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Determining the impact of non-pharmaceutical interventions on transmission

of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

is paramount for the design and deployment of effective public health poli-

cies. Incorporating Apple Maps mobility data into an epidemiological model

of daily deaths and hospitalizations allowed us to estimate an explicit relation-

ship between human mobility and transmission in the United States. We find

that reduced mobility explains a large decrease in the effective reproductive

number (RE) attained by April 1st and further identify state-to-state variation

1

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 11, 2020. ; https://doi.org/10.1101/2020.05.07.20094441doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.05.07.20094441
http://creativecommons.org/licenses/by/4.0/


in the inferred transmission-mobility relationship. These findings indicate that

simply relaxing stay-at-home orders can rapidly lead to outbreaks exceeding

the scale of transmission that has occurred to date. Our findings provide quan-

titative guidance on the impact policies must achieve against transmission to

safely relax social distancing measures.

As of April 25th, SARS-CoV-2 has caused approximately 2.9 million reported cases of coro-

navirus disease 2019 (COVID-19) and nearly 200,000 known deaths globally (1). At present,

there are no specific preventative or therapeutic interventions, which will likely be the case

for many months to come (2). As such, the public health response has centered on non-

pharmaceutical interventions aiming to prevent transmission (3). While it is possible to contain

transmission if infected individuals and their contacts are rapidly identified and isolated, short-

comings in testing in many settings and the possibility of pre-symptomatic or asymptomatic

transmission have necessitated broader social distancing measures to limit contact between sus-

ceptible and potentially infectious individuals (4). Such interventions have included closure of

schools, businesses, and gathering places, and shelter-in-place orders. At present, an unprece-

dented proportion of the global population is living under such orders aiming to reduce contact

and mobility (5). As of April 20th, over 316 million people in the U.S. in at least forty-two

states have been urged to remain at home (6).

The economic, political, and mental health impacts of large-scale social distancing underscore

the need to determine the efficacy of such interventions in reducing the burden of COVID-19.

However, assessments of intervention effects are challenging to undertake: there is consid-

erable delay between the start of an intervention and any reduction in cases and deaths that

follows, and it may be unclear whether reductions owe to policy or other population-level be-

havior changes. The ubiquity of mobile phones make them a natural instrument for measuring
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movement in the population. Because real-time changes in contact patterns may impact infec-

tious disease transmission, considerable interest has surrounded the possibility of using such

data to assess the effect of social distancing interventions on COVID-19 burden (7,8). Previous

studies have demonstrated that mobile phone data align with human migration patterns relevant

to geographic spread of infectious diseases, including endemic diseases such as malaria and

dengue (9–11) as well as COVID-19 (12). However, such data have not been used to study

changes in contact impacting transmission at the scale of individual communities, or to assess

the epidemiologic effects of behavioral interventions.

We aimed to assess the relationship between mobility trends and SARS-CoV-2 transmission

using a mechanistic epidemiological model. We find that app-based mobility data provide a

leading indicator of changes in transmission intensity, enabling real-time or forward-looking

assessments of the effects of social-distancing measures on COVID-19 burden.

Mobility trends data reveal differences in social mixing. While personal devices generate

a wealth of information on human behavior, the use of these data for epidemiological purposes

raises concerns about users’ privacy (7). In concordance with Apple’s strong stance on user

privacy, the Apple Maps team has released a privacy-preserving data set that measures patterns

in population mobility (13). The data reflect changes in volume of requests for directions in

Apple Maps relative to the number of requests occurring on January 13, 2020. Data are not

associated with user identifiers and are aggregated at the state level to preserve user privacy.

We use this relative routing volume (RRV) data as a proxy for changes in person-to-person

interactions in the population in our modeling framework.

Apple Maps mobility trends reveal interesting spatial and temporal patterns (Fig. 1). The traces

are computed as the volume-weighted average over the three types of routes available — walk-

ing, transit, and drivin — expressed relative to a location-specific baseline (median volume
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from January 15 to February 15, 2020). The RRV data reveal a weekly cycle in population

movement; Fridays and Saturdays in February showed about 25% higher volume than baseline,

while volume as about 8% lower on Sundays. Holiday-associated changes in travel are also

visible — there is a 39% increase in RRV for Valentine’s day (Feb. 14) across states, and the

Saturday before (and day of) Mardis Gras festivities see RRV elevated to 88% (and 44%) of

baseline within Louisiana.

The timing of implementation of non-pharmaceutical interventions against COVID-19 is associ-

ated with large drops in mobility, with reductions in RRV coinciding with — and in some cases

preceding — statewide orders to shelter in place. Reduction in RRV before social distancing

orders suggests that the population adopted risk-reducing behaviors as COVID-19 awareness

spread. These mobility curves also reflect state-to-state variation in population response. In

New York state, RRV fell to below 40% of January 13 baseline levels, while RRV in Louisiana

remained above 50% of baseline. Capturing these phenomena without intensive surveys (14) ,

or tracking of individuals’ specific locations, opens up new possibilities for non-invasive moni-

toring of behavior and mobility.

