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Abstract (348 words) 
Importance:   

There is an urgent need to understand patient characteristics of having COVID-19 disease and 

evaluate markers of critical illness and mortality.   

Objective:   

To assess association of clinical features on patient outcomes.  

Design, Setting, and Participants:   

In this observational case series, patient-level data were extracted from electronic medical 

records for 28,336 patients tested for SARS-CoV-2 at the Mount Sinai Health System from 2/24/ 

to 4/15/2020, including 6,158 laboratory-confirmed cases.  

Exposures: 

Confirmed COVID-19 diagnosis by RT-PCR assay from nasal swabs. 

Main Outcomes and Measures:   

Effects of race on positive test rates and mortality were assessed. Among positive cases admitted 

to the hospital (N = 3,273), effects of patient demographics, hospital site and unit, social 

behavior, vital signs, lab results, and disease comorbidities on discharge and death were 

estimated. 

 

Results:   

Hispanics (29%) and African Americans (25%) had disproportionately high positive case rates 

relative to population base rates (p<2e-16); however, no differences in mortality rates were 

observed in the hospital. Outcome differed significantly between hospitals (Gray’s T=248.9; 

p<2e-16), reflecting differences in average baseline age and underlying comorbidities. 

Significant risk factors for mortality included age (HR=1.05 [95% CI, 1.04-1.06]; p=1.15e-32), 

oxygen saturation (HR=0.985 [95% CI, 0.982-0.988]; p=1.57e-17), care in ICU areas (HR=1.58 

[95% CI, 1.29-1.92]; p=7.81e-6), and elevated creatinine (HR=1.75 [95% CI, 1.47-2.10]; 

p=7.48e-10), alanine aminotransferase (ALT) (HR=1.002, [95% CI 1.001-1.003]; p=8.86e-5) 

white blood cell (WBC) (HR=1.02, [95% CI 1.01-1.04]; p=8.4e-3) and body-mass index (BMI) 

(HR=1.02, [95% CI 1.00-1.03]; p=1.09e-2). Asthma (HR=0.78 [95% CI, 0.62-0.98]; p=0.031) 

was significantly associated with increased length of hospital stay, but not mortality. Deceased 
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patients were more likely to have elevated markers of inflammation. Baseline age, BMI, oxygen 

saturation, respiratory rate, WBC count, creatinine, and ALT were significant prognostic 

indicators of mortality. 

 

Conclusions and Relevance:   

While race was associated with higher risk of infection, we did not find a racial disparity in 

inpatient mortality suggesting that outcomes in a single tertiary care health system are 

comparable across races. We identified clinical features associated with reduced mortality and 

discharge. These findings could help to identify which COVID-19 patients are at greatest risk 

and evaluate the impact on survival.   
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Introduction 
 

Coronavirus disease 2019 (COVID-19) is a global pandemic that has already infected over 2 

million individuals, including over 630,000 in the US as of Apr 15, 20201. Given recent reports 

on the high rate of COVID-19 infections among those who remain asymptomatic, however, the 

true rate of infection is expected to be significantly higher than reported1,2.  More than 26,000 US 

residents have died, the majority in epicenters like New York City (NYC), where 118,302 cases 

and 8,455 deaths have occurred to date1. Mortality rates have been disproportionately high 

among Hispanic and African American individuals. In NYC, death rates for these groups are 

nearly double those in Caucasians or Asians, but the factors contributing to this racial disparity 

remain unclear2. Furthermore, reducing mortality among all critically ill individuals is the 

highest priority, although some clinical risk factors have been noted in recent publications3,4, 

there remains much to learn about which patients are at highest risk, what factors are most 

indicative of disease progression and prognosis, and which interventions may be effective.  

 

A systematic review of studies predicting coronavirus-related outcomes concluded that all of the 

publications were biased in some way, limiting their utility in practice3. They noted that 

prognostic models often excluded patients for which no outcome was yet determined (e.g., 

patients that had neither recovered nor died) leading to selection bias, used relatively small 

samples (e.g., 26-577 patients) increasing risk of overfitting, or in many cases did not use 

features or timepoints that could be measured prospectively (e.g., last available vital sign)3. 

Furthermore, none of these studies were conducted in the US where population factors, health-

related behaviors, cultural differences, and hospital standard of care protocols may be different4. 

Indeed, case characteristics among hospitalized patients in China seem meaningfully different 

than those in the US5 – for example, mortality and certain mortality rates were much lower. 

 

There have been several recent descriptive reports of COVID-19 clinical characteristics among 

patients admitted to US hospitals6, including an ongoing, population-based report from the 

Center for Disease Control and Prevention7 and another from NYU Langone Health5. While data 

is mounting regarding racial disparities and COVID-195 most of these studies have not offered in 

depth analysis by race to investigate racial disparities in mortality. Since no proven effective 
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therapies exist for COVID-196, up-to-date clinical outcomes and data on factors influencing risk 

for mortality and recovery over time are urgently needed.  

 

Given the high mortality rate in NYC and the uncertainty of COVID-19 progression during 

inpatient stays, accurately evaluating prognosis of both mortality and discharge among 

hospitalized individuals is critically needed. Identifying which patients are at highest risk for 

mortality will enable clinicians to target interventions, allocate resources, and make more 

informed triage decisions. Highlighting factors most associated with mortality will also help 

prioritize factors to monitor during hospital admission. Prognostic models have the potential to 

improve the standard of care for COVID-19, open opportunities for testing investigational drugs 

in clinical trials, and guide clinical acumen.  

 

In this study, the largest and most racially diverse US-based COVID-19 case series to date, we 

provided descriptive statistics on laboratory-confirmed cases (N = 6,158) and hospitalized 

patients (N = 3,273) from the Mount Sinai Health System (MSHS). In particular, we investigated 

the impact of race on mortality given the racial disparities in mortality rates observed in the US2. 

