constructed by stepping the system through the 120

observed case count data and then projecting forward. This approach should be more 121

accurate than simply beginning the simulation on the last observed day, because the 122

distribution of cases into compartments I, R, and D is not observed. 123

Case Velocity Model 124

COVID-19 case counts across U.S. states and culturally similar European nations have 125

exhibited relatively consistent trajectories. Once community transmission had been 126

established, cases grew exponentially until social distancing and lock down interventions 127

were enacted, which have gradually curbed case growth. We investigate the dynamics of 128

COVID-19 case growth by modeling the velocity, i.e., the first derivative with respect to 129

time, of the log cumulative case count. This is the instantaneous rate of new cases to 130

cumulative cases at a given time, and is very similar to the reproductive number. 131

Calculating the reproductive number at a particular time, however, requires knowing 132

the number of active infections. There is currently no reliable data on this, as most 133

infections resolve on their own outside of a clinical or otherwise supervised setting in 134

which their transition from active case to recovered might be recorded. The velocity of 135

log cumulative cases on the other hand is readily estimated from the data and presents 136

itself as an appealing target of analysis. 137

A very crude estimate of the derivative can be obtained using first differences, but 138

smoothing allows for more precise estimates, as calculating the derivative requires some 139

notion of function smoothness [96]. We estimate the velocity by fitting a cubic spline to 140

the observed log cumulative case count and then evaluating its derivative at the 141

observed time points. Since there is relatively little noise in the cumulative accounts, we 142

assume any uncertainty introduced by this procedure is negligible. 143

Figure 2 depicts the velocity for U.S. states with the horizontal axis enumerating 144

time since 100 or more confirmed cases were reported in that location, a milestone that 145

proxies for the establishment of community transmission. Community transmission or 146

its proxy is a sensible time point for data alignment, because there is substantial 147

variation observed in the length of time between the detection of the first cases in a 148

location and the acceleration of cases accompanying community transmission. This 149

variation likely reflects both the possibility of containing a small number of initial cases 150

and the increased uncertainty accompanying small samples. 151

The velocity of a cumulative function cannot be negative, since cumulative functions 152

are monotonically increasing. Consequently, we employed a log link to map velocity to 153

the entire real line and modeled its mean with a linear predictor. We selected a 154

Bayesian mixed model to obtain location-specific estimates of the trajectory. 155

Location-specific random effects for the intercept and slope borrow strength across 156

locations for more precise estimates while accommodating individual variation. 157
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Fig 2. Log Cumulative Cases and Its Velocity. The log cumulative confirmed
case count (a) and its velocity (b), i.e., first derivative with respect to time, for each of
the 50 U.S. states since 100 or more confirmed cases were reported.

Borrowing strength can be particularly helpful for estimating the trajectory of locations 158

with smaller populations or less advanced outbreaks. 159

Let ui(t) denote the cumulative case count for location i at time t, and yi(t) the first 160

derivative with respect to time of its log transformation, i.e., yi(t) = d log ui(t)/dt. 161

Log-transformed velocity is modeled as a linear combination of random effects and 162

Gaussian noise, 163

logyi(ti) | αi, βi, γi, δi, εi = αi + βiti + z′i(γi + δiti) + εi, (3)

where yi(ti) is a vector of length ni denoting the velocity evaluated at times 164

ti = (ti1, ..., tini)
′; zi = (xi1, ..., xini)

′ is a vector indicating whether each time occurred 165

after intervention, i.e., zij = I(tij ≥ πi); αi is the random intercept, βi the random 166

slope, γi the random effect for intervention, and δi is the random slope for intervention. 167

The elements in the error vector εi are assumed to be independently Gaussian 168

distributed with mean zero and precision (inverse variance) τij , where j = 1, ..., ni. In 169

vector notation, 170

εi | τ i ∼ Nni(0, diag(τ−1i )), (4)

where Nni
is an ni dimensional Gaussian distribution, its mean 0 is a vector of zeros, 171

and its covariance matrix is diagonal with elements τ−1i = (τ−1i1 , ..., τ−1ini
)′. 172