Measuring transmission rates from mobility trends data We next examined the hypothesis

that changes in RRV measures predict changes in SARS-CoV-2 transmission in U.S. states. To

this end, we develop an augmented epidemiologic model that describes the progression of the

population through susceptible (S), exposed (E), infectious (I), hospitalized (H), and removed

(R) compartments. The augmented model defines asymptomatic and symptomatic infectious

paths. Symptomatic individuals can progress to one of two hospitalization compartments —

one leading to recovery, the other to death — or to recovery/removal without hospitalization.

Individuals acquire infection at rates proportional to the current prevalence of infection. We pa-

rameterize distributions over residency times in each compartment using estimates of the dura-

4

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 11, 2020. ; https://doi.org/10.1101/2020.05.07.20094441doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.07.20094441
http://creativecommons.org/licenses/by/4.0/


tion of each stage of the clinical progression of COVID-19 (15–19). Probabilities of symptoms,

hospitalization, and death are specified by separate parameters (17,20). We extend the compart-

ment model framework by incorporating mobility observations into a time-varying transmission

parameter, βt. The model modulates a baseline (time-invariant) transmission parameter, β0,

with a learned mobility function, βt = β0 · f(Mobilityt), where Mobilityt denotes the fraction

of baseline routing requests, as depicted in Fig. 1. Intuitively, β0 captures immutable aspects of

transmission, e.g., the probability of infection upon contact between susceptible and infectious

persons. The mobility function captures the reduction in transmissibility due to reduction in

population mobility. We define this relationship, fλ(·), to be piece-wise linear and monotonic;

we estimate λ from data.

The resulting model enables us to express reproductive numbers in terms of RRV data. The ba-

sic reproductive number is a fundamental quantity that describes the number of secondary cases

generated by a single case in an entirely susceptible population, denoted R0 = β0 · τI where

τI is the average time spent infectious (in days). We define the time-varying basic reproductive

number R0,t = R0 · fλ(Mobilityt) to account for changes in R0 due to population behavior

changing over time (i.e., mobility patterns). Another quantity of interest is the effective repro-

ductive number RE,t, which accounts for the current state of the infection in the population,

RE,t = R0,t · (St/N) where St/N is the proportion of individuals who remain susceptible at

time t, and N is the population size.

We fit this model to counts of daily deaths (and daily hospitalizations where available) from

two public data sources (21,22), including observations up to April 25th. We focus our analysis

on eight states — New York, California, Washington, Texas, Georgia, Louisiana, Florida, and

Massachusetts — selected to balance urban-rural variation and enough observed deaths (and

hospitalizations) to fit the model. We adopted a Bayesian framework and computed the pos-
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terior distribution over all compartment times, rates, and mobility function parameters using a

Markov Chain Monte Carlo sampler (23). For parameters without strong prior evidence, we

used diffuse priors to propagate uncertainty into parameter estimates and forecasts. For each

state, we compare models across prior informativeness, infection start date, and mobility func-

tion regularization strength, and present the model with the best held out log-likelihood (on

eight-day forecasts; see SM for more details).

Analysis of estimated reproductive numbers and mobility trends Our analysis reveals dif-

ferences across US states in pre- and post-intervention transmission as measured by RE,t in

late February and March (Fig. 2). Since deaths lag infection by about three weeks, we depict

estimated RE,t values up to April 1st. We found Louisiana and New York to have the highest

pre-intervention transmission potential, with baseline R0 = 5.9 (3.5-9.5 95% CI) and 5.2 (2.8-

8.9 95% CI) respectively. Florida and Texas had smaller pre-intervention R0 values, at around

3. This high value in R0 for New York comports with the observed intensity and explains ob-

servations of substantial cumulative infection prevalence based on population serosurveys (24).

We plot state-to-state variation in baseline R0 estimates in SM Fig. 11. Among these states, we

also find that only New York, Washington, and Louisiana had achieved RE,t < 1 (a threshold

at which incidence rates can be expected to decline) by April 1st. Texas, Georgia, and Florida

appeared to straddle RE,t = 1 at this time, while California and Massachusetts both retained

RE,t > 1 on April 1st. These findings reflect observed increases in the daily death count con-

tinuing through the first three weeks of April in these states.