We also evaluated the effects of demographics, social behavior, and clinical variables on 

mortality and recovery among hospitalized patients admitted to one of MSHS hospitals in 

Manhattan, Brooklyn, and Queens. As in previous studies5-7, we considered disease 

comorbidities, vital signs, and lab results for COVID-19 disease and potential to improve patient 

outcomes. We reported hazard ratios for all risk factors estimated using a competing risk model 

that simultaneously considered two outcomes resulting in hospitalization termination, death and 

discharge. We also developed a prognostic model using exclusively data available at baseline, 

the first such model in a diverse NYC with diverse population. Together, we believe these 

estimates can help inform stakeholders which COVID-19 patients are at greatest risk for poor 

outcomes and evaluate the impact on survival.  
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Methods 
 

Electronic Medical Record data and processing 

 

This study utilized the de-identified EMR data and was exempted from the Mount Sinai 

Institutional Review Board due to the COVID-19 pandemic. We obtained de-identified data from 

the electronic medical record (EMR; EPIC Systems) via the Mount Sinai Data Warehouse 

through April 15, 2020.  The EMR dataset included patients with at least one encounter at a 

Mount Sinai facility who had been diagnosed with COVID-19, who were under investigation for 

COVID-19 or who had been screened negative for COVID-19. Patients included in the dataset 

were those who had an encounter (either in person or virtual) at a Mount Sinai facility in which a 

COVID-19 test was ordered or a COVID-19 related diagnosis, including suspected diagnosis like 

‘Suspected 2019-Ncov diagnosis’, was given.  

 

In total, 28,336 patients were included in the de-identified EMR dataset. Demographics 

including age, sex, race, ethnicity and smoking status, as well as disease comorbidities were 

extracted from the EMR. Comorbidities were defined as the presence or absence of the following 

chronic conditions recorded as “Active” in the Epic Problem List: diabetes mellitus, 

hypertension, asthma, chronic obstructive pulmonary disease (COPD), human immunodeficiency 

virus (HIV) infection, obesity and cancer. For each encounter, initial measurements of vital signs 

including BMI, temperature, systolic blood pressure (BP), diastolic BP, O2 saturation, heart rate 

and respiratory rate were provided. Laboratory test orders and results throughout these 

encounters were also extracted; common lab test orders included complete blood count (CBC) 

and differentials, metabolic panels, blood lactate dehydrogenase (LDH), ferritin, fibrin 

degradation dimer (D-Dimer), serum procalcitonin, hepatic function panel, blood culture, 

fibrinogen, C reactive protein (CRP).  

 

Since vital signs can shift during a single encounter, we also extracted the maximum temperature 

and minimum O2 saturation for each encounter, as well as the length of stay for inpatients.  

 

COVID-19 case definition 
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A confirmed case of COVID-19 was defined as a positive test result from real-time reverse- 

transcriptase-polymerase-chain-reaction (RT-PCR) assay nasopharyngeal swab specimens. A 

patient under investigation (PUI) of COVID-19 was clinically defined as patients who 

experienced 1) fever and/or cough, shortness-of-breath (SOB), sore throat, nasal congestion not 

related to typical seasonal allergies or 2) fever and/or cough and a history of exposure to 

COVID-19. Collectively, our study included 6,158 COVID-19 patients and 428 PUIs with 

confirmed positive or presumptive positive COVID-19 RT-PCR test results. 

 

Examination of racial disparity in diagnosis and mortality rates 

 

We compiled a background population from the MSHS EMR as a demographic reference for the 

residents in the areas of NYC served by Mount Sinai. We selected all patients with encounters of 

any types (outpatient, inpatient, emergency) recorded in the MSHS EMR since 2016 and 

retrieved their self-reported races, ethnicities and age in years. Patients with unknown 

race/ethnicity information were excluded from this analysis. In total, the background population 

was composed of 1.6 million people, with 48.1% white, 21.6% African American/Black, 15.3% 

other, 8.5% Asian/Pacific Islander and 6.4% Hispanic/Latinos (Table 1).  

 

Next, we tallied the numbers of SARS-CoV-2 infected patients defined previously and those who 

were deceased as of April 15, 2020 (Table 1). To test for racial disparities in positive test 

frequencies and COVID-19 mortality, we compared observed rates of COVID-19 diagnosis and 

mortality relative to the MSHS race frequencies. We performed a Chi-square test of 

independence of variables in contingency tables under the null hypothesis that the COVID-19 

diagnosis rates or mortality rates were not different among the five racial groups. We also fitted a 

multivariate logistic regression (implemented in ‘glm’ function in R version 3.6.1) to adjust for 

confounding variables such as age on diagnosis rates. Finally, competing risks survival analysis 

was employed to analyze the mortality rate and discharge rate over time.  

 

Hospitalized COVID-19 patient cohort 
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We included COVID-19 patients (N=3,061) and PUIs (N=212) with confirmed positive or 

presumptive positive COVID-19 RT-PCR test results who were admitted as inpatients and stayed 

at least one day in the hospital. We recorded the durations of hospital stay and the number of 

days since SARS-CoV-2 positive. The diagnosis day was defined as the date when the COVID-

19 test with positive results was ordered. Three possible outcomes were defined for our 

hospitalized COVID-19 cohort: in-hospital death (deceased), discharged to home or other 

locations not concerning intensive medical care (recovered), and continued hospitalization (right-

censored). For individual patients, we extracted all hospital encounters up to April 15, 2020 that 

were related to COVID-19 diagnostic tests or hospital admissions.  

 

Analyses of individual factors on inpatient mortality over time  

 

We were first interested in observing any demographic or hospital site- or specialty-specific 

effects on mortality and discharge individually over time. To do this, we estimated the 

cumulative incidence functions (CIFs) for in-hospital death and discharge using a univariate 

competing risks survival analysis for each covariate individually: race, sex, hospital, and care 

area within the hospital. 

 

Multivariate regression among inpatients with patient outcomes 

 

Next, we assessed which factors were associated with death among hospitalized patients. For this 

analysis, we only included subjects with known outcomes (death: N = 742; discharge: N = 

1,706). We fitted a multivariate logistic regression on clinical outcome (deceased=1, recovered 

=0) using duration of stay, demographic factors, vital signs, comorbidities, care in ICU unit, and 

common laboratory tests ordered at time of hospital admission.  

 

Multivariate analyses on inpatient mortality: Competing risk survival analysis 

 

To assess the impact of clinical variables on survival, we modeled the outcomes of hospitalized 

COVID-19 patients using competing risks survival analyses, which treats the two distinctive 

outcomes, in-hospital death and cured as two competing causes for the same event, i.e. 
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termination of hospitalization. Competing risks models are recommended over Kaplan-Meier 

survival analysis for studying events with multiple underlying causes7-9. More formally, we 

denote the duration of hospital stay since diagnosis as ! and the total duration from diagnosis to 

termination of hospitalization as !!. The goal of competing risks survival analysis is to estimate 

the CIF for each individual cause k. CIF is a function of time defined as the probability of a 

patient who stayed at hospital for a duration of !!: 

"#$"%!!& = (%!!#$& × ℎ"%!!& 
, where ((!) is the survival function and ℎ"(!) is the hazard function for the cause -. To estimate 

the CIFs for in-hospital death and recovery for COVID-19 patients, we used the “cuminc” 

function in the R package “cmprsk”. Gray’s test10 was conducted to determine if there were 

statistical differences among CIFs corresponding to subgroups of patients, under the null 

hypothesis that the CIFs under consideration were not different from each other.  