Obvious heteroskedasticity is apparent in the observed case counts with variation 173

decreasing with time. To account for this and to allow for the variance to differ between 174

locations, the precision vector for location i, τ i, was modeled as linear in time with 175

location-specific random effects, 176

τ i | ηi, ζi, ti = ηi + ζiti. (5)
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Each of the velocity and precision random effects were assigned Gaussian priors,

αi | µα, σ2
α ∼ N(µα, σ

2
α),

βi | µβ , σ2
β ∼ N(µβ , σ

2
β),

γi | µγ , σ2
γ ∼ N(µγ , σ

2
γ),

δi | µδ, σ2
δ ∼ N(µδ, σ

2
δ ),

ηi | µη, σ2
η ∼ N(µη, σ

2
η),

ζi | µζ , σ2
ζ ∼ N(µζ , σ

2
ζ ),

(6)

with means µα, µβ , µγ , µδ, µη, µζ , and variances σ2
α, σ2

β , σ2
γ , σ2

δ , σ2
η, σ2

ζ . These means 177

were themselves given Gaussian hyperpriors. The prior mean and variance values used 178

for the predictions presented here are listed in S2 Table of the supplemental material. 179

Posterior inference was conducted via Markov chain Monte Carlo (MCMC) 180

simulation using JAGS 4.3.0 and the R2jags [97] package of R. Three chains of 500,000 181

iterations each were run after a burn in of 10,000 iterations. Visual inspection of 182

parameter trace and autocorrelation plots indicated the chains mixed well. 183

The posterior estimate of the location-specific lognormal fit at the last observed time 184

point was converted into a transition function for use in the compartmental model. Let 185

ai + bit denote the linear predictor for location i for the last observed time point. For 186

locations in which an intervention was enacted (most locations), ai and bi are the 187

post-intervention intercept and slope, while the pre-intervention line was used for 188

non-intervening locations, 189

ai + bit =

{
(αi + γi) + (βi + δi)t πi ≤ tini

αi + βit πi > tini

(7)

where tini
is the final observed time point for location i. The lognormal model for 190

d log ui(t)/dt implies that 191

ui(t) = exp

(
1

b i
exp(ai + bit) + ci

)
. (8)

The MCMC procedure described above provided samples from the posterior 192

distributions of ai and bi, but does not uniquely identify ci, because the value of a 193

function cannot be deduced from its derivative alone. We empirically estimate c
(m)
i by 194

minimizing a squared loss function defined over the observed cumulative count at 195

location i for each posterior sample, m = 1, ...,M , 196

c
(m)
i = arg min

ci

ni∑
j=1

[
u(tij)− exp

(
1

b
(m)
i

exp
(
a
(m)
i + b

(m)
i t

)
+ ci

)]2
, (9)

where the addition of a superscript (m) to a parameter denotes its m-th posterior 197

sample. This procedure provides a posterior distribution for ci, and by extension for 198

ui(t). Noting that 1− S(t) gives the cumulative number of cases at time t in the 199

compartmental model described above, we set dSi(t)/dt = − ξi(t) = −dui(t)/dt. The 200

posterior mean or median of −dui(t)/dt could be used as an estimate of ξ(t), but simply 201

plugging in this single function into the SIRD model would ignore the uncertainty of 202

this estimate. To incorporate this uncertainty explicitly into the SIRD model, we run 203

the model separately for each posterior sample, giving a distribution of rate transition 204

functions, ξi(t)
(1), ..., ξi(t)

(m). Accounting for uncertainty is particularly important for 205

our application, because COVID-19 predictions without interval estimates quantifying 206

uncertainty may lead decision makers to place undue confidence in their accuracy. 207
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Death Model 208