The association between estimated RE,t and reduction in RRV varies in each state (Fig. 3). The

mobility-driven factor, R0,t = R0 · f(Mobilityt), falls below one at different levels of RRV

depending on the state. For Louisiana, R0,t is reduced to one when RRV falls to 65% (58-75%)

of baseline levels. Alternatively, New York’s R0,t falls below one when RRV is reduced to
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48% (43-56%) of baseline. We also identified differences in the shape of relationships between

RRV andR0,t by state. Reductions in RRV below 80% of baseline delivered diminishing returns

in reducing R0,t in Louisiana, while the slope in New York was maximized at RRV around 50%

of baseline.

To validate the estimated relationship between measured mobility and transmission, we generate

an estimate of RE,t based solely on reported case data using the method of Wallinga and Teunis

(25). We compared this alternative estimate ofRE,t to the mobility data, identifying a significant

positive relationship for each state (SM Fig. 13-17). The similar relationships found using two

methods on disjoint sets of data provides evidence that changes in RRV can explain changes in

RE,t. This finding substantiates the utility of mobility data as a real-time indicator of changes

in transmission intensity.

Evaluating policies to relax social distancing Policy-makers currently face crucial questions

about when and how existing social distancing policies can be relaxed without incurring large

resurgences in transmission. We evaluated two potential policies for lifting social distancing

measures to address the potential impacts on trajectories of COVID-19 burden.

We first consider relaxation of social distancing measures beginning June 1, 2020, allowing

mobility volume to recover 10%, 25%, 50%, or 100% of the difference between levels observed

as of April 1, 2020 and those observed before interventions came into effect. Fig. 4 depicts

our forecasts of cumulative deaths, hospital occupancy, and the proportion of the population

remaining susceptible through December 31, 2020. In all states analyzed, increasing mobility

without other changes to behavior is expected to lead to substantially worse outcomes, in size or

duration of the outbreak, than maintaining current mobility (see SM for results from additional

states). In Florida, increasing mobility even a small amount results in RE,t > 1 inducing a mas-

sive secondary outbreak. The timing and extent of the outbreak is determined by the increase
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in mobility, with larger increases resulting in an earlier outbreak with cases concentrated over a

shorter period of time. In Washington and Louisiana, potentially massive secondary outbreaks

are only observed for lifting 50% or 100%, suggesting that there is more flexibility for Wash-

ington to allow increased mobility without additional changes to behavior. Since our model

estimates that California has not yet achieved RE,t < 1 statewide, even maintaining mobility at

the reduced level is expected to allow COVID-19 to continue spreading.

As an alternative, we illustrate effects on transmission of a policy periodically lifting, beginning

June 1st, for one week at a time, at 10-25% increases in RRV (Fig. 5). In all states we see that

these periodic policies result in lower forecasted cumulative deaths and hospital occupancy than

the previous policy. However, even forcing mobility to April 1st levels for four weeks, following

one week of relaxation, may be inadequate to prevent resurgences in California and Florida

exceeding pre-April burden. Lower baseline R0 values for Washington, and lower predicted

prevalence of SARS-CoV-2 infection as of June 1, 2020, reduce the likelihood of a large-scale

outbreak occurring in this state.

For mobility to safely increase within a state, reduction in the baseline transmission (i.e., R0)

needs to be achieved in other ways e.g., by wearing masks or maintaining spatial distance in

public. Fig. 6 reports for a number of states the percent reduction in R0 required to achieve

R0,t = R0 · f(Mobilityt) = 1 if mobility were to increase to 50% of baseline levels. This value

reflects how the relationship in Fig. 3 must be altered through policies that reduce transmission

for population mobility to increase toward pre-intervention levels while preserving epidemic

control.

Discussion Examining the relationship between population-level mobility data and transmis-

sion rates, we found a strong relationship between mobility — as measured by Apple Maps

routing volume — and transmission that varies from state to state. Changes in population be-
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havior preceded implementation of statewide stay-at-home orders, and these data can allow us

to attribute changes in transmission directly to this behavior change. Our findings suggest that

mobility data can be used as a leading indicator of changes in transmission rates, supporting

the evaluation of public health interventions. Our counterfactual analysis suggests that relax-

ing social distancing measures and returning to pre-intervention mobility and behavior could

rapidly lead to transmission exceeding what the US has experienced to date. Going forward,

the relationship between RE,t and population mobility must be altered going forward to avoid

re-igniting the outbreak if population mobility is allowed to increase.

The modeling framework we present is extensible. Apple Maps mobility data is one measure of

inter-personal interaction; other proxies can be incorporated into this approach as they become

available (7, 8). Unbiased infection data — collected through enhanced disease surveillance

(26) or population serology studies — may allow more refined assessments of the relationship

between population behavior and transmission.