 

To identify covariates associated with the two clinical outcomes – represented in the covariate 

vector . – we performed multivariate statistical analyses to estimate the contribution of each 

potential covariate to the cause-specific hazard function ℎ"(!) as follows: 

 

ℎ"(!|.) = β",&(!)exp45β",'
(

')$
6'7 

, where β",&(!) is the baseline hazard of case -, and β",' is the coefficient for covariate 8. When 

estimating the β",' for competing risks analyses, we applied two families of models: cause-

specific hazard models and subdistribution hazard models11. Cause-specific hazard models were 

estimated using the Cox proportional hazard approach12 using the “coxph” function in the R 

package “survival” by treating one cause as the event and the other as right-censored, whereas 

subdistribution hazard models were fitted using the “cmr” function in the R package “cmprsk”13. 

The R software used throughout this research is in version 3.6.1. 

 

Prognostic forecast of inpatient mortality  
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To help with prediction, we performed the same analysis used for estimating effects on survival 

described already (“Multivariate analyses on inpatient mortality: Competing risk survival 

analysis”), but limited features to only those available at baseline when patients were admitted to 

the hospital.  

 

  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 4, 2020. ; https://doi.org/10.1101/2020.04.28.20075788doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.28.20075788
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

Results 
 

Our cohort included 28,336 individuals tested (Table 1) for COVID-19. 6,158 (21.7%) patients 

tested positive and an additional 428 (1.5%) were presumed positive and thus included as cases 

by our definition. 3,273 cases out of all positives (53.2%) were admitted to one of five hospitals 

included in the Mount Sinai Health System which use the EPIC EMR system. Of those, 742 died 

(22.6%), 1,706 were discharged (52%), and 825 remained hospitalized (25.2%) at the end point 

of this study (April 15, 2020).  

 

We investigated the impact of race and age on COVID-19 diagnosis rates and mortality. We then 

assessed the influence of a variety of factors on inpatient mortality. First, we estimated the 

individual effect of race, sex, hospital, and specialty unit on inpatient mortality over time. Next, 

we identified the strongest predictors of inpatient mortality considering all possible indicators 

regardless of time, which can help prioritize clinical features to monitor. Then, to assess the 

impact of each feature on survival, we estimated hazard ratios from a competing risks survival 

analysis. Finally, to offer a prognostic tool for prioritizing highest risk patients, we used baseline 

information to forecast mortality.  

 

Racial disparity for SARS-CoV-2 positive: Hispanics and African Americans have elevated 

COVID-19 diagnosis rates 

 

We found Hispanics and African Americans were over-represented in the SARS-CoV-2 infected 

cohort, accounting for 28.5% and 24.6%, respectively, of all the infected patients with known 

self-reported races, which were both significantly higher rates than expected based on the 

population base rate (Chi2=5340.5; p < 2e-16; Table 1). We also noted the age distributions of 

infected patients within each race were different relative to our reference population (Fig. S1A). 

Furthermore, the Caucasian deceased cohort shows a different age distribution from the other 

race groups. Its density increases continuously as age increases, forming a triangle shape, while 

African Americans shows the highest density at the age of 74 years (Fig S1B). However, even 

after adjusting for age in logistic regression, we found that Hispanics, African Americans and 

people identified as other races have significantly higher odds of being infected by SARS-CoV-2 
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compared to Caucasian individuals (Table S1). Age-adjusted COVID-19 diagnosis rates in 

Caucasian and Asian American groups were not statistically different. Together, this has clearly 

demonstrated that some minority groups, including Hispanics and African Americans, were at 

higher risk of being infected by SARS-CoV-2 in the New York metropolitan area served by the 

MSHS.  

 

Interestingly, we found a bimodal age distribution in infected cohorts of each race, with the first 

peak in the age group of 20-40 years and second peak in the age group of 50-70 (Fig S1A). 

Within the deceased population, Caucasians showed a triangular shape of age distribution with 

higher density when age increases, while African Americans showed the highest density around 

the age of 75 years (Fig S1B). 

 

No racial disparity is detected among COVID-19 patients for in-hospital mortality 

 

Importantly we found no differences in mortality rates across all racial groups (p =0.056; Table 

1). We also found that older age increased risk for mortality (Fig. 1), as has been previously 

reported elsewhere3,4,6. Furthermore, we did not find an effect of race on clinical outcome after 

adjusting for underlying covariates (Fig. 3), which further suggests racial parity in terms of in-

hospital mortality in our cohort. 

 

 

Factors influencing inpatient mortality 

 

To identify factors involved in the progression and prognosis of the disease, we focused on 

COVID-19 patients admitted to the hospital. Our hospitalized COVID-19 cohort contains 3,273 

patients with at least one day in the hospital, among whom 742 died, 1,706 were discharged 

(presumed recovered), and 825 were still hospitalized as of April 15, 2020 (Table 2). We 

summarize the demographic features, comorbidities, vital signs and laboratory tests at admission, 

as well as the distribution of patients by hospital site, care in the intensive care unit (ICU) area, 

and number of days from diagnosis to discharge or last follow-up (Table 2).  
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Effects of demographics, hospital site, and care area on time to death or discharge. To 

assess the effects of individual covariates on clinical outcomes over time, we estimated the 

cumulative incidence functions (CIFs) for in-hospital death and discharge using a univariate 

competing risks survival analysis. In our full cohort, we estimated that by 10 days post-

diagnosis, patients have a 51.1% chance of being recovered and being discharged from the 

hospital and a 21.7% chance of death (Fig S2). By grouping our cohort using different 

demographic and hospitalization factors, we found the differences in time-adjusted mortality 

among different racial groups (p=0.003, Gray’s test) is more enriched in Caucasian due to its 

older age group (Fig. S1B), but no differences in the CIFs of the recovered patients (p=0.408) 

(Fig. 2A). We also found females have better outcomes compared to males; they have trend with 

lower mortality rates (p=0.064) and significantly higher discharge rates (p=2.36e-4) over time 

(Fig. 2B), which translates to shorter in-hospital stays. Hospitalized patient outcomes also 

differed by hospital and care area types within hospitals, including ICUs, medical and surgical 

units, and other specialties (Fig. 2C-D). We found that patients admitted to hospitals in Brooklyn 

and Queens experienced significantly worse outcomes (Gray’s T=248.9; p<2e-16) compared to 

three hospitals based in Manhattan (Fig. 2C). This can be attributed at least partly due to the 

relatively older COVID-19 cohorts in Brooklyn and Queens compared with the Manhattan 

hospitals (Table S2). As expected, we also observed drastically worse outcomes for all patients 

admitted to ICU care areas compared to other care areas (Fig. 2D).  

