
Search for the trend of COVID-19 infection following Farr’s law,

IDEA model and power law

Srijit Bhattacharya∗

Department of Physics, Barasat Govt. College,

Barasat, N. 24 Pgs, Kolkata-700124, India.

Md Moinul Islam

Department of Physics, APC College,

New Barrakpur, Kolkata-700131, W.B, India.

Alokkumar De

Department of Physics, Raniganj Girls’ College, Raniganj-713358, W.B., India

(Dated: May 4, 2020)

Abstract

Following power law, Farr’s law and IDEA model, we analyze the data of COVID-19 pandemic

for India up to 2 May, 2020 and for Germany, France, Italy, the USA, Singapore, China and

Denmark up to 26 April, 2020. The cumulative total number of infected persons as a function of

elapsed time has been fitted with power law to find the scaling exponent (γ). The reduction in γ

in different countries signals the reduction in the growth of infection, possibly, due to long-term

Government intervention. The extent of infection and reproduction rate R0 of the same are also

examined using Farr’s law and IDEA model. The new cases per day with time assume Gaussian

bell shaped curve, obeying the rule that faster rise follows faster decay. In India and Singapore,

the peak of the bell shaped curve is still elusive. It is found that, till date, countries such as

Denmark and India implementing sooner lockdown have underwent lower number of new cases of

infection. Daily variation shows, R0 of all the countries is reducing, ushering in fresh hopes to

combat COVID-19. Finally, we try to make a prediction as to the date on which the different

countries will come down to daily cases of infection as low as one hundred (100).

∗ srijit.bha@gmail.com

1

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.04.20090233doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.05.04.20090233


I. INTRODUCTION

The outbreak of communicable infectious disease is a major threat to the human civi-

lization. The present novel corona virus (COVID-19) pandemic corroborates this, albeit the

humongous scientific advancement in the fields of medicines and vaccinations. As of 28th

April, 2020 11:59 pm (Indian Standard Time), the total number of confirmed COVID-19

case is overwhelmingly large, about 3060152 globally. Out of the infected persons, the death

toll is about 7% (211894 persons) [1]. Thus the very pandemic elaborates the need for timely

identification and proper surveillance of this infectious disease. Towards this aim, mathe-

matical modelling might be a key. Through the modelling, by predicting the outcome, the

dynamics of spread can be understood and correspondingly the future course of action can

be planned. The Royal Society Committee [2, 3] on infectious diseases affirmed that ‘Quan-

titative modelling is one of the essential tools both for developing strategies in preparation

for an outbreak and for predicting and evaluating the effectiveness of control policies during

an outbreak...More work is required to refine the existing models and to strengthen their

capacity to inform policy.’ However, the success of data-driven predictive models depends

a lot on the reliability of the available datasets. Generally, SIR (susceptible infected recov-

ered) has been most commonly used mathematical model to identify disease outbreak and its

trajectory [4]. It is also used to predict COVID-19 pandemic. Besides, stochastic models in-

cluding Markov-chain based algorithms [5] have also been used in predicting different disease

outbreaks. In addition to such rigorous mathematical models, simple mathematical formula

based models have also been found successful to predict the future course of infection. Power

law formula is one of them. Starting from as abstract as frequency of words in English po-

ems, the income distribution, short term human travel behavior, city size distribution, etc.

have been well-explained by power law formula [6, 7]. It is also used in predicting the trend

of different infectious diseases [8]. Recently [9], the trajectory of COVID-19 disease growth

has been described by power law formula. In spite of the over-prediction done by power law

in the outbreak of Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory

Syndrome (MERS) diseases, the success of this law in COVID-19 prediction is notable [9].

With reference to COVID-19, we explained in a recent work [10], the nature of variation

of the cumulative number of observed infected persons n(t) as a function of elapsed time

for different countries for a time span from 22 January, 2020 to 1st April, 2020 in terms of
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power law n(t) = Atγ, where γ is power law exponent and A is constant. The value of γ is

related to the rapidity of the spread of disease in a country. We found that, up to 1st April,

the infection moved to a saturation (γ is reduced from 2.18 to nearly zero i.e 0.05) in case

of China, whereas in Denmark the infection was in slow down stage (γ reduced from 6.82

to 1.48). We calculated the change in γ from the change in slope of the power law graph

(in log-log scale). We also noticed that the extent of outbreak could not be demonstrated

completely via this law. We could only compare the infection trajectory between different

countries and inferred whether the rate of infection was gradually reducing in a country

from the value of the exponent in comparison to others. Moreover, in the existing literature

[8], the failure of power law model in the identification of disease outbreak has been seen.