Our analysis has limitations. Apple Maps data do have inherent biases. First, the demographics

of Apple Maps users is unlikely to match the general population. Second, route requests are

not a perfect indicator for movement or physical interaction and so are just a proxy. We also

emphasize that the inferred relationship between population mobility and transmission reflects

observations of the pandemic ramping up in the U.S. This relationship can change over time,

however, through behavioral changes not strictly related to population mobility. For example, if

mask-wearing and social-distancing continue, the baseline β0 (and thusR0) may be smaller than

the pre-intervention β0. Indeed, our simulations show that we must reduce baseline transmission

rates with non-mobility behavioral changes to return to even a fraction of pre-pandemic mobility

patterns. Our model is a simplified description of population behavior. We do not address

realistic clustered patterns of interaction of the population. Further, we do not model the effect
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of weather or temperature, which may contribute to changes in transmission intensity across

seasons (27). Recent reports suggest that the overall death count is severely under-reported (28),

which may contribute to bias in inferences of epidemic dynamics if reporting completeness

varies over time (29).

Nonetheless, this work underscores the importance of new data sources for monitoring SARS-

CoV-2 transmission. Privacy-preserving aggregated data from mobile phones can be used as

a leading indicator of transmission rate changes. As states begin to relax social distancing

measures, it is crucial to understand — and prepare for — the effects of increased population

movement on disease transmission.
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Model Description

We developed an augmented version of the SEIR compartmental model that includes hospital-

ization, fatality, symptomatic, and asymptomatic infectious designations. We define the trans-

mission parameter to vary in time as a function of population mobility measured as Apple maps

routing volume. Through this learned relationship between transmission and mobility, we es-
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timate (or simulate) the effect of mobility-based non-pharmaceutical interventions in different

locations.

Infection spread in each state is described by the model depicted in Fig. 7. The compartments

model different slices of the population at any given point in time

• S: susceptible population,

• E: exposed but non-infectious population,

• IS: eventually symptomatic and infectious population,

• IA: always asymptomatic and infectious population,

• HR: hospitalized cases that recover,

• HF : hospitalized cases that do not recover,

• FH : hospital fatality, and

• R: removed population.

The driving force behind the infection is the transmission of the virus from the infectious pop-

ulation, IS and IA, to the susceptible population, S (depicted in dotted arrows).

The dynamics of the model are parameterized by average compartment duration (i.e., dwell

times). Each of the non-terminal compartments depends on a mean parameter that describes

the average time within each compartment — e.g., the average time spent in the exposed state

or the average time spent in the hospitalized state. Each non-terminal compartment is imple-

mented with multiple stages to reflect a more realistic duration distribution, Erlang. We use two

stages to represent each non-terminal compartment. Additionally, each branching component

requires a rate parameter that divides the population flow between branches. These include the

symptomatic rate (to IA or IS), the symptomatic hospitalization rate (to HR, HF or R), and the
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hospitalized fatality rate (to F orR). The compartment model parameters are defined as follows

(time units are days):

• τE: average dwell time in compartment E (incubation period),

• τIS : average dwell time in compartment IS (infectious period),

• τIA: average dwell time in compartment IA (asymptomatic infectious period),

• τHF
: average hospital time for fatal cases,

• τHR
: average hospital time for recovered cases,

• η: fraction of cases that are symptomatic,

• ν: fraction of symptomatic cases that are hospitalized,

• µ: fraction of hospitalized cases that are fatal.

Leveraging the evidence that patients can be asymptomatic and positive for weeks (19), we fix

the durations of the asymptomatic and symptomatic cohorts to be equal, τIA = τIS = τI .

The dynamics between compartments are defined as:

dS

dt
= −β IA + IS

N
· S , (1)

dE

dt
= β

IA + IS
N

· S − (1/τE)E , (2)

dIS
dt

= η(1/τE)E − (1/τIS)IS , (3)

dIA
dt

= (1− η)(1/τE)E − (1/τIS)IA , (4)

dHF

dt
= µ · ν · (1/τIS)IS − (1/τHF

)HF , (5)

dHR

dt
= (1− µ) · ν · (1/τIS)IS − (1/τHR

)HR , (6)

dFH
dt

= (1/τHF
) , (7)
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where β is a transmission parameter that relates to the basic reproductive number R0:

R0 = ν · (β · τIS) + (1− ν) · (βτIA) , (8)

= β · τI when τIS = τIA = τI . (9)

We directly parameterize the baseline R0 value, exploiting the above relationship between in-

fectious duration, τI , transmission parameter, β, and the basic reproductive number.

Mobility-driven transmission model We allow the parameter β to vary in time, driven by

observed mobility patterns. Denoting mobility volume change on day t as Mobilityt, we define

a time-varying β as

βt = β0 · fλ(Mobilityt) , (10)

where fλ(·) is a piece-wise linear function with knots specified by parameters λ. The piece-wise

linear function is monotonic by construction, and intersects 1 when Mobilityt = 100% — when

mobility is at baseline, R0,t is the baseline R0 = β0τI .