 

Multivariate associations between mortality and discharge. Next, we identified etiologic 

factors associated with death among hospitalized patients with known outcomes (death: N = 742; 

discharge: N = 1,706). We found many significant associations (Fig. 3). Risk factors for death 

included advanced age (odds ratio, OR=1.08 [95% CI, 1.06-1.09]; p=7.07e-29), maximum 

temperature during hospitalization (OR=1.19 [95% CI, 1.08-1.32]; p=5.51e-4), respiratory rate 

>25 breaths per minute (BPM) (OR=1.74 [95% CI, 1.13-2.68]; p=0.012), ICU care area 

(OR=20.78 [95% CI, 12.57-35.21]; p=6.0e-31), higher WBC count (OR=1.06 [95% CI, 1.02-

1.10]; p=1.02e-3), elevated serum creatinine >1.2mg/dL (OR=2.77 [95% CI, 2.05-3.75]; 

p=3.16e-11) and high ALT (OR=1.004 [95% CI, 1.001-1.006]; p=3.98e-3). We also found 

patients with higher temperature at admission (OR=0.87 [95% CI, 0.79-0.96]; p=6.65e-3), higher 

oxygen saturation at admission (OR=0.97 [95% CI, 0.95-1.00]; p=0.0022), as well as those with 
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higher minimum oxygen saturation levels during hospitalization (OR=0.91 [95% CI, 0.90-0.93]; 

p=4.05e-25) were more likely to be discharged than be deceased (logit model OR=0.94 [95% CI, 

0.91-0.97]; p=6.67e-4, Fig. 3).  

 

Since ‘care in ICU area’ showed the highest OR, we then divided our samples into patients 

treated in the ICU or not, as these groups have very different rates of mortality (Fig. 2D). We 

found that only advanced age (OR=1.10 [95% CI, 1.04-1.17]; p=1.15e-3) and minimum oxygen 

saturation (OR=0.86 [95% CI, 0.78-0.92]; p=2.4e-4) were significantly associated with death for 

ICU patients (Fig. S5A), whereas all the previously discovered significant covariates persist in 

patients not admitted to the ICU (Fig. S5B). 

 

Competing risks survival analyses for inpatient mortality or discharge. We employed a 

competing risks survival analysis to estimate the effects of covariates on both mortality and 

discharge using two Cox proportional hazard models, yielding cause-specific hazard ratios (HR) 

for each of the two events across all etiologic factors under consideration. This allowed us to 

dissect the effect of those factors on 1) reducing in-hospital mortality rate, and 2) shortening 

hospitalization (early discharge). Survival analyses also allowed us to leverage the additional 

information for patients who were still hospitalized by treating them as right-censored (i.e. the 

final outcome of the patients cannot be determined by the end of the study period). 

 

The cause-specific hazards models showed advanced age significantly increased the risk of in-

hospital death (HR=1.05 [95% CI, 1.04-1.06]; p=1.15e-32) and decreased the probability of 

discharge (HR=0.98 [95% CI, 0.978-0.986]; p=4.07e-21) (Fig. 4). Minimum oxygen saturation 

(death: HR=0.985 [95% CI, 0.981-0.988], p=1.57e-17; discharge: HR=1.09 [95% CI, 1.08-1.10], 

p=2.45e-49), care in ICU (death: HR=1.58 [95% CI, 1.29-1.92], p=7.81e-6; discharge: HR=0.21 

[95% CI, 0.15-0.29], p=1.06e-19), elevated creatinine (death: HR=1.75 [95% CI, 1.29-1.92], 

p=7.48e-10; discharge: HR=0.82 [95% CI, 0.72-0.92], p=1.22e-3) and ALT (death HR: 1.002 

[95% CI, 1.001-1.003], p=8.86e-5; discharge: HR=0.998 [95% CI, 0.998-1.000], p=0.029) also 

all increased the risk of in-hospital death while prolonging the hospital stay (Fig. 4). 

Interestingly, we found that some etiologic factors only significantly influenced one outcome. 

For instance, BMI (death: HR=1.02, [95% CI 1.00-1.03]; p=0.021) showed a significant risk and 
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history of COPD had a trend toward risk (death: HR=1.39, [95% CI 0.98-1.96]; p=0.066) for in-

hospital death, but had no significant effects on the length of hospitalization before discharge. 

Meanwhile, maximum temperature during hospitalization, abnormally high respiratory rate, high 

WBC, and history of asthma did not have significant effects on in-hospital death, but did 

significantly increase the length of hospital stay with HR=0.86 [95% CI, 0.82-0.89], p=5.91e-14; 

HR=0.66 [95% CI, 0.54-0.81], p=6.66e-5; HR=0.98 [95% CI, 0.97-1.00], p=0.011; and HR=0.78 

[95% CI, 0.62-0.98], p=0.031, respectively (Fig. 4).  

 

Prognostic model to forecast mortality or discharge for inpatients. Given the large sample 

size, richness in clinical baseline measurements, and well-defined outcomes, we developed a 

prognostic model for COVID-19. Several significant predictors increased the risk for in-hospital 

death and decreased chance of recovery including age, BMI, oxygen saturation, elevated 

respiratory rate, WBC, creatinine and ALT (Fig. 5). We additionally found that Hispanic and 

African American patients have slightly reduced mortality rates compared to people of other 

races when controlling for the initial baseline physiological measurements and comorbidities 

(Fig. 5A). Moreover, we found history of cancer increased the length of hospitalization and 

delayed recovery, although it did not significantly increase risk of mortality (Fig. 5B). This 

prognostic model may be of significant practical value for clinicians and hospital management. 