Therefore, modification of power law has always been sought for.

For proper surveillance of an infectious disease, identification of start and end of the

same is essential along with the understanding of its strength. Farr’s theory of epidemics, or

Farr’s law in short, states that epidemics rise and fall with time in the symmetrical pattern,

producing a bell shaped curve [11]. The law demonstrates the growth and decay periods

of an infectious disease. However, to understand the strength of an infectious disease, it

is highly important to estimate the reproduction number R0 of the infection. R0 < 1

suggests each existing infection is producing less than one new secondary infection, which

means the disease will decay and ultimately die out. On the contrary, R0 > 1 means an

epidemic with each infection causing more than one secondary infection. The value of R0

is implicitly embedded within the Farr’s law [12–14]. The two-parameter Incidence Decay

with Exponential Adjustment (IDEA) model [14], on the other hand, can estimate the

reproduction number of infection explicitly. IDEA model also assumes that the peak and

decay of infectious disease are not solely caused by the depletion of patients. The measures

taken by authority, the change in behaviour by general public, etc. all play important

roles to control the outbreak. The gross result is reflected in the R0 value. In this work

we use Farr’s law and IDEA model, both, to explore the strength of COVID-19 outbreak

in India, the United States of America (USA), Italy, Germany, France, China, Singapore

and Denmark. We utilize Farr’s law to identify the start and end of infection in terms of

symmetric Gaussian distribution. The power law fit is also exploited to gather knowledge

in the relative change in cumulative number of infection. Finally, the prediction has been

made as to probable future situation.
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II. METHODS

The daily data of infected persons have been extracted from JHU-CSSE 2020 open data

source of John Hopkins University [1]. For India, the dataset is extracted from the Website

of Ministry of Health and Family Welfare, Govt. of India [15]. The cumulative number of

infected person (n(t)) is plotted against elapsed time. The power law fit is done in log-log

scale and the least square best fit value of γ is extracted, as explained in ref. [10].

1. Farr’s law

Farr’s law relates, empirically, the number of new cases of observed infected persons

within successive time intervals in an epidemic by the following relation:

K =

(
I(t+3)
I(t+2)

)
(
I(t+1)
I(t)

) (1)

where I(t) is the number at time t and K is constant.

For K < 1, the rate of change of observed new cases decreases with time. I(t) satisfying

Eq. 1 follows the trend of bell-shaped Gaussian or normal distribution [14, 16]. We fit the

bell shaped part of the graph of I(t) against elapsed time (t) by the following Gaussian

function:

I(t) = A exp
−(t−t0)

2

σ2 (2)

where A is normalization constant, t0 is centroid of the Gaussian curve and σ is related with

the standard deviation of the distribution. Here elapsed time t is expressed in days.

The pattern of smallpox deaths in England and Wales during 1837-39 closely resembled

the trend as governed by the Eq. (2). John Brownlee [12] observed that I(t) followed the

function, exp (−At2 +Bt+ C), where, A, B and C are constants and the resultant curve is

bell shaped, similar to the result of Farr’s law. Thus Brownlee identified that an epidemic

would be related to the growth of new cases (a first order process) and the decay (second

order). This is analogous to IDEA model.
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FIG. 1. (Online colour) COVID-19 infection in the USA, Denmark, China and Italy (in the panels

A to D, clockwise from top left), plotting being done in log-log scale. Red filled circles are the

observed data points. In Denmark, the open circles and triangles are data points having reduced

slopes. The two straight lines (blue dashed and black solid) are the yields of linear regression

for pre-intervention and post-intervention, respectively. The starting dates of the datasets are 22

January, 27 February, 22 January and 31 January, 2020, respectively, corresponding to the panels

A to D.