Likelihood We use a negative binomial likelihood for counts of observed daily deaths and

hospitalizations. We found that it is crucial to incorporate an over-dispersion parameter for these

counts, as variation in reporting can create larger observation variance than can be explained by

a Poisson observation model. We place an exponential prior on the inverse over-dispersion

parameter, φ, defining a preference for smaller observation variance in our prior beliefs. We fit

separate φ = (φ(h), φ(d)) values for hospitalization and death observations.

Prior specification We place informative priors over the compartment dwell time and rate

parameters culled from the recent COVID-19 literature.
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For the rate of symptomatic cases, η, we adopt evidence from (20) that observes 43.2% (95%

CI 32.2-54.7%) of confirmed SARS-CoV-2 infections were asymptomatic. Our symptomatic

rate prior mean is 1− .432 = .568 with a prior 95% credible interval that covers .25 and .75.

For the average hospitalization rate, ν, we use the age-specific estimates derived from travelers

from Wuhan (15). Data from (15) are used to determine appropriate beta distribution for each

ten-year age bucket. For each state, we average these age-specific hospitalization distributions

over the state-specific population age distribution, approximating this weighted mixture with a

beta distribution by matching 2.5 and 97.5 percentiles.

We use the hospital fatality rate estimate for California from (17) as an informative prior over

µ, 17.8% (95% CI 14.3-22.2%), allowing for state-to-state variability.

Following (16), we place a truncated normal prior on R0 centered on 2.4. We test different

strengths of the informativeness of this prior by setting different standard deviations. For the

‘weak’ version, we set the R0 scale to be 9, corresponding to an upper 97.5 percentile equal

to R0 = 20.9. For the ‘medium’ version, we set the prior R0 scale to 6, corresponding to an

upper 97.5 percentile equal to R0 = 14.4. For the ‘strong’ version, the prior R0 scale is set to

3, corresponding to an upper 97.5 percentile of R0 = 8.3. Note that placing a prior on R0 and a

prior on τI induces a prior over β0.

For average time spent infectious, we see a wide range of evidence in the literature. (18) analyze

Chinese cities using a dynamical model and infer that the average time spent infectious is 3.47

days (3.15, 3.73 95% credible interval). (19) examine virologic characteristics of a small sample

(n = 12) of patients in the United States and find that average time between first and final

positive rRT-PCR test is 16 days (12-21 95% CI). While this does not imply the average time

spent infectious is 16 days, it suggests the use of a more diffuse prior on infectious time, τI =

τIS = τIA . We place a Gamma prior distribution on τI where the middle 95% of its mass covers
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the range 3 to 21.

For the incubation period, τE , we adopt the mean inferred in (18), 3.69 days (3.30 - 3.96 95%

CI) as our prior mean with a Gamma distribution. We inflate the prior variance to 1.

For the two hospitalized compartment times, we use evidence from (17). As we do not incorpo-

rate hospital recovery data, the recovery compartment time is only identified through the prior.

As such, we use the average time from (3) of 10.7 days for τHR
with a standard deviation of 1

day. For hospital fatality time, we again use evidence from (17) and set the prior mean of τHF

to be 13.7 days, with a standard deviation of 1.5 days.

We incorporate uncertainty into our initial conditions by placing a log-normal prior overE0, IA,0

and IS,0 with zero mean and standard deviation of two. Additionally, we search over the date for

t = 0 by fitting separate models for t0 = {4, 5, 6} weeks before the first recorded COVID-19

death in each state.

Denote all unknown parameters as θ , (R0, τE, τI , τHF
, τHR

, η, ν, µ, λ, φ), where λ parameter-

izes the mobility-transmission relationship fλ(·) and φ is the over-dispersion parameter of the

negative-binomial likelihood. Note that we parameterize the model directly with R0 and derive

β0 from R0 and τI . Given the prior, likelihood, and structure of the differential equations, the

full statistical model is

θ ∼ p(θ) prior (11)

F
(daily)
1:T , H

(daily)
1:T = ode-solve(θ, fλ(Mobility)1:T ) Augmented SEIR dynamics (12)

dt ∼ Neg-Binom(F (daily)
t , φd) daily deaths likelihood (13)

ht ∼ Neg-Binom(H(daily)
t , φh) daily hospitalizations likelihood (14)

for observed daily deaths and hospitalization data d1:T and h1:T (where available), and F (daily)
t

and H(daily)
t are the increase in FH and HR +HF compartments from day t− 1 to t, following
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(30).