 

Association of elevated inflammation or biomarkers and mortality  

 

We also assessed many laboratory tests extracted for the hospitalized COVID-19 patients in 

addition to WBC, creatinine and AST on their association with mortality. These laboratory tests 

were only available for 30% to 75% of the patients in our hospitalized cohort, therefore, are not 

incorporated as covariates for the previous analyses to avoid potential availability biases and 

decreased sample size. To estimate their associations with mortality, we fitted individual 

multivariate regression models for each of these lab tests controlling for age, sex and race in the 

corresponding subsets of cohort where these lab tests are available at baseline. Our analysis 

found that elevated level of LDH (OR=1.003 [95% CI, 1.002-1.004]; p=7.11e-32), CRP 

(OR:1.008 [95% CI, 1.006-1.01]; p=7.15e-19), D-Dimer (OR=1.16 [95% CI, 1.12-1.21]; 

p=1.05e-15), BUN (OR=1.02 [95% CI, 1.02-1.03]; p=1.14e-15), procalcitonin (OR=1.12 [95% 
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CI, 1.09-1.17]; p=1.08e-10), and lower level of HGB (OR=1.07 [95% CI, 1.01-1.13]; p=0.04) are 

significantly associated with increased mortality (Table S3).  

 

 

 
Discussion 
 

Using the largest and most racially diverse US case cohort to date, we have evaluated the impact 

of demographics and clinical characteristics on inpatient mortality in the Mount Sinai Health 

System. Among 6,158 positive or presumed positive diagnosed cases, 3,273 (50%) were 

admitted to one of five hospitals; of those admitted, 742 died (22%) and 1,706 recovered and 

discharged (52%) by the end of the study period on April 15, 2020. While we did observe higher 

rates of COVID-19 diagnosis among African American and Hispanic individuals, we did not 

observe any impact of race on mortality among inpatients. Consistent with previous reports3,4, 

we found that older individuals and men were at higher risk for mortality, as were critically ill 

patients cared for in the ICU. We also found that mortality varied by hospital. We identified 

many clinical features significantly associated with morality that may be important factors to 

monitor during hospital admission including respiration, temperature, heart rate, white blood cell 

count, creatinine, and ALT. We also estimated hazard ratios for survival, identifying oxygen 

saturation, ICU care, elevated creatinine and ALT as strong predictors of mortality. Finally, we 

developed a prognostic model to forecast risk for mortality using only baseline features, which 

we hope will help clinicians and hospitals identify individuals at highest risk earlier on in disease 

progression.   

 

Case prevalence in African Americans and Hispanics is disproportionately high in New York14, 

which is reflected in our cohort. However, in this cohort, the disparity in positive COVID-19 

diagnosis rates did not translate in our cohort to any differences in mortality, suggesting that 

inpatient care in the hospital does not further this disparity. While this study cannot prove it, this 

data suggests that there are no intrinsic biological differences which explain the racial disparities 

in mortality. Differences in rates of positive cases may be due to true differences in infection 

rates, which is consistent with higher case density in areas like Brooklyn and Queens15, where 
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relatively more African American and Hispanic individuals live16. These areas are also more 

densely populated (e.g., persons per household is higher relative to Manhattan), making viral 

isolation more challenging16. It is also consistent with racial differences in occupation – African 

American and Hispanic residents are less likely than residents of any other race to be able to 

work from home, according to the Bureau of Labor Statistics17. This puts these groups at 

increased risk of infection through elevated exposure. Positive case rate differences may also in 

part be due to limitations on number of available tests in high case density places. According to 

testing rates made available by NY State (https://github.com/nychealth/coronavirus-data) 

combined with population estimates15, 3.5 residents in Brooklyn and 2.7 residents in Queens per 

100 have been tested, while 4.2 per 100 have been tested in Staten Island, for example. Test 

availability may have resulted in biasing testing among those residents to individuals more likely 

to be positive, thus artificially raising the positive rate by testing fewer individuals seen as less 

likely to be positive (e.g., asymptomatic individuals). Fewer tests also reduce the ability to track 

and contain the virus, so this may contribute to higher case rates, as well. While we are 

encouraged to report no in-hospital differences in mortality by race, the burden of mortality will 

remain disproportionately held by African American and Hispanic individuals until rates of 

infection can be targeted and reduced.  

 

We also found that where patients were treated affected their risk for mortality. Patients admitted 

to hospitals in Brooklyn or Queens were at higher risk than those at one of the Manhattan 

hospitals. The outer boroughs have consistently higher rates of comorbidities relevant to 

COVID-19 infection compared to Manhattan18. We found that average age in patients admitted 

in Brooklyn or Mount Sinai Queens was higher and oxygen saturation is lower than those in 

Manhattan (Table S2). Rates of comorbidities were also higher in Queens, as well (56% with any 

comorbidity versus 36-47% at other hospitals). Another contributing factor may be case 

prevalence differences by borough. There are nearly twice as many cases in Brooklyn (>31,000) 

and Queens (>36,000) – the counties where the Mount Sinai Brooklyn and Queens hospitals are 

located, respectively – than in Manhattan (>15,000)15. Hospitals in New York are already 

overwhelmed and struggling to provide sufficient staff and hospital resources to meet the need of 

the pandemic. It may be that the density of cases outside of Manhattan have put an additional 

strain on those hospitals or that only more severe patients are able to be admitted. This is an 
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important health disparity for policymakers to address, as it may contribute to the 

disproportionate death of individuals living in certain neighborhoods.  

 

The strongest predictors of hospital termination – either death or discharge – in our data were 

older age, higher BMI, lower oxygen saturation, care in ICU, elevated creatine and ALT levels, 

and history of COPD (Fig. 4). These findings were highly similar to descriptive differences 

reported between critically and non-critically ill hospitalized patients at NYU3, with the 

exception of COPD (not significant) and ALT (not reported). They also reported many 

significant differences in lab values, including C-reactive protein, d-dimer, ferritin, and 

procalcitonin. These lab tests were not routinely collected on all of our patients, however, among 

patients with available measures, we were able to corroborate their evidence that higher baseline 

measures of all aforementioned labs were associated with mortality (Table S3). Given the 

consistency of these findings, we suggest oxygen saturation, creatine, C-reactive protein, d-

dimer, ferritin, and procalcitonin are good targets to monitor throughout hospital admission as 

they are sensitive to clinical outcome across reported data. We additionally found that high 

temperature, abnormally high respiratory rate, high WBC, and history of asthma significantly 

lengthened hospital stays (Fig. 4), suggesting that these vital signs and labs may also be of use 

for monitoring disease progression and severity.  

