Evaluation of lockdown impact on SARS-CoV-2 dynamics through viral genome
 quantification in Paris wastewaters

- 3
- Wurtzer S¹, Marechal V²⁺, Mouchel JM³, Maday Y⁴⁺, Teyssou R⁵, Richard E¹, Almayrac JL⁶ & Moulin
 L^{1*}.
- ⁶ ¹ Eau de Paris, R&D Laboratory, DRDQE 33 Avenue Jean Jaurès 94200 Ivry/Seine
- ² Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, F-75012, Paris, France
- 8 ³ Sorbonne Université, CNRS, EPHE, UMR 7619 Metis, 75005 PARIS, e-LTER Zone Atelier
- 9 Seine, France⁴ Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions
- 10 (LJLL), F-75005 Paris, France et Institut Universitaire de France
- ⁵ Department of Virology, Institut de Recherche Biomédicale des Armées. 1Place du Général
- 12 Valérie André. BP73. 91223 BRETIGNY-SUR-ORGE
- ⁶ SIAAP, Service process-laboratoire SIAAP site Seine Amont
- 14 ⁺ VM and YM are co-founders of the COVID-IA initiative
- 15
- 16 Corresponding author: * <u>laurent.moulin@eaudeparis.fr</u>
- 17
- 18 Keywords: SARS-CoV-2, COVID-19, lockdown, quantification, wastewater

20 Summary

21 SARS-CoV-2 is the etiological agent of COVID-19. Most of SARS-CoV-2 carriers are assumed to exhibit 22 no or mild non-specific symptoms. Thus, they may contribute to the rapid and mostly silent 23 circulation of the virus among humans. Since SARS-CoV-2 can be detected in stool samples it has 24 recently been proposed to monitor SARS-CoV-2 in wastewaters (WW) as a complementary tool to 25 investigate virus circulation in human populations. In the present work we assumed that the 26 quantification of SARS-CoV-2 genomes in wastewaters should correlate with the number of 27 symptomatic or non-symptomatic carriers. To test this hypothesis, we performed a time-course 28 quantitative analysis of SARS-CoV-2 by RT-qPCR in raw wastewater samples collected from several 29 major wastewater treatment plant (WWTP) of the Parisian area. The study was conducted from 5 30 March to 23 April 2020, therefore including the lockdown period in France (since 17 March 2020). 31 We confirmed that the increase of genome units in raw wastewaters accurately followed the 32 increase of human COVID-19 cases observed at the regional level. Of note, the viral genomes could 33 be detected before the beginning of the exponential growth of the epidemic. As importantly, a 34 marked decrease in the quantities of genomes units was observed concomitantly with the reduction 35 in the number of new COVID-19 cases which was an expected consequence of the lockdown. As a 36 conclusion, this work suggests that a quantitative monitoring of SARS-CoV-2 genomes in wastewaters 37 should bring important and additional information for an improved survey of SARS-CoV-2 circulation 38 at the local or regional scale.

40 Introduction

SARS-Cov-2 is a positive-sense single-stranded RNA virus of the *Coronaviridae* family and the etiologic agent of COVID-19, a globalized infection affecting more than 2.5 million people worldwide and causing more than 180 000 deaths in total, including more than 160 000 cases in France on April 22, 2020. Virus transmission is mainly associated with the projection of respiratory droplets although a possible contamination through aerosols, contaminated hands and inert surfaces is likely. SARS-Cov-2 causes severe complications mostly in elderly or people suffering from comorbidity factors (such as diabetes, hypertension, obesity, acquired or iatrogenic immunosuppression).

48 The viral infection may initiate in the upper respiratory and/or the lower respiratory tracts. Similarly 49 to SARS-CoV-1 (1) and MERS-CoV (2), SARS-CoV-2 genome was also detected in blood and stools (3-50 5). This argue for a possible enteric phase of the infection although isolation of infectious virus from 51 feces seems difficult (6). Of note diarrhea have been reported in some cases of COVID-19 (6). 52 Importantly, SARS-CoV-2 genomes could be detected in feces several weeks after it could not be 53 detected anymore in oral swabs, suggesting that viral excretion in tools may be longer than oral 54 secretion (7). The presence of viral genomes in stools may open new perspective in the survey of 55 SARS-CoV-2 carriers. It would notably suggest that the virus could possibly be transmitted by a feco-56 oral route, an hypothesis that should likely deserve a careful examination (8).