Model Fitting and Validation

Inference We use Bayesian inference to infer model parameters θ from daily observations

d1:T and h1:T (note, some observations may be missing). We use the No U-turn Sampler

(NUTS) (23), a variant of Hamiltonian Monte Carlo, to draw posterior samples for each model

considered. We use a period of 1,000 samples for warm-up and step-size adaptation, and then

draw 4 chains for 1,000 samples each. We use the NumPyro implementation of NUTS (31) and

implement our models within the Python auto-differentiation framework JAX (32). For each

model run, we diagnose convergence by inspecting the r̂ statistic for each sampled variable

using the implementation in (31).

We focus on eight states — New York, California, Washington, Texas, Georgia, Louisiana,

Florida, and Massachusetts — selected to balance urban-rural variation and enough observed

deaths (and hospitalizations) to fit the model. Fig. 11 depicts the learned parameters and 95%

credible intervals for the eight states considered in the main paper using the ‘medium’ prior.

Validation forecasts and in sample fit We validate our model by looking at statistics of

eight-day-ahead and average eight-day-ahead forecasts. Comparison of observed values and

predicted values (with 95% credible intervals) are depicted in Fig. 8. We report similar statistics

for in-sample fits. Examples of in-sample fits for a selection of states are depicted in Fig. 9.

Sensitivity to prior strength We explore the effect of the strength of our prior on baseline

R0 for each state. As described above, we use three different strengths of prior on R0 with

mean 2.4. For each prior strength, we visualize the relationship between R0,t and mobility

volume, Mobilityt, in Fig. 12. We find that the relationship between mobility volume and the
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R0 multiplier remains largely unchanged under the different prior strength, implying that the

effect of mobility on transmission can be separated from other factors that affect the overall

level of transmission such as population density.

Accounting for importation We extended our augmented SEIR model to include disease

importation to account for elevated hospitalizations and deaths early in the epidemic. Specifi-

cally, we incorporated a constant importation parameter, βimp, into the force of infection. This

resulted in the following dynamics equation for the S compartment:

dS

dt
= −β IA + IS

N
· S + βimp. (15)

We placed a half-normal prior on βimp with mean zero and variance one which constrains it to

be greater than zero but allows the data to move it away from zero. We found that all of the

states we consider the posterior over βimp concentrates near zero and is much smaller than the

initial fraction of exposed individuals. As such, we presented results in the paper using a version

of the model without βimp. We account for these early effects by removing early observations,

and fitting a distribution over the initial compartment values.

Alternative Estimation of Effective R and Mobility Relationship

As further validation for the relationship between RE,t and routing volume inferred in the main

paper, we recover a qualitatively similar relationship using confirmed case data and an indepen-

dent estimation method. These results provide evidence that this relationship manifests in the

data and does not arise only from the structure encoded in our model.

For this analysis we consider confirmed case counts for California, Louisiana, New York, and

Washington. For each state we consider the time span from March 2nd to April 1st, except for

Louisiana where the earliest confirmed non-zero case count is on March 9th. Unfortunately,
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there are issues with the confirmed case data due to limitations of testing. However, the case

data exhibit a shorter lag from infection than the deaths data used for the model in the main

paper and so they provide a good comparison data source.

We use the likelihood-based approach of Wallinga and Teunis (W&T) that estimates RE,t from

the numbers of reported case counts (25). A key quantity needed for the W&T method is the

serial-interval distribution that describes the time from symptom onset in a primary case to

symptom onset in a secondary distribution. The R0 package for the R programming language

was used to estimate RE,t (33). In Figs. 13–16 we depict the estimated RE,t over time using a

Weibull serial-interval distribution with shape 5.4 and scale 4 (17). Note that there is a steady

decrease in RE,t over time according to the case data. In each of these figures we also plot

the estimated RE,t against the percent-change in routing volume. In each state we observe a

decrease in RE,t corresponding to a decrease in routing volume. To quantify this relationship

we used robust linear regression for the modelRE,t = βZt+b. We fit the model to the simulated

data described above. The resulting best fit lines are shown in Figs. 13–16 and are reported in

Table 1. The coefficients are small but are statistically significant. In Fig. 17 we depict the

inferred relationship for three serial-interval distributions with shape parameters 3, 5.4, and 8,

(all with scale parameter 4). The relationship between RE,t and routing volume varies with

the shape of the serial-interval distribution, growing as the shape parameter increases, similarly

to the relationship learned in the main paper. Additionally, the variation differs between each

shape indicating a dependence on the overall level of RE,t.

The fact that the W&T method recovers a qualitatively similar relationship between mobility

andRE,t provides extra evidence that our model is capturing an underlying relationship between

mobility and disease transmission. Recall that the W&T model uses a disjoint set of data to

estimate RE,t than our model indicating that this relationship is in the data and not imposed by
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our model.

