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Background and Objectives: While the number of detected COVID-19 infec-
tions are widely available, an understanding of the extent of undetected COVID-
19 cases is urgently needed for an effective tackling of the pandemic and as a
guide to lifting the lockdown. The aim of this work is to estimate and predict the
true number of COVID-19 (detected and undetected) infections in India for short
to medium forecast horizons. In particular, using publicly available COVID-19
infection data up to 28th April 2020, we forecast the true number of infections in
India till the end of lockdown (3rd May) and five days beyond (8th May).

Methods: The high death rate observed in most COVID-19 hit countries is
suspected to be a function of the undetected infections existing in the population.
An estimate of the age weighted infection fatality rate (IFR) of the disease of
0.41%, specifically calculated by taking into account the age structure of Indian
population, is already available in the literature. In addition, the recorded case
fatality rate (CFR= 1%) of Kerala, the first state in India to successfully flatten
the curve by consistently reporting single digit new infections from 12-20 April,
is used as a second estimate of the IFR. These estimates are used to formulate
a relationship between deaths recorded and the true number of infections and
recoveries. The estimated undetected and detected cases time series based on
these two IFR estimates are then used to fit a discrete time multivariate infection
model to predict the total infections at the end of the formal lockdown period.

Results: Over three consecutive fortnight periods during the lockdown, it
was noted that the rise in detected infections has decreased by 8.2 times. For an
IFR of 0.41%, the rise in undetected infections decreased 2.5 times, while for the
higher IFR value of 1%, undetected cases decreased by 2.4 times. The predicted
number of total infections in India on 3rd May for both IFRs varied from 2.8 -
6.8 lakhs.

Interpretation and Conclusions: The behaviour of the undetected cases over
time effectively illustrates the effects of lockdown and increased testing. From
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our estimates, it is found that the lockdown has brought down the undetected to
detected cases ratio, and has consequently dampened the increase in the number
of total cases. However, even though the rate of rise in total infections has fallen,
the lifting of the lockdown should be done keeping in mind that 2.3 to 6.4 lakhs
undetected cases will already exist in the population by 3rd May.

Key Word: Discrete time - infection model - infection fatality rate - lockdown
In this article, we propose a discrete time multivariate infection model for predicting

the total true number of COVID-19 infections for a short to medium forecast horizon. Using
publicly available COVID-19 data for India up to 28th April 2020, we predict the true number
of infections in India during and up to the end of lockdown (3rd May 2020) period. For suc-
cessful prediction of the total infections, we require an estimate of the extent of cases escaping
detection. An estimate of the infection fatality rate (ratio of total deaths to total infections) for
the Indian population has been calculated recently (Bommer and Vollmer (2020)). Assuming
this rate to be constant, we determine estimates of the undetected infections for each day dur-
ing the lockdown period. This time series data of undetected infections, along with recorded
data for infected, recovered and deceased cases available from https://www.covid19india.org/,
is used to fit a multivariate discrete time auto regressive (AR(1)) infection model. Using data
up to 28th April, this model is used to predict both to-be-detected and to-be-undetected
infections in India up to 3rd May and beyond.

The low detected infection numbers reported by a densely populated country like India
is a highly debated subject with no known clear explanation. Many sources are attributing
the low infection rates to the low number of tests being conducted for a country with 1.38
billion population. Bommer and Vollmer (2020) assessed the Indian COVID-19 data and
suggested that India is detecting only 1.45% of the total number of infections. While, Srinivas
and James (2020) concludes a 3.6% detection rate with wide variation among the states.
Their assessment of low detection rate is based on the fact that the Indian case fatality
rate (CFR = total number of deaths divided by total detected infections ≈ 10%) is poorly
estimating the true infection fatality rate, due to a large number of undetected infections in
India. Using a recent study by Verity et al. (2020) based on age stratified fatality data from
mainland China and international Wuhan residents returning on repatriation flights, Bommer
and Vollmer (2020) calculate an infection fatality rate (IFR) of 0.41% specifically for India.
The IFR was calculated for India using population data from UN to correct for differences
in age distributions in China and India. In our study we propose to use 0.41% as the first
estimate (or lower estimate) of the IFR.