2. IDEA model

IDEA model, in a single equation, describes an epidemic process with first order expo-

nential growth and second order simultaneous decay. The growth has been a function of R0

5
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FIG. 2. (Online colour) COVID-19 infection in India, Germany, France and Singapore (in the

panels A to D, clockwise from top left), plotting being done in log-log scale. Red filled circles

are the observed data points. In Germany and France, the open circles and triangles are data

points having reduced slopes. The two straight lines (blue dashed and black solid) are the yields

of linear regression for pre-intervention and post-intervention, respectively. The starting dates of

the concerned datasets are 30 January, 26 January, 24 January and 22 January, 2020, respectively,

corresponding to the panels A to D.

[13, 14]. The temporal evolution of infected persons satisfies the following equation:

I(t) =

(
R0

(1 + d)τ

)τ

(3)
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FIG. 3. (Online colour) Farr’s law validation in the new COVID-19 infection per day with elapsed

date for the countries the USA, Denmark, China and Italy (clockwise from top left). Red filled

circles are the observed data points and black continuous line is the Gaussian fit. The concerned

date for decay below 100 infections per day and corresponding percentage are also shown in each

plot.

where τ is generation time from primary to secondary infection. In case of COVID-19

infection, this incubation is usually of 14 days period [16]. So τ=1, 2, 3, ..., 14. d (here

d > 0) is a ‘control’ parameter that reduces the new cases of infection. Control comes

in different forms like lockdown, social distancing, health measures taken by Government,
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growth of immunity within people, availability of personal protective kits, vaccinations or

medications, etc. The IDEA model and Farr’s law can be inter-related by the relation, K =

1/(1 + d)4. IDEA model demonstrates that when I(t) is expressed as exp (−At2 +Bt+ C),

the constants A and B become log (1 + d) and logR0, respectively. Thus, comparing Eq. 2

and exp (−At2 +Bt+ C), we calculate A and B. Then the values of d and R0 are estimated

from A and B.

III. RESULTS

A. Power law

In figs. 1 and 2, the cumulative number of observed infected persons have been plotted

against elapsed time (in day) in log-log scale and fitted with power law, for the countries

viz. the USA, Denmark, China, Italy, India, Germany, France and Singapore. As per the

figures, the rate of infected persons has been decreasing in the countries studied, except

for Singapore, after the Government policy interventions. This should be reflected in the

γ-values. Thus, the initial and preceding γ-values, have been termed as pre (γpre) and post

interventions (γpost), respectively [10, 17]. The power law fit of the observed data of Denmark

(fig. 1 panel B) gives pre-intervention γ or γpre=6.82. The lockdown effect reduces γ from

6.82 to 1.48 (the dataset showing pre-intervention is represented by red filled circles while the

γpost is shown by the datasets with open circles in the same figure). The post-intervention

γ again reduces to 1.23 (shown by open triangles). Similarly, in fig. 2 panel C, for France

γ is reduced from 10.81 to 4.65, and presently to 0.88 only. Panel D of the same figure is

the trend in Singapore, where γ has not been reduced from the initial value of 10.80. More

than one slope is evident in the slowing down or post-intervention stage only in Denmark,

Germany and France. The saturation in cumulative data could not at all be seen in the

countries studied, except in China. Indication of saturation is found in France, but more

data are needed for conclusive evidence. Table I gives the country wise values of γ.

B. Farr’s law

The new cases of infection per day is plotted against the time elapsed in terms of date

and shown in figs. 3 and 4. The datasets of all the countries show symmetrical bell shaped
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FIG. 4. (Online colour) Farr’s law validation in the new COVID-19 infection per day with elapsed

date for the countries India, Germany, France and Singapore (clockwise from top left). Red filled

circles are the observed data points and black continuous line is the Gaussian fit. The date and

percentage of corresponding decay below 100 infections per day are shown in each plot. For India,

the date and percentage of corresponding decay below 500 infections per day are also mentioned.

nature with gradual rise and decay. The bell shaped part is fitted with Gaussian function as

in Eq. (2). The best fitted values (deduced from χ2 minimization technique) of the standard

deviation (σ) and centroid (t0) of the Gaussian function are mentioned along with the graphs

for each countries. For, India, Singapore and the USA, 97% of the observed data lie within
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FIG. 5. (Online colour) Plot of R0 against number of days elapsed. The plots are also compared

for India, the USA and Italy. Inset shows the same graph with different scaling to understand the

complete variation of R0.