Data

Deaths and hospitalizations counts We use the daily counts of deaths from The New York

Times which are based on reports from state and local health agencies (21). We include daily

death observations once the state cumulative total has reached at least 40. This threshold filters

out data while testing ramps up in states and when deaths counts may be inflated. Additionally,

early deaths may not have resulted from community spread so that filtering out early deaths

doesn’t make the model explain these. For similar reasons, for New York we only include

observations after March 25th, after a significant ramping up in daily tests levels off. We also

filter out days where no deaths were reported since the previous day.

When available, we also use the number of hospitalized individuals in a state from The COVID

Tracking Project (22). Similarly to the deaths data, we remove the first 100 hospitalizations

from the data and remove days where no new hospitalizations were reported.

For both deaths and hospitalizations, we treat the days where data has been removed as missing

data which do not contribute to the likelihood of our model and thus do not influence param-

eter estimates. However, uncertainty is propagated through these days due to our Bayesian

formulation.

Apple Maps mobility data The data we use to quantify mobility has been collected by the

Apple Maps team and consists of the relative number of directions requests (routes) per U. S.

state relative to January 13, 2020. Apple does not store a profile of individual movement or

searches as all data sent from users’ devices to the Maps service are associated with random,

rotating identifiers. Additionally, Apple Maps does not have any demographic information

about users and so we cannot make any statements about the representativeness of the data in
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the larger population (13).

The state-level routing data exhibits a few quirks that must be addressed before being used in

our modeling approach. First, the values are sensitive to the routing requests made on January

13, 2020. To address this we define the baseline mobility for a state as the average relative

routing volume from January 13th to February 13th. We divide the relative routing values by

this per-state baseline value and subtract 1 so that baseline mobility corresponds to zero.

There are also substantial day-of-week effects in the data with large dips in mobility on Sun-

days and increased mobility throughout the week. We remove these effects by smoothing the

baseline-normalized data with a LOESS smoother. We use a value of 10/T for the fraction of

data used to estimate each smoothed mobility value, where T is the number of days used by the

model and varies for each state.

Social distancing relaxation policy evaluation

In this section we present further results from the policy evaluation analysis. Fig. 18 depicts the

same results as Fig. 5 from the main paper but with scales that show the entire 95% predictive

intervals and make clear the uncertainy about the potential scale of the (secondary) outbreak in

different states.

Next, we present the predictions for Florida, Georgia, Texas, and Massachusetts for the lift

policy (Fig. 19) and the periodic policy (Figs. 20 and 21). We see more variety in the shapes

of the secondary outbreaks that depends on the initial R0 and the state-specific relationship

between effective reproduction number and mobility.
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Figure 1: Mobility data and state-wide non-pharmaceutical interventions over time for New
York, Washington, Florida, and Louisiana. Mobility data leads many interventions, particularly
“lock down” or “shelter-in-place” orders and also reveals atypical patterns in activity.
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Figure 2: Inferred effective reproduction number RE,t for eight states, posterior mean and 95%
credible intervals shown. Overlaid are daily case, hospitalization, and death counts (log scale,
smoothed with a 7-day centered average). The effective reproduction number is modulated by
time-varying mobility data and state-specific multiplier function.
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Figure 3: Left: Inferred relationship between reproduction number R0,t and mobility volume
change, Mobilityt, for eight states (split into two groups for clarity). The mobility reduction
that corresponds to R0,t <= 1 varies from state to state. For Louisiana and Georgia, the value
of R0,t falls below one when mobility reaches 60-70% of baseline. In contrast, R0,t for New
York and California does not fall below (or approach) one until routing volume reaches 50%
of baseline levels. Right: The R0 multiplier effect as a function of mobility. This relationship
isolates the relative effect of mobility reduction on baseline R0.
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Figure 4: Median projections and 95% predictive intervals of cumulative deaths, hospital occu-
pancy (log-scale), and fraction-susceptible through December 31st, 2020 when allowing mobil-
ity to increase 10%, 25%, 50%, and 100% of the way back to baseline. Plots zoomed in on the
median projections.
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(d) Louisiana

Figure 5: Median projections and 95% predictive intervals of cumulative deaths, hospital oc-
cupancy, and fraction-susceptible through December 31st, 2020 under the periodic policy that
allows mobility to increase 10% or 25% of the way back to baseline for one week and then
reimposing the April 1st mobility level for two or four weeks. Plots zoomed in on the median
projections.
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Figure 6: Percent reduction of mobility-independent R0 required to achieve R0,t ≤ 1 when
mobility is 25% back to pre-intervention levels (relative to April 1, 2020). Reduction in baseline
R0 would need to be achieved through a non-mobility change in behavior such as mask wearing,
maintaining distance in public, and reducing the frequency of person-to-person interaction.
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Figure 7: Augmented SEIR compartment model.