Infected individuals either recover or die, which corresponds to a transition from 209

compartment I to R or D. The transition rate out of I is the inverse of the expected 210

number of days a person is infected. Various estimates for this have appeared in the 211

literature. Attempting to synthesize these various accounts while incorporating some of 212

the uncertainty, we sample ρ−1 for each run of the compartment model from a Gaussian 213

distribution with mean 14 and standard deviation one. 214

The number of individuals transitioning from I to compartment D on a particular 215

day is predicted using a random forest model trained on the numbers of cases and 216

deaths reported by the individual U.S. states. Random forest is a heuristic machine 217

learning prediction algorithm that combines a large number of regression or 218

classification trees into an ensemble [98]. It is a very commonly used algorithm known 219

to perform well at a variety of predictive tasks [99]. 220

Let dij denote the number of dead reported in location i on day j, where days are 221

indexed for each location from the first day on which 100 or more cumulative confirmed 222

cases were reported in that location. Let wij = (wij1, ..., wijp)
′ denoting the vector of p 223

covariates for location i on day j. The conditional expectation of dij given covariates 224

wij is modeled as a random forest, i.e., as an ensemble of bootstrapped regression trees, 225

E dij | wij = f(wij) =
1

B

B∑
b=1

Tb(wij ,φb), (10)

where b = 1, ..., B indexes bootstrap samples of the training data, and Tb(wij ,φb) is a 226

regression tree trained on the b-th bootstrap sample that relates covariate vector wij to 227

parameters φb. The model was fit using the randomForest package [100] of R using the 228

default parameter values for the number of trees (500) and the number of covariates 229

considered for each recursive split of the covariate space (floor(p/3)). 230

Figure 3 lists the covariates included in the model and their importance scores. Age, 231

sex and comorbidity have been consistently reported in the literature as important risk 232

factors for COVID-19 mortality. Even in the U.S. where testing has been limited, we 233

expected that COVID-19 deaths on a particular day would be highly related to the 234

number of cases reported on preceding days. Consequently the number of newly 235

reported COVID-19 cases in location i on days t− 1, ..., t− 14 were included as 236

covariates for predicting deaths on day t. 237

Covariate importance scores were computed using permutation variable importance. 238

Briefly, permutation importance can be thought of as the decrease in predictive 239

accuracy (in terms of mean squared error (MSE)) between the original model and when 240

each variable is randomly permuted thus obscuring any signal it has with the outcome 241

variable. The idea is that if a covariate is important in terms of prediction, obscuring its 242

signal should result in a decrease in predictive accuracy. The most important of the 243

lagged cases was that at t− 10, indicating that the model was able to discern a lag time 244

between positive tests and COVID-19 fatalities. Additional lagged cases beyond 14 days 245

were not included in the model, even though they may have been informative, because 246

each additional lagged day reduces the number of available training observations at each 247

location. 248

Fitting the model to data collected through April 29, 2020, resulted in a very high 249

out-of-bag R2 of 0.90. This is an overly optimistic estimate of prediction error, due to 250

the within-location and temporal dependence of the data [101], but more significantly 251

due to the lagged case counts being very informative covariates. Lagged cases were far 252

more important than the demographic characteristics, which is not surprising 253

considering the very strong relationship between testing positive for COVID-19 and 254

dying of COVID-19, especially in the early days of the pandemic in the U.S., when 255

May 15, 2020 8/19

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 18, 2020. ; https://doi.org/10.1101/2020.05.15.20102608doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.15.20102608
http://creativecommons.org/licenses/by-nd/4.0/