 

One major reason for high mortality rates from COVID-19 is that no proven effective therapies 

exist as yet6. Many new treatments have been quickly developed or adapted, and despite 

incomplete evidence of efficacy, have been incorporated into current clinical practice. For 

instance, heparin was administered as part of standard of care at Mount Sinai as of April 10, 

2020 due to the negative impact of SARS-CoV-2 on coagulation and consequent professional 

recommendations19. Therefore, the efficacy of the use of heparin is limited based upon the data 

availability and subsequent follow up. While results from ongoing clinical trials are still 

unknown, there is an immediate need for any useful information on patient response to these 

pharmacologic treatments.  
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Finally, we discovered several significant baseline predictors increasing risk for in-hospital 

death: older age, higher BMI, lower oxygen saturation, elevated respiratory rate, elevated WBC, 

elevated creatinine and elevated ALT (Fig. 5). Assessing these patient characteristics 

immediately upon hospital admission may help identify individuals at the highest risk and help 

determine clinical action. We hope this prognostic model may be of significant practical value 

for clinicians and hospital management. 

 

Our study should be considered in light of many limitations. First, many patients were missing 

key inflammatory markers like C-reactive protein and d-dimer, so we could not include them in 

our multivariate models without losing significant power. We have provided results for these 

labs analyzed individually (Table S4) that are in line with other reports3, however future work 

incorporating these labs with other measures would yield a more comprehensive ranking of 

significant indicators of mortality. Additionally, clinical course trajectories of lab values and 

vital signs across hospitalization are likely to give valuable insight into disease severity and 

progression, but analysis at this level requires substantially more repeated measurements per 

patient than were available at the time of this study. We also expect outcomes to change as local 

outbreaks become contained (or not) and additional information on novel treatments is made 

available. However, given the urgent need for prognostic indictors amidst the ongoing pandemic, 

we believe this report, the largest and more diverse population to date, provides an important 

initial summary of clinical features associated with mortality and can facilitate risk assessment 

and care. While further studies are imperative, our ability to use modeling techniques to 

assimilate and analyze large data sets quickly and efficiently provide a complimentary approach 

as we await vital data from clinical trials. We anticipate that emerging reports across the country 

will be combined and compared, as health-related behaviors (both personal and mandated by 

state and local governments), as well as hospital protocols and resources vary considerably. 

   

In this study, we estimated the effect of key clinical characteristics on mortality among patients 

hospitalized in one of five Mount Sinai hospitals in New York, Brooklyn, and Queens. Based on 

these findings, first, we recommend considering for hospital admission patients with the 

following characteristics: older age, higher BMI, lower oxygen saturation, elevated respiratory 

rate, and elevated lab parameters (WBC, creatinine and ALT) as prognostic indicators for 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 4, 2020. ; https://doi.org/10.1101/2020.04.28.20075788doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.28.20075788
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

increased risk for mortality. Second, we identified changes in respiration, temperature, heart rate, 

white blood cell count, creatinine, and ALT as particularly important features to monitor during 

hospital admission to track risk for increased mortality. Together, we hope these estimates can 

help inform clinicians and hospitals early on which patients are at greatest risk, what ongoing 

clinical features track with disease progression. 
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Tables  
 
Table 1. Constituents of patients in the background MSHS EMR, patients tested for SARS-
CoV-2 infection, SARS-CoV-2 infected patients and patients deceased from Covid-19. 
 

RACE BACKGROUND TESTED INFECTED DECEASED 
AFRICAN-

AMERICAN/BLACK 
360542 (21.6%) 4744 (19.4%) 1528 (24.6%) 235 (24.1%) 

ASIAN/PACIFIC-

ISLANDER 
142080 (8.5%) 1679 (6.9%) 318 (5.1%) 43 (4.4%) 

CAUCASIAN/WHITE 802848 (48.1%) 9194 (37.6%) 1642 (26.5%) 293 (30.1%) 
HISPANIC/LATINO 107255 (6.4%) 5722 (23.4%) 1769 (28.5%) 244 (25.1%) 
OTHER 254682 (15.3%) 3100 (12.7%) 947 (15.3%) 159 (16.3%) 

 
 
Table 2. Characteristics of the hospitalized Covid-19 cohort grouped by their outcomes. 
 

  STILL 

HOSPITALIZED 

DECEASED DISCHARGED P-

VALUE 
N 825 742 1706 

 

AGE, MEDIAN [Q1,Q3] 67 [57,77] 75 [65,84] 60 [46,71] <0.001 
SEX, N (%) 

    

FEMALE 331 (40.1) 297 (40.0) 771 (45.2) 0.013 
MALE 494 (59.9) 445 (60.0) 935 (54.8) 

RACE, N (%) 
    

AFRICAN-AMERICAN 198 (24.0) 183 (24.7) 435 (25.5) 0.025 
ASIAN 43 (5.2) 32 (4.3) 71 (4.2) 

HISPANIC 252 (30.5) 184 (24.8) 519 (30.4) 
OTHER 119 (14.4) 108 (14.6) 234 (13.7) 

UNKNOWN 39 (4.7) 29 (3.9) 53 (3.1) 
WHITE 174 (21.1) 206 (27.8) 394 (23.1) 

SMOKING STATUS, N (%) 
    

NEVER 432 (52.4) 354 (47.7) 954 (55.9) <0.001 
NOT ASKED 194 (23.5) 166 (22.4) 380 (22.3) 

QUIT 165 (20.0) 197 (26.5) 315 (18.5) 
YES 34 (4.1) 25 (3.4) 57 (3.3) 

BMI (KG/M^2), MEDIAN [Q1,Q3] 27.6 [24.1,32.6] 27.6 [23.9,32.5] 28.3 [24.8,32.7] 0.067 
TEMPERATURE (F), MEDIAN 

[Q1,Q3] 
98.8 [98.1,99.9] 98.6 [97.9,100.0] 98.9 [98.2,100.2] <0.001 

MAX. TEMPERATURE (F), 

MEDIAN [Q1,Q3] 
101.0 [99.7,102.2] 101.4 

[99.9,102.8] 
100.9 
[99.7,102.2] 

<0.001 

O2 SATURATION (%), MEDIAN 

[Q1,Q3] 
94.0 [90.0,97.0] 94.0 [89.0,97.0] 96.0 [94.0,98.0] <0.001 

MIN. O2 SATURATION (%), 

MEDIAN [Q1,Q3] 
88.0 [81.0,91.0] 78.0 [64.0,86.0] 91.0 [89.0,94.0] <0.001 

SBP (MMHG), MEDIAN [Q1,Q3] 128.0 
[115.0,145.0] 

130.0 
[111.0,149.0] 

129.0 
[116.8,143.0] 