57 Management of an epidemic, such as lockdown decision, requires a careful monitoring of the 58 infected population by detecting the virus in carriers through massive or targeted testing. 59 Investigating the proportion of people that have been infected through sero-epidemiological surveys 60 is equally important but antibodies against SARS-CoV-2 will appear only weeks after initial infection 61 (9,10). In the case of COVID-19, due to the lack of systematic and repeated screening of the 62 population, the precise number of infected people is difficult to assess, especially because of the high 63 proportion of infected people that exhibit only few or no symptoms but could secrete and silently 64 transmit the virus (11–14). Depending on screening kit availability and public health policy, testing 65 strategy varies between countries which may explain some discrepancy between worldwide data. 66 Estimating the effective proportion of infected individuals is essential for monitoring the epidemic 67 spread and to propose adapted and efficient control procedures, such as partial or total lockdown. 68 France went into lockdown on the March 17 2020, a decision that was expected to have a major 69 impact on virus circulation especially when asymptomatic carriers are considered to have a strong 70 impact on virus transmission. This decision was motivated by the urgent need to limit exposure of so-71 called fragile people who are at highest risk to develop the most severe forms of the disease 72 (11, 13, 15).

73 Analysis of raw wastewaters collected at the inlet of wastewater treatment plants (WWTP) may 74 provide essential information on the health of the human population that is connected to the WWTP. 75 It may notably allow measurement and identification of pathogens or drugs that may be difficult to 76 assess otherwise. Using this method, the European Monitoring Center for Drugs and Drug Addiction 77 follows drugs and their metabolites in the wastewater of several European cities (16). In addition 78 previous works on human enteric viruses in urban river and in raw and treated wastewaters 79 demonstrated that the presence of these viruses was directly linked to epidemic state in the 80 population (17,18). This strongly argue for a close monitoring of fecal viruses in wastewater as a new 81 and complementary tool for investigating human epidemics.

82 Enveloped viruses like coronaviruses are expected to be less resistant than naked viruses that are 83 usually tracked in waste and environmental waters. There is still little information on the persistence 84 of coronaviruses in waters and most of our current knowledge has been inferred from experiments 85 made on surrogate viruses. Recent data suggested that infectious SARS-CoV-2 is particularly resistant 86 in environmental conditions: 3.5 half-life days in the air, 7 days on some surfaces, any reduction at 87 pH between 3 and 10 (6,19). Previous studies on SARS-CoV-1 indicated a significant persistence at 4 88 °C even in wastewater (more than 20 days), or a persistence of at least 1 or 2 days at summer 89 temperatures (1,20,21).

Altogether these results led us and others to suggest that the detection of SARS-CoV-2 genomes in
wastewater could provide an early and global tool to monitor virus circulation in addition to human
epidemiological data (22-24).

93 A first publication underlined the putative benefit of a qualitative approach for monitoring SARS-CoV-94 2 in wastewaters (24). Other studies used quantitative measurements of viral genomes but the 95 survey only started at the apex of the epidemic (25). Here, we used a specific reverse-transcription 96 quantitative PCR (RT-qPCR) method to precisely quantify SARS-CoV-2 genome equivalents in raw 97 wastewaters of the Parisian area. A 2-months survey covering the lockdown period allowed to 98 observe an increase and a decrease in the total quantities of viral genomes that paralleled the 99 number of new COVID-19 cases in the same region. To our knowledge, this is the first real-time 100 indirect survey of SARS-CoV-2 circulation during a lockdown period.

102 Methods

103 Sample collection

104 Three WWTP (more than 100 000 inhabitants linked to the station from the Parisian area were

sampled since the start of the epidemic (March 5th, 2020). Samples were kept at 4°C and processed

106 less than 24 hours after sampling.

107 Concentration methods

Samples were homogenized, then 11 ml were centrifugated at 200 000 x g for 1 hour at +4°C. Viral pellets were resuspended in 400 μ L of PBS 1X buffer.