M
al

e

Ag
e 

0–
24

Ag
e 

25
–3

4

Ag
e 

35
–4

4

Ag
e 

45
–5

4

Ag
e 

55
–6

4

Ag
e 

65
+

H
ea

rt 
D

is
ea

se

Lu
ng

 C
an

ce
r

D
ia

be
te

s

C
O

PD

U
rb

an
iz

at
io

n

Po
pu

la
tio

n

N
ew

 C
as

es
 o

n 
t−

1

N
ew

 C
as

es
 o

n 
t−

2

N
ew

 C
as

es
 o

n 
t−

3

N
ew

 C
as

es
 o

n 
t−

4

N
ew

 C
as

es
 o

n 
t−

5

N
ew

 C
as

es
 o

n 
t−

6

N
ew

 C
as

es
 o

n 
t−

7

N
ew

 C
as

es
 o

n 
t−

8

N
ew

 C
as

es
 o

n 
t−

9

N
ew

 C
as

es
 o

n 
t−

10

N
ew

 C
as

es
 o

n 
t−

11

N
ew

 C
as

es
 o

n 
t−

12

N
ew

 C
as

es
 o

n 
t−

13

N
ew

 C
as

es
 o

n 
t−

14

N
or

m
al

ize
d 

Va
ria

bl
e 

Im
po

rta
nc

e 
(L

og
 S

ca
le

)

Fig 3. Death Model Covariate Importance. Covariate importance scores on the
log scale for the random forest death model as the mean decrease in MSE associated
with permutation of the variable’s values.

testing was quite limited. The random forest predictions were capped at a percentage of 256

the new cases to avoid unrealistically high death predictions, which can occur when 257

there are relatively few new cases. This upper bound was set to be equivalent to a 15% 258

case fatality rate for the first 30 days of the epidemic and reduced to 7% subsequently, 259

with the higher initial death rate motivated by the relative severity of early confirmed 260

cases due to limited testing. 261

Predictive Accuracy 262

We assessed the predictive accuracy of our model by training it on case and death 263

counts collected through April 15, 2020, and predicting through April 29. We quantified 264

prediction error for each state on each day using the mean absolute scaled error (MASE) 265

of the posterior median number of new cases and deaths. MASE is computed by 266

dividing the mean absolute prediction error by the in-sample mean absolute error of a 267

naive random walk forecast, 268

MASE(Y,Y∗, Ŷ) =
1
m

∑m
j=1 |Y ∗j − Ŷj |

1
n−1

∑n
i=2 |Yi − Yi−1|

, (11)

where Y = (Y1, ..., Yn)′ is the training data outcome, Y∗ = (Y ∗1 , ..., Y
∗
m)′ is the observed 269

outcome in the evaluation set and Ŷ = (Ŷ ∗1 , ..., Ŷ
∗
m)′ is the prediction for Y∗ to be 270

evaluated [102]. A MASE of one indicates that the predictions were on average equally 271

accurate to the mean accuracy of a random walk forecast in the training data. A useful 272

feature of MASE for our purposes is its scale invariance, which makes comparisons of 273

predictive accuracy between states with epidemics on different scales more meaningful. 274

Figure 4 depicts the distribution of MASE across states for cases and deaths over the 275

two-week prediction period. The overall MASE for cases was 0.4 and for deaths was 276

0.32. As expected, the mean and variance of the MASE increased for both cases and 277

deaths across the prediction period, as the time between the end of the training data 278

and the date of the forecast increased. On April 29, a full two-weeks beyond the 279

training data, the MASE for cases and deaths was still well below one, an encouraging 280
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Fig 4. Predictive Accuracy. The distribution of MASE across all 50 states on each
day of the 14-day prediction period for new confirmed cases and deaths.

sign for the reliability of our predictions. A longer evaluation period would allow the 281

estimation of forecasting error farther into the future, but the brief period for which 282

COVID-19 data are available makes this currently infeasible. 283

Results & Discussion 284

Infections and deaths were projected through July 1, 2020, for all 50 states. Figure 5 285

depicts median predicted cumulative confirmed cases as well as active confirmed 286

infections and daily death counts for New York, Ohio, and Mississippi. These three 287

states were selected as examples, because they are diverse in their population size, 288

geography, political alignment, demographics, and in the progression of their COVID-19 289

epidemics. The equivalent figures for the remaining 47 states are included in the 290

supplemental material S1 Fig. 291

These trajectories depend upon the ongoing societal and political response to the 292

pandemic. In particular the current trajectory downward in case growth is due in no 293

small part to the substantial interventions that have been undertaken across the U.S. 294