±1σ. For Italy, Germany and France, about 75% of the observed data lie within ±1σ and

96% within ±2σ. For China and Denmark, the fluctuation in daily data increases the error

of the fit. Only about 50% of the data are within ±1σ and 75% are within ±2σ. Skewness

of all the distributions is estimated and found within 0.4 to 0.6. Kurtosis is also calculated

and found within -1.2 to -1.4. These values indicate symmetric normal distributions for all

the cases studied here.

C. IDEA model

Using the expression exp (−At2 +Bt+ C) and Eq. 3, the time dependent values of R0

and d are calculated. The value of R0 has been plotted against elapsed time in fig. 5 and

compared for three different countries (India, the USA and Italy). The average values of

R0 are explored for all the countries studied here. Table I lists the countrywise values of
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centroid (t0), standard deviation (σ) and R0.

IV. DISCUSSIONS

From the power law fits, it is clear that except in Singapore, presently the rate of infection

has decreased in the other countries. In China, the saturation in cumulative data arises

from the 25th day of the starting date of the data (starting date is 22 January, 2020).

Thus the value of γ becomes nearly zero (γ=0.07). Similarly, in France γ has achieved

sub-decimal value of 0.88, though one order higher than that of China. Besides, in Germany

and Denmark, the exponent has reduced significantly (by 89 and 82%, respectively, from the

initial or ‘pre-intervention’ values). The USA, Italy and India show reduction in γ by nearly

77, 83 and 36%, respectively. Singapore has not yet shown reduction in γ. This decrease in

γ has been explained in terms of Government intervention and different measures adopted.

But the power law fit has not completely manifested the effect of Government intervention.

Power law fit, in general, shows only the fractional rate change and may indicate the slowing

down or saturation in the infection in progress [10].

In view of this, we have exploited Farr’s law to explore finer details of infection. Figs.

3 and 4 show the peaks of the normal curve along with corresponding dates. The Farr’s

law points toward the fact that the new cases per day have still not achieved the peak in

India and Singapore. This has been demonstrated by the lower reduction of γ in India in

comparison to the USA or Italy. However, the extent of infection is much lower in India as

shown by its peak value of the fitted Gaussian (approx. 2000 within first week of May, 2020)

than in the USA (nearly 33K on 11 April, 2020) or Italy (nearly 5800 in 31 March, 2020).

According to Farr’s law the rate of decrease in infection will follow the rate of increase. Our

estimated full width at half maximum (FWHM) of the Gaussian curve also corroborates to

this. The FWHM for India is very high (approx. 45 days) than that for the USA (approx.

28 days), Italy (approx. 34 days) and other countries studied here. Interestingly, if the

countries are compared, it is found that as the lockdown date comes closer to the peak, the

FWHM becomes smaller, which perhaps reiterates that the infection decay rate follows the

growth rate. It is also observed that the earlier lockdown has given rise to lower peak values

in different countries. In case of Germany, we found the FWHM of the Gaussian curve

is only 24 days, whereas the lockdown date is closest to the peak (less than 1σ) than any
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other countries. This could imply the generation of immunity against COVID-19 infection in

German people. But exception is found in China, where even after earliest implementation

of lockdown and with smallest value of FWHM of the Gaussian curve, the maximum value

of infection comes much higher than those for some other countries like India or Denmark.

From the IDEA model Eqs. 2 and 3, we have estimated daily variation of R0. From the

value of the coefficient B in the expression I(t) = exp (At2 +Bt+ C), the average value of

R0 is also calculated. In the fig. 5, daily variation of R0 is compared among India, Italy and

the USA. R0 has fallen from 1.95 on 18 April, 2020 to 1.08 on 31 April, 2020 in India. R0

was as high as nearly 5 in India on 23 March, 2020. According to a study done by Indian

Council of Medical research (ICMR), India [18], the value of R0 was estimated as 4 on 23

March, 2020. It fell from 1.83 on 6 April, 2020 to 1.5 on 11 April, 2020. The values closely

resembles to our study. Meanwhile in the USA, the value of R0 has been reduced from 1.74

to 1.11 upto 23 April, 2020. However, the value of average R0 is found highest in Singapore

(6.67) and lowest (1.85) in Italy. The high value of R0 (2.40) in Denmark is possibly an

artefact of large fluctuation in its daily data. For complete removal of COVIT-19, R0 should

be less than 1. In spite of that, the reduction in daily variation of R0 indicates a glimmer

of hope to combat COVIT-19.