110 200µL of viral concentrate were lysed and extracted using PowerFecal Pro kit (QIAGEN) on a

111 QIAsymphony automated extractor (QIAGEN) according to a modified manufacturer's protocol.

- 112 Extracted nucleic acids were filtered through OneStep PCR inhibitor removal kit (Zymoresearch)
- 113 according the manufacturer's instructions.

114 Molecular detection method

The RT-qPCR primers and PCR conditions used herein have been previously described (26). The amplification was done using Fast virus 1-step Master mix 4x (Lifetechnologies) with oligonucleotide concentrations recommended previously. Detection and quantification were carried on the E gene by RT-qPCR. Positive results were confirmed by amplification of a region located within the gene encoding for the viral RNA-dependent RNA polymerase (RdRp). An internal positive control (IPC) was added to evaluate the presence of residual inhibitors. The detection limit was estimated to be around 10³ genome units per liter of raw wastewater.

The quantification was performed using a standard curve based on synthetic oligonucleotide corresponding to the full-length amplicon on the E gene (SARS-Cov2 Wuhan-Hu isolate sequence NC_045512.2). Amplification reaction and fluorescence detection were performed on Viaa7 Real Time PCR system (Lifetechnologies).

126 Modelization of Viral RNA excretion

127 Even if the real number of infected people is unknown, we attempted to compute the expected 128 amount of viral RNA shed in stools, using available information. Since the very beginning of the 129 epidemic, the daily number of patients consulting at the emergency department of greater Paris 130 hospitals and diagnosed with COVID symptoms was published 131 (https://www.santepubliquefrance.fr/). Wölfel et al. measured the daily amount of vRNA in swab 132 samples for few patients (27). This data was used as an estimation of viral expression for all infected

people and we also assume that people with symptoms would consult 2 days after the onset of the illness, and that at any moment the number of patients with strong symptoms was proportional to the total number of infected people. Accepting the above hypothesis, the convolution of two dataset (i.e. number of consulting patient and model of excretion) is an emission-proxy, proportional to the

total amount of viral RNA shed in stools in a given population.

138 Results

139 Three major wastewater treatment plants (WWTP) managing over 75 000 cubic meters per day, were sampled at the inlet of the plant from March 5th to April 23th 2020. All processed samples scored 140 141 positive for the presence of SARS-CoV-2 genomes as assessed by RT-qPCR on the viral E gene. All 142 positive samples were confirmed by RT-qPCR on the viral RdRp gene (Figure 1). The COVID-19 143 epidemic in the same region was illustrated by various indicators such as the total number of COVID-144 19 cases treated in the regional hospitals, the accumulation of hospitalized patients or the daily 145 death toll linked to COVID 19. Based on these epidemiologic statistics and on published data on virus 146 shedding quantity and delay, an estimated indicator of the viral excretion in the region was 147 calculated and compared to the viral load in wastewaters.

- Briefly, the concentration of vRNA in raw wastewater was around 5.10⁴ genome units /L on the 5th of March 2020. At the same date, less than 10 COVID-19 confirmed patients were reported and only 404 individuals were tested positive in France. For the Parisian area more specifically, 91 confirmed cases were reported at that time (on a total number of more than 12 million inhabitants) and no death was recorded. Altogether this information indicated that the COVID-19 epidemic was at an early stage in the Parisian area.
- The time-course monitoring of viral load in WW displayed an exponential increase (from 5.10⁴ GU/L on March 5th to 3.10⁶ GU/L, a 2-log increase in average). A peak was observed on the 9th of April, followed by a marked decrease (1-log reduction in average). The shape of the concentration curve was reminiscent of the disease dynamics at the regional level, with an 8-day temporal shift.

Altogether these results underline that essential information could be obtain from wastewater epidemical monitoring, such as early starting of the epidemics, evolution of the infections, and impact of the lockdown procedures.