0.872 
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DBP (MMHG), MEDIAN [Q1,Q3] 73.0 [65.0,82.0] 71.0 [62.0,81.0] 75.0 [67.0,83.0] <0.001 
HIGH BP (SBP>140 OR DBP>90), N 

(%) 
265 (32.1) 261 (35.2) 517 (30.3) 0.058 

HEART RATE (BPM), MEDIAN 

[Q1,Q3] 
96.0 [84.0,112.0] 95.0 [82.0,110.0] 96.0 [84.0,108.0] 0.310 

RESPIRATORY RATE (BPM), 

MEDIAN [Q1,Q3] 
20.0 [18.0,24.0] 20.0 [18.0,24.0] 19.0 [18.0,20.0] <0.001 

RESPIRATORY RATE >25, N (%) 184 (22.3) 160 (21.6) 124 (7.3) <0.001 
HYPERTENSION, N (%) 295 (35.8) 314 (42.3) 473 (27.7) <0.001 

OBESITY, N (%) 62 (7.5) 56 (7.5) 143 (8.4) 0.668 
DIABETES, N (%) 209 (25.3) 213 (28.7) 346 (20.3) <0.001 

HIV, N (%) 15 (1.8) 10 (1.3) 27 (1.6) 0.758 
CANCER, N (%) 61 (7.4) 62 (8.4) 110 (6.4) 0.226 

ALT (U/L), MEDIAN [Q1,Q3] 31.0 [19.0,57.0] 32.0 [20.0,54.0] 30.0 [19.0,52.0] 0.293 
AST (U/L), MEDIAN [Q1,Q3] 44.0 [31.0,72.0] 57.0 [36.8,91.0] 40.0 [28.0,61.0] <0.001 

BUN (MG/DL), MEDIAN [Q1,Q3] 20.0 [13.0,35.0] 37.0 [21.0,59.0] 16.0 [11.0,25.0] <0.001 
CREATININE (MG/DL), MEDIAN 

[Q1,Q3] 
1.1 [0.8,1.6] 1.4 [1.0,2.3] 0.9 [0.7,1.3] <0.001 

CREATININE > 1.2, N (%) 326 (39.5) 439 (59.2) 405 (23.7) <0.001 
CRP (MG/L), MEDIAN [Q1,Q3] 140.9 [75.3,221.2] 169.8 

[95.5,253.2] 
93.5 [50.6,168.9] <0.001 

CRP > 15, N (%) 238 (28.8) 212 (28.6) 425 (24.9) 0.048 
D-DIMER (UG/ML FEU), MEDIAN 

[Q1,Q3] 
1.6 [0.9,3.2] 2.4 [1.3,3.9] 1.1 [0.7,2.0] <0.001 

D-DIMER > 0.25, N (%) 647 (78.4) 402 (54.2) 905 (53.0) <0.001 
EGFR AA (ML/MIN/1.73M2), 

MEDIAN [Q1,Q3] 
40.5 [22.7,52.2] 36.6 [23.0,51.2] 35.8 [14.3,48.5] 0.051 

EGFR NON-AA (ML/MIN/1.73M2), 

MEDIAN [Q1,Q3] 
39.5 [23.0,50.0] 34.8 [21.8,48.4] 38.0 [17.6,52.9] 0.418 

FERRITIN (NG/ML), MEDIAN 

[Q1,Q3] 
891.0 
[422.2,1969.0] 

978.0 
[437.5,2331.8] 

613.5 
[274.2,1441.0] 

<0.001 

FERRITIN > 300, N (%) 560 (67.9) 389 (52.4) 756 (44.3) <0.001 
FIBRINOGEN (MG/DL), MEDIAN 

[Q1,Q3] 
644.0 
[533.8,752.0] 

627.0 
[525.5,752.5] 

594.5 
[486.0,701.8] 

<0.001 

HGB (G/DL), MEDIAN [Q1,Q3] 13.4 [11.9,14.5] 12.9 [11.2,14.4] 13.4 [12.3,14.6] 0.003 
LDH (U/L), MEDIAN [Q1,Q3] 464.0 

[354.0,629.0] 
516.0 
[384.0,758.0] 

386.0 
[297.0,495.5] 

<0.001 

PROCALCITONIN (NG/ML), 

MEDIAN [Q1,Q3] 
0.3 [0.1,0.7] 0.5 [0.2,1.4] 0.1 [0.1,0.3] <0.001 

PROCALCITONIN > 0.5, N (%) 229 (27.8) 218 (29.4) 174 (10.2) <0.001 
WBC (K/UL), MEDIAN [Q1,Q3] 7.9 [5.7,11.1] 8.9 [6.4,12.2] 6.8 [5.3,9.2] <0.001 

WBC < 4.5, N (%) 83 (10.1) 56 (7.5) 214 (12.5) 0.001 
WBC > 11, N (%) 201 (24.4) 227 (30.6) 219 (12.8) <0.001 

IN_ICU, N (%) 152 (18.4) 228 (30.7) 39 (2.3) <0.001 
HOSPITAL, N (%) 

    

MOUNT SINAI BI BROOKLYN 119 (14.4) 200 (27.0) 229 (13.4) <0.001 
MOUNT SINAI QUEENS HOSPITAL 136 (16.5) 191 (25.8) 197 (11.5) 

MOUNT SINAI ST. LUKE'S 126 (15.3) 128 (17.3) 302 (17.7) 
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MOUNT SINAI WEST 78 (9.5) 47 (6.4) 238 (14.0) 
THE MOUNT SINAI HOSPITAL 366 (44.4) 174 (23.5) 740 (43.4) 

INFECTION STATUS, N (%) 
    

COVID-19 723 (87.6) 730 (98.4) 1608 (94.3) <0.001 
PUI - COVID 102 (12.4) 12 (1.6) 98 (5.7) 

DAYS AFTER INFECTION, 

MEDIAN [Q1,Q3] 
6.0 [2.0,11.0] 5.0 [3.0,8.0] 5.0 [3.0,8.0] 0.063 

 
 
Table S1. Estimated coefficients from age-adjusted logistic regression model showing the 
racial disparities in the infection rates. 
 
                          ESTIMATED 

COEFFICIENT 
 STD 
ERR  

    Z     P>|Z|    2.5% 
CI 

  97.5% 
CI 

(INTERCEPT) -7.8584 0.046 -172.362 0 -7.948 -7.769 
AGE 0.0345 0.001 53.074 0 0.033 0.036 
AFRICAN-
AMERICAN/BLACK 

0.643 0.034 18.87 0 0.576 0.71 

ASIAN/PACIFIC-
ISLANDER 

0.0159 0.06 0.263 0.793 -0.103 0.134 

HISPANIC/LATINO        1.9757 0.033 60.152 0 1.911 2.04 
OTHER                  0.6316 0.04 15.911 0 0.554 0.709 

 
Table S2. Descriptive statistics of the age and baseline O2 saturation at admission of 
hospitalized COVID-19 patients by hospitals. 
 