Finally, we predict, from the Gaussian fitting, the date when the daily number of infection

will be reduced to the value less than a hundred for all the countries. In the USA, around

99.8% of the infection will be reduced within 24 May, 2020. Italy will be 98.5% free from

infection within 14 May, 2020, while India will be about 77% free from infection on 9 June,

2020 . COVID-19 infection will come to an end by about 95.7% within 22 June, 2020 in

India. The corresponding dates for other countries are mentioned in the figs. 3 and 4.

Recent prediction done by Singapore University of Technology and Design (SUTD), using

SIR model [19], is found in close agreement with our prediction for all the countries studied,

except for India. In India, unlike SUTD prediction, we find that the very peak of the

Gaussian distribution is elusive yet. However, before drawing any conclusion, it is to be

noted that the analysis of dynamical data is always uncertain due to inherent volatility

and fluctuation. These increase the uncertainty in prediction and may probably be reduced

by continuous monitoring. Therefore, the mathematical model based prediction should be

taken with proper caution.

It may be noted that in a few cases such as HIV disease in the USA, the performance
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TABLE I. The list of power law exponents γpre, γpost, standard deviation (σ), centroid (t0) of the

Gaussian curve and reproduction rate R0 for different countries.

Country Power law fit Gaussian fit average R0

γpre γpost σ t0

(days) (days)

China 2.18 0.07 7.47 16.24 2.16

Italy 8.40 1.41 15.13 61.12 1.85

India 9.23 5.92 18.97 99.46 1.89

USA 15.91 3.61 12.57 81.01 3.25

Denmark 6.82 1.48 14.50 39.99 2.40

1.23

France 10.81 4.65 12.85 72.09 2.77

— 0.88

Germany 11.41 6.95 10.91 65.02 3.51

— 1.30

Singapore 10.80 —– 11.13 102.26 6.67

of the prediction using Farr law was not satisfactory at all. Some of the reasons behind

this could be the problem in datasets and lack of knowledge in the spread of a disease [20].

Therefore, we have investigated the spread of COVID-19 using three basic models such as

power law, Farr’s law and IDEA model, on the same platform, to understand the spread of

the disease as much as possible. Besides, SIR model prediction done by Singapore University

of Technology and Design is also found in agreement with our study. Moreover, the spread of

COVID-19 is completely different from that in HIV. This method, which is the combination

of power law, Farr’s law and IDEA model, could be very strong yet simple framework to

show the rate of infection, reproduction as well as the whole dynamics of infectious disease.

V. CONCLUSION

The COVID-19 infection is fitted using power law scaling for the countries like the USA,

China, Denmark, France, Germany, Italy and Singapore up to 26 April, 2020 and India up
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to 2 May, 2020 . In continuation with our earlier work, we find that the value of γ reduces

significantly in all countries, except in Singapore, where the post-intervention effects has not

yet been seen. Using Farr’s law the new cases per day with elapsed time has been fitted

with Gaussian function and decay of infection is predicted for the countries mentioned above.

Combining IDEA model and Farr’s law, the reproduction rate R0 is also found. Interestingly,

Farr’s law seems to show that countries with earlier lockdown usually suffer lesser number of

infection. India and Denmark show smaller number of daily infections possibly due to earlier

lockdown, though the peak in the Gaussian curve for India is still elusive. In terms of R0 and

γ, it is clear that COVID-19 infection is gradually decreasing. The possible time required

for the decay of infection is shown by the time in which the number of new cases becomes

less than a hundred (100) per day. The whole technique adopted in this work appears to be

a powerful yet simple one for the understanding of such infectious disease dynamics.
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