162 Discussion

163 It is demonstrated here for the first time that a quantitative detection of SARS-CoV-2 in wastewaters 164 could reflect the circulation of the virus in human populations in the Parisian area, a region called Ile-165 de-France. Since similar results were obtained from three independent and distant WWTP around 166 Paris with striking similarities, the time-course survey that has been done is likely to be a direct 167 reflect of SARS-CoV-2 dynamic in Parisian inhabitants that are connected to these WWTP. It is to note that at home lockdown is effective since March 17th 2020, therefore limiting daily transport. 168 169 Importantly no significant rain fall was recorded in the Parisian area that could have had an impact 170 on virus concentration in wastewaters. More surprisingly this decrease stopped after 7 days, and the virus concentration has been stable since. This plateau is intriguing, although the emission-proxy 171 172 suggests that it can partly be explained by the duration of the virus shedding period, and several 173 hypotheses can be made. First, one may suggest that many infected people are still secreting viruses 174 in their feces whereas the virus is not present anymore in the ORL region. This hypothesis has 175 recently been confirmed in Chinese patients with longer periods of excretion than reported by Wölfel 176 (7). Second, lockdown has been partial since some specific workers have been allowed to pursue 177 essential activities that were not compatible with homeworking. These people are usually not 178 considered at risk of severe infections (i.e. more pauci-symptomatic case), but they may promote 179 virus circulation at a low level notably in their family if they do not strictly respect hands cleaning and 180 mask wearing. Third, one may suggest that lockdown is not respected by few people that maintain 181 virus circulation at a low but significant level. Virus survey in the same WWTP will likely provide some 182 answers in the following weeks.

183 The observed delay between epidemiological curves in humans compared to virus quantification in 184 wastewaters is probably due to several parameters. This may include the effective number of 185 infected people, the timing and temporal kinetics of viral shredding in feces and other causes that 186 are still to be investigated. Nevertheless, our data are in very good agreement with epidemiological 187 parameters such as the number of confirmed COVID-19 patients or our excretion model. To that 188 respect, let us note that our study provides a strong indirect evidence for a significant reduction of 189 virus transmission in response to lockdown. According to our results, the number of people 190 producing SARS-CoV-2 is likely underestimated when based on individual testing, especially during a 191 pandemic where a limited quantity of virological tests did not allow for extensive testing so far. As a comparison the quantity of human enteric virus concentration in raw wastewater is around 10⁶ per 192 193 liter (17).

194 Epidemiological investigations that have been conducted on the Diamond Princess cruise ship 195 suggested that less than 20% of infected people were asymptomatic (12). Most of the infected 196 people were reported to exhibit moderate nonspecific symptoms including fever, headache, body 197 aches, intense tiredness and/or dry cough. However infected people can produce SARS-CoV-2 for a 198 few days before the onset of symptoms and up to several days after recovery (2,7,28). Another 199 extensive study based on Iceland population shows that 43% of SARS-CoV-2 positive patients did not 200 report any symptoms (29). In this context, a clear majority of infected carriers may silently 201 contaminate sensitive people. This led us to suggest that the contamination of raw wastewaters may 202 occur before the significative appearance of clinical cases. The evolution of SARS-CoV-2 viral load in 203 wastewater was in good agreement with the dynamics of pandemic during the first wave of infection 204 in urbanized area, which is also in agreement with the excretion model that is proposed here. To our 205 knowledge this is the first report demonstrating that the quantitative monitoring of SARS-CoV-2 in 206 raw wastewater is a time-related relevant indicator of the evolution of the health status of a 207 population linked to a sewage network. This quantitative approach was especially useful to 208 unrevealed the dynamics of the pandemic and follow impact of government measures such as 209 containment.

To finish, this data, if carefully utilized, could help to describe the proportion of SARS-CoV-2 excretors during all the monitored pandemic event and allow to calculate the immunity of the population,

especially at the local level.

213 Conclusions

Our results strongly argue for the use of a quantitative monitoring of SARS-CoV-2 genomes in urban wastewaters. This would also argue for a long-time conservation of wastewater samples in dedicated local i.e. wastewater-bank, which would allow a retrospective investigation of pathogens circulation. Additionally, wastewaters survey may provide an alternative and possibly early tool to detect pathogens in populations when investigations in humans are difficult to conduct for logistic, ethical or economic reasons, notably in poor countries that are strongly exposed to COVID-19 epidemic.