FACILITY AGE MEAN AGE STD O2 SAT 
BASELINE 

MEAN 

O2 SAT 
BASELINE 

STD 
MOUNT SINAI BI BROOKLYN 69.73 13.82 94.41 7.78 

MOUNT SINAI QUEENS 
HOSPITAL 

65.16 15.39 91.26 8.89 

MOUNT SINAI ST. LUKE'S 66.58 16.41 93.57 6.94 
MOUNT SINAI WEST 62.07 18.68 93.59 5.87 
THE MOUNT SINAI 

HOSPITAL 
58.88 17.77 94.20 5.80 

 
 
Table S3. p-values and odd ratios (OR) for less common baseline laboratory tests in 
multivariate association analyses between COVID-19 mortality and discharge 
 
LABORATORY TESTS P-VALUE LOG 

ODDS 
ODDS 
RATIO 

2.5% 
OR 

97.5% 
OR 

LDH 7.11E-32 0.0030 1.0030 1.0025 1.0035 
CRP 7.15E-19 0.0080 1.0080 1.0063 1.0098 
D-DIMER 1.05E-15 0.1524 1.1646 1.1228 1.2097 
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BUN 1.14E-15 0.0235 1.0238 1.0181 1.0299 
PROCALCITONIN 1.08E-10 0.1153 1.1222 1.0858 1.1652 
FERRITIN 2.07E-09 0.0001 1.0001 1.0001 1.0002 
FIBRINOGEN 2.89E-03 0.0012 1.0012 1.0004 1.0020 
HGB 4.08E-02 -0.0683 0.9340 0.8748 0.9973 
EGFR NON-AFRICAN 
AM 

1.07E-01 -0.0080 0.9920 0.9823 1.0017 

EGFR AFRICAN AM 5.21E-01 0.0035 1.0035 0.9927 1.0145 

 
 
Figures legends 
 
Figure 1. In-hospital mortality rates of COVID-19 patients break-down by self-reported 
races and age groups. In-hospital mortality rate is defined by the number of deceased patients 
during hospitalization divided by the total number of Covid-19 patients and PUIs in our cohort. 
The mortality rates of different age groups are plotted across different racial groups indicated in 
the legend. The 95% confidence intervals (CI) for the mortality rates across race groups are 
estimated using bootstrap by sampling the patients in that a rolling 10-year age window 500 
times.  
 
Figure 2. Cumulative incidence functions (CIFs) of two events, deceased and discharged, 
with univariate competing risks modeling. The left panels show the cumulative probability of 
in-hospital death for Covid-19 patients whereas the right panels show the cumulative probability 
of discharged after inpatient stay. The cohort was grouped by different factors including self-
reported races, sex, inpatient stays at different Mount Sinai facilities and care area types, shown 
in rows A through D. The p-values from Gray’s test which comparing the subdistribution for 
deceased and discharge events across groups are shown. A significant p-values <0.05 indicates 
significant differences among groups in the cumulative incidence functions for the corresponding 
events. 
 
Figure 3. Coefficients from logistic regression models analyzing covariates associated with 
final outcomes (cured versus deceased) for Covid-19 patients. The estimated coefficients 
from the logistic regression model, also known as log odds, are plotted for the covariates. An 
intercept term was included in the model but excluded from the plot, which has a coefficient of -
2.07 (p=0.72). Error bars indicate 95% CI. 
 
Figure 4. HR plots showing the results from the etiologic model. The HR from the cause-
specific hazard model with competing risks (death (A) and cured (B)) are plotted for individual 
covariates in logarithmic scale. The estimated HR and p-values are indicated in the tick labels for 
those covariates. Covariates with significant elevated HR (HR > 1 and p-value<0.05) or 
decreased HR (HR < 1 and p-value<0.05) are highlighted in red and blue, respectively. Error 
bars indicate 95% CI. 
 
Figure 5. Hazard ratios (HR) plots showing the results from the prognostic model. The HR 
from the subdistribution hazard model with competing risks (death (A) and cured (B)) are plotted 
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for individual covariates in logarithmic scale. The estimated HR and p-values are indicated in the 
tick labels for those covariates. Covariates with significant elevated HR (HR > 1 and p-
value<0.05) or decreased HR (HR < 1 and p-value<0.05) are highlighted in red and blue, 
respectively. Error bars indicate 95% confidence intervals (CI). 
 
 
Figure S1. Age distributions across racial groups of patients from the MSHS EMR (A) and 
Covid-19 patients (B).  
 
Figure S2. Overall CIFs for the hospitalized Covid-19 cohorts for deceased and discharged 
events, respectively. 
 
Figure S3. Scatter plots showing various vital signs with respect to age of the hospitalized 
Covid-19 cohort. 
  
Figure S4. Scatter plots showing related vital signs against each other.  
 
Figure S5. Coefficients from logistic regression models analyzing covariates associated with 
final outcomes (cured versus deceased) for COVID-19 patients with and without ICU stays 
(A, B). The estimated coefficients from the logistic regression model, also known as log odds, 
are plotted for the covariates. An intercept term was included in the model but excluded from the 
plot. Error bars indicate 95% CI. 
 
Figure S6. HR plots showing the results from the etiologic model exclusively for Covid-19 
patients with ICU stays. The HR from the cause-specific hazard model with competing risks 
(death (A) and cured (B)) are plotted for individual covariates in logarithmic scale. The 
estimated HR and p-values are indicated in the tick labels for those covariates. Covariates with 
significant elevated HR (HR > 1 and p-value<0.05) or decreased HR (HR < 1 and p-value<0.05) 
are highlighted in red and blue, respectively. Error bars indicate 95% CI. 
 
Figure S7. HR plots showing the results from the etiologic model exclusively for Covid-19 
patients without ICU stays. The HR from the cause-specific hazard model with competing risks 
(death (A) and cured (B)) are plotted for individual covariates in logarithmic scale. The 
estimated HR and p-values are indicated in the tick labels for those covariates. Covariates with 
significant elevated HR (HR > 1 and p-value<0.05) or decreased HR (HR < 1 and p-value<0.05) 
are highlighted in red and blue, respectively. Error bars indicate 95% CI. 
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