The incorporation of covariates into the case growth and mortality models allow for 295

alternate trajectories to be explored, which is the subject of ongoing research. The 296

cumulative case counts eventually plateau for each state as its case velocity decreases 297

toward zero. The predicted daily death counts are not smooth because the random 298

forest algorithm averages many discontinuous segments into a prediction. 299

New York, especially New York City with its large, dense population, has been the 300

epicenter of the largest COVID-19 outbreak in the United States with over 300,000 301

confirmed cases by late April. Initial exponential case growth was slowly curbed by 302

public interventions, leading to a consistent decrease in case velocity and peaks in active 303

cases and deaths in mid April. Case growth being well past its peak translates into a 304

plateauing cumulative case curve and a relatively narrow interval estimate compared to 305

states that peaked more recently or have yet to peak. 306

Like many other states, Ohio has had many fewer cases than New York with 307

approximately 18,000 cases and appears to be peaking near the end of April. Its interval 308

estimates are relatively wider than New York, because there is less uncertainty in the 309

estimated trajectory farther past the peak. Ohio also exhibits more relative variation in 310

its daily death counts than New York because of the smaller number. 311

Mississippi with fewer than 7,000 cases through the end of April illustrates the 312

estimated trajectories of a relatively rural, Southern state that has not yet peaked. 313

With cases farther from their plateau, there is correspondingly more relative uncertainty 314

in its trajectory and a much wider range of dates over which its peak may occur. 315
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Fig 5. Predicted Cumulative Cases, Active Infections & Deaths. Projected cumulative case count, active confirmed
infections, and daily deaths through July 1, 2020, for New York, Ohio, and Mississippi. The grey dots indicate observed data,
which are not available for active infections.
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The figures include 95% credible intervals around the median indicating that 95% of 316

simulation results fell within this region. These intervals are not true credible intervals 317

in the Bayesian sense, because random forest is not a probability model. Nevertheless, 318

they represent a reasonable account of model uncertainty, as they incorporate credible 319

intervals from the Bayesian case model and uncertainty around the duration of illness. 320

Despite the many strengths of the current approach, it is not without limitations. 321

The projections produced here assume states continue upon their current trajectories. 322

Changes in policy interventions, for example, could result in substantial deviation from 323

this. Projecting outcomes under different or changing intervention scenarios is the 324

subject of ongoing work. 325

Considering COVID-19 cases and death over large areas can obscure variation on a 326

smaller scale. It is possible for a generally positive trajectory at the state-level to mask 327

a burgeoning outbreak in some locale within the state until that outbreak contributes 328

sufficiently many cases to influence the state-wide trajectory. A more granular approach 329

that models COVID-19 at a finer resolution may be able to identify such an outbreak 330

earlier. 331

There is substantial interest in estimating the proportion of the population that has 332

or will have recovered from COVID-19 in the hopes that these individuals have acquired 333

at least temporary immunity to the virus and can be the vanguard to economic recovery. 334

Since we focus on modeling confirmed cases and deaths, our model does not predict the 335

true number of recovered individuals. It is well known that, especially in the U.S., 336

confirmed cases are a substantial undercount for the true number of COVID-19 337

infections. As a result, estimating the number of recovered individuals requires 338

additional information beyond predictions of confirmed cases and deaths. Attempts to 339

quantify recovery using serology testing are underway in the U.S. and elsewhere. 340

There is residual temporal autocorrelation in the case velocity not captured by the 341

random effects for intercept and slope in the mixed model. We expect this has minimal 342

impact on our posterior trajectories, as we are primarily concerned with the trend in 343

mean over time, but incorporating a more sophisticated approach for temporal 344

dependence could be used to explicitly model this autocorrelation. 345

Finally, one could consider more elegant methods for incorporating lagged case 346

counts into a death model than simply inserting them as covariates into random forest. 347

However, many approaches to lag estimation are only good retrospectively and thus are 348

insufficient for the current task. 349

Supporting Information 350

S1 Fig. State Predictions. Projected cumulative case count, active confirmed 351

infections, and daily deaths through July 1, 2020, for each of the 50 U.S. states. 352

S2 Table. Parameter Values and Prior Distributions. 353
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