221

222 Reference

- Wang X-W, Li J-S, Guo T-K, Zhen B, Kong Q-X, Yi B, et al. Concentration and detection of SARS
 coronavirus in sewage from Xiao Tang Shan Hospital and the 309th Hospital. Journal of Virological
 Methods. sept 2005;128(12):156261.
- Zhou J, Li C, Zhao G, Chu H, Wang D, Yan HH-N, et al. Human intestinal tract serves as an alternative
 infection route for Middle East respiratory syndrome coronavirus. Sci Adv. nov
 2017;3(11):eaa04966.
- Zhang W, Du R-H, Li B, Zheng X-S, Yang X-L, Hu B, et al. Molecular and serological investigation of
 2019-nCoV infected patients: implication of multiple shedding routes. Emerging Microbes &
 Infections. 1 janv 2020;9(1):386^[I]9.
- Zhang H, Kang Z, Gong H, Xu D, Wang J, Li Z, et al. The digestive system is a potential route of 2019 nCov infection: a bioinformatics analysis based on single-cell transcriptomes [Internet].
 Microbiology; 2020 janv [cité 28 avr 2020]. Disponible sur:
 http://biorxiv.org/lookup/doi/10.1101/2020.01.30.927806
- Wu Y, Guo C, Tang L, Hong Z, Zhou J, Dong X, et al. Prolonged presence of SARS-CoV-2 viral RNA in
 faecal samples. Lancet Gastroenterol Hepatol. 19 mars 2020;
- Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99
 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. févr
 2020;395(10223):507213.
- Chen C, Gao G, Xu Y, Pu L, Wang Q, Wang L, et al. SARS-CoV-2–Positive Sputum and Feces After
 Conversion of Pharyngeal Samples in Patients With COVID-19. Ann Intern Med [Internet]. 30 mars
 2020 [cité 28 avr 2020]; Disponible sur: https://annals.org/aim/fullarticle/2764036/sars-cov-2 positive-sputum-feces-after-conversion-pharyngeal-samples
- 2458.Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: is faecal-oral transmission of SARS-246CoV-2 possible? The Lancet Gastroenterology & Hepatology. avr 2020;5(4):33527.
- 9. Grzelak L, Temmam S, Planchais C, Demeret C, Huon C, Guivel F, et al. SARS-CoV-2 serological analysis of COVID-19 hospitalized patients, pauci-symptomatic individuals and blood donors.
 [Internet]. Infectious Diseases (except HIV/AIDS); 2020 avr [cité 28 avr 2020]. Disponible sur: http://medrxiv.org/lookup/doi/10.1101/2020.04.21.20068858
- Assis RR de, Jain A, Nakajima R, Jasinskas A, Felgner J, Obiero JM, et al. Analysis of SARS-CoV-2
 Antibodies in COVID-19 Convalescent Plasma using a Coronavirus Antigen Microarray [Internet].
 Immunology; 2020 avr [cité 28 avr 2020]. Disponible sur: http://biorxiv.org/lookup/doi/10.1101/2020.04.15.043364
- Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, et al. Substantial undocumented infection facilitates the
 rapid dissemination of novel coronavirus (SARS-CoV2). Science. 16 mars 2020;eabb3221.
- Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of
 coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama,
 Japan, 2020. Eurosurveillance [Internet]. 12 mars 2020 [cité 28 avr 2020];25(10). Disponible sur:
 https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.10.2000180