State β̂ ± 1.96s.e.
California 0.014± 0.001
Louisiana 0.036± 0.002
New York 0.037± 0.004

Washington 0.022± 0.002

Table 1: Robust least squares estimates for a relationship between RE,t and routing volume.
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(a) Forecast (8-days), observations vs. posterior mean (and 95% credible interval).
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(b) In sample observations vs. posterior mean (and 95% credible interval).

Figure 8: Eight day forecast (top) and in sample (bottom) model fits, comparing observed daily
deaths (x-axis) and model posterior mean and 95% credible interval (y-axis). The left depicts
each daily observation, the right depicts the average for each state.
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Figure 9: Model fit for daily deaths, mean and 95% credible interval. For some states, obser-
vations clearly exhibit a “day of week” effect. Florida, Georgia, New York, and Washington
have shown more leveling off, whereas California, Massachusetts, and Texas appear to still be
growing (as of April 25).
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Figure 10: Percent of the population infected over time (cumulative) for eight states, posterior
mean and 95% credible intervals shown.

33

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 11, 2020. ; https://doi.org/10.1101/2020.05.07.20094441doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.07.20094441
http://creativecommons.org/licenses/by/4.0/


0 2 4 6 8 10 12 14 16

California
Florida

Georgia
Louisiana

Massachusetts
New York

Texas
Washington

prior

Baseline R0

0.3 0.4 0.5 0.6 0.7
rate

California
Florida

Georgia
Louisiana

Massachusetts
New York

Texas
Washington

prior

symp-rate

0.0 0.1 0.2 0.3 0.4 0.5
rate

California
Florida

Georgia
Louisiana

Massachusetts
New York

Texas
Washington

prior

hosp-rate

0.15 0.20 0.25 0.30 0.35
rate

California
Florida

Georgia
Louisiana

Massachusetts
New York

Texas
Washington

prior

hosp-fatal-rate

2 4 6
days

California
Florida

Georgia
Louisiana

Massachusetts
New York

Texas
Washington

prior

exp-time

5.0 7.5 10.0 12.5 15.0
days

California
Florida

Georgia
Louisiana

Massachusetts
New York

Texas
Washington

prior

inf-time

10 12 14 16 18
days

California
Florida

Georgia
Louisiana

Massachusetts
New York

Texas
Washington

prior

hosp-f-time

Figure 11: Inferred posterior times and rates between states, compared to the prior (in grey).
Points are posterior means and lines span a 95% credible interval. Depicted is the ‘medium‘
strength prior over baseline R0.
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Figure 12: Sensitivity to R0 prior strength. The top panel shows the R0,t = R0 · f(Mobilityt)
value as a function of Mobilityt; the bottom panel shows the baseline multiplier function
f(Mobilityt) (visualized with 95% posterior credible intervals). Left to right compares R0 prior
strength (described in the SM) from least informative to most informative. While we see some
sensitivity to the baseline R0 inferred (at 100% of routing baseline), credible intervals overlap
considerably. The multiplier relationship between mobility and f(·) is stable across the three
prior strengths.
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Figure 13: California: Estimated RE,t using the Wallinga and Teunis method and the resulting
relationship between RE,t and percent-change in routing volume.
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Figure 14: Louisiana: Estimated RE,t using the Wallinga and Teunis method and the resulting
relationship between RE,t and percent-change in routing volume.
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Figure 15: New York: Estimated RE,t using the Wallinga and Teunis method and the resulting
relationship between RE,t and percent-change in routing volume.
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Figure 16: Washington: EstimatedRE,t using the Wallinga and Teunis method and the resulting
relationship between RE,t and percent-change in routing volume.
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Figure 17: Comparison of RE,t vs. routing volume for each state using the Wallinga and Teunis
method. Three serial-interval distributions with means 3, 5.4, and 8 days and variance 4. are
depicted.
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(d) Louisiana

Figure 18: Median projections with 95% predictive intervals of cumulative deaths, hospital
occupancy, and fraction-susceptible through December 31st, 2020 under the periodic policy
for the states depicted in the paper. Axes scaled to include the entire 95% predictive intervals
demonstrating the uncertainty in the scale of the outbreak.
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(b) Georgia
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(d) Massachusetts

Figure 19: Median projections with 95% predictive intervals of cumulative deaths, hospital
occupancy (log-scale), and fraction-susceptible through December 31st, 2020 under the lift
policy for Florida, Georgia, Texas, and Massachusetts.
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(d) Massachusetts

Figure 20: Median projections with 95% predictive intervals of cumulative deaths, hospital
occupancy, and fraction-susceptible through December 31st, 2020 under the periodic policy for
New York, Georgia, Texas, and Massachusetts. Plots zoomed in on the median projections.
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(d) Massachusetts

Figure 21: Median projections with 95% predictive intervals of cumulative deaths, hospital
occupancy, and fraction-susceptible through December 31st, 2020 under the periodic policy for
New York, Georgia, Texas, and Massachusetts.
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