- Al-Tawfiq JA. Asymptomatic coronavirus infection: MERS-CoV and SARS-CoV-2 (COVID-19). Travel
 Med Infect Dis. 27 févr 2020;101608.
- Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, et al. Transmission of 2019 nCoV Infection from an Asymptomatic Contact in Germany. N Engl J Med. 5 mars
 2020;382(10):97021.
- 266 15. Ng SC, Tilg H. COVID-19 and the gastrointestinal tract: more than meets the eye. Gut. 9 avr 2020;
- González-Mariño I, Zuccato E, Santos MM, Castiglioni S. Monitoring MDMA metabolites in urban
 wastewater as novel biomarkers of consumption. Water Research. mai 2017;115:128.
- Bisseux M, Colombet J, Mirand A, Roque-Afonso A-M, Abravanel F, Izopet J, et al. Monitoring human
 enteric viruses in wastewater and relevance to infections encountered in the clinical setting: a one year experiment in central France, 2014 to 2015. Vol. 23, Eurosurveillance. 2018. p. 17200237.
- Prevost B, Lucas FS, Ambert-Balay K, Pothier P, Moulin L, Wurtzer S. Deciphering the Diversities of Astroviruses and Noroviruses in Wastewater Treatment Plant Effluents by a High-Throughput Sequencing Method. Appl Environ Microbiol. oct 2015;81(20):7215222.
- 275 19. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol
 276 and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 17 mars 2020;
- 20. Gundy PM, Gerba CP, Pepper IL. Survival of Coronaviruses in Water and Wastewater. Food Environ
 278 Virol. mars 2009;1(1):10.
- 279 21. Ye Y, Ellenberg RM, Graham KE, Wigginton KR. Survivability, Partitioning, and Recovery of Enveloped
 280 Viruses in Untreated Municipal Wastewater. Environ Sci Technol. 17 mai 2016;50(10):5077285.
- 281 22. Lodder W, de Roda Husman AM. SARS-CoV-2 in wastewater: potential health risk, but also data
 282 source. Lancet Gastroenterol Hepatol. 1 avr 2020;
- 283 23. Mallapaty S. How sewage could reveal true scale of coronavirus outbreak. Nature. avr
 284 2020;580(7802):17627.
- 285 24. Medema G, Heijnen L, Elsinga G, Italiaander R, Brouwer A. Presence of SARS-Coronavirus-2 in
 286 sewage. medRxiv. 1 janv 2020;2020.03.29.20045880.
- Wu F, Xiao A, Zhang J, Gu X, Lee WL, Kauffman K, et al. SARS-CoV-2 titers in wastewater are higher
 than expected from clinically confirmed cases. medRxiv. 1 janv 2020;2020.04.05.20051540.
- 26. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, et al. Detection of 2019 novel
 290 coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. janv 2020;25(3).
- 27. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment
 of hospitalized patients with COVID-2019. Nature [Internet]. 1 avr 2020 [cité 28 avr 2020];
 Disponible sur: http://www.nature.com/articles/s41586-020-2196-x
- 28. Atkinson B, Petersen E. SARS-CoV-2 shedding and infectivity. The Lancet. avr
 2020;395(10233):1339240.
- 296 29. Gudbjartsson DF, Helgason A, Jonsson H, Magnusson OT, Melsted P, Norddahl GL, et al. Spread of
 297 SARS-CoV-2 in the Icelandic Population. N Engl J Med. 14 avr 2020;NEJMoa2006100.

299

300 Acknowledgment

- 301 Olivier Rousselot (director of "laboratoires et de l'environnement", SIAAP) is acknowledged for his
- 302 support and critical reading of the manuscript. Vincent Rocher for management of sampling at the
- 303 SIAAP Innovation department. Technical assistance from the R&D Eau de Paris Laboratory members,
- and Alban Robin for helpful support.

305 Contribution

- 306 SW, ER performed the virus measurements; SW, LM started the project; JLA, SW provided samples;
- LM, VM, JMM, SW for the redaction of the manuscript; YM, RT, JLA technical and theorical discussion
 .

309 Funding

Analysis were carried on the Eau de Paris 2020 Research grant. Samples were provided by SIAAP.

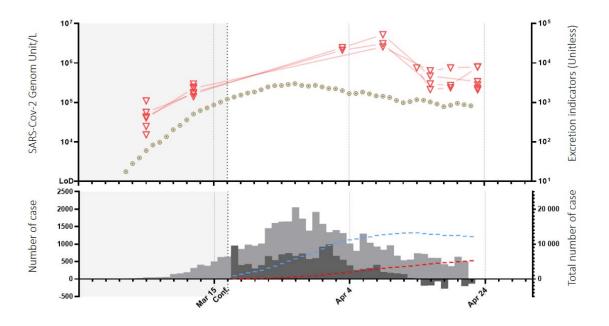


Figure 1: Upper panel: Quantification of SARS-Cov-2 in wastewater samples in Parisian Area in different WWTP (open inverted red triangles for important WWTP, purple open inverted triangles for smaller WWTP) in circle estimators of the viral excretion.

Lower panel : In Light grey area, daily number of consultation for COVID 19 Symptoms in hospital of the Parisian area. Dark grey daily growth of hospitalized patient. Blue bar total hospitalized patient in the Parisian area, red bar cumulative deaths each day, in Parisian area.

318 Both panel : grey background, pre-lockdown period.

319

320

322 Supplementary data

323 None