We obtain a second estimate of the IFR for India from cumulative death and infections
data for the state of Kerala. Kerala has been exceptionally successful in reducing the number
of new infections during the period between 12-20 April. Since the number of cases in Kerala
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at the beginning of the epidemic in India was quite high (e.g. maximum among all Indian
states in March), this could only have been possible through successful tracking and isolation
of almost every COVID-19 infection in the state. From this observation we argue, that Kerala
had a very small number of undetected infections during that period. Now, the total deaths
in Kerala up to 28th April (= 4) divided by the total confirmed cases up to 14th April (= 387)
determines the CFR for Kerala to be 4/387 ≈ 1% on April 28. The reason for the fourteen
day lag used in this calculation is explained in the next section. Due to our argument that
the total reported infections in Kerala up to 14th April is approximately equal to the true
number of total infections in the state up to that date, we assume the IFR to be approximately
equal to this particular value of CFR. Consequently, this number (1%) is used as our second
estimate (or upper estimate) of national IFR.

We propose a 2-equation discrete time AR(1)/state space model for the infection, death
and recovered population dynamics. This is similar to the discrete time SIR model of Allen
(1994) however with two major changes. Firstly, we ignore the S (susceptible population)
equation. Since S is significantly larger as compared to current infection proliferation, we
assume S is almost constant. Secondly, we let the coefficients of the model to vary linearly
with time. We use these coefficient variations to model various forms of interventions such as
lockdown, increased testing, etc.

Materials and Methods

The prediction of total infections till the end of lockdown is broken into two steps. Firstly, we
estimate the total number of undetected cases using the IFR for the period for which data on
deaths are available. In the second step, this time series data of undetected infections, along
with recorded data for infected, recovered and deceased are used in a multivariate discrete
time auto regressive (AR(1)) infection model for predicting the total infections into the future.

Step 1: Estimation of undetected cases based on IFR estimates up to the present time:
We describe an estimation procedure for the total number of undetected infections up to
present time t (in our case 28th April). We denote,
It: detected infections up to time t,
Dt: deaths up to time t
Rt: recoveries up to time t
At: undetected infections up to time t.
Thus, the total number of infections recorded till time t is (It +At). Note, from our data set,
we have observed values of It and Dt. However At is unknown for all values of t.

Verity et al. (2020) reports that the average time from onset of symptoms in COVID-
19 to death to be approximately 18 days. As in Bommer and Vollmer (2020), we too allow
a 4 day window from the start of symptoms for an infected individual to be recorded as a
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confirmed case. Thus, assuming that the total deaths till t results from the total number of
infections recorded up to two weeks prior to t, we use the following relation to calculate At−14:

It−14 + At−14 =
100×Dt

IFR
. (1)

However, this formula cannot be used directly for the fourteen days preceding the present day,
since we do not yet have the corresponding Dt values. For these dates, we utilise the time
variation of the ratio At/It, denoted by Kt hereafter, to estimate At. In the Results section we
see that an exponential fit to Kt, denoted by K l

t, gives a good approximation of the variation
in Kt. Using the fitted K l

t and It from our data set, estimates of At can be computed up to
the present time.

Step 2: Proposed Infection Model for Future Prediction of Undetected Cases: The
previous step provides us with estimates of At up to present time. However, we would like to
predict the number of cases in the near future (in general, for at least a 10 days horizon and
in particular, up to the end of lockdown - 3rd May). To make this possible, we need to have
a method for predicting It, Dt and Rt. For reasons mentioned in the Introduction, for this
short prediction horizon we prefer not to use a conventional SIR/SEIR type epidemiological
model.

We model the relationship between the total number of infections (detected and un-
detected cases) and total deaths and recovered counts, based on the principle that the new
infections, new deaths and new recoveries on day t+1 is a (possibly time-varying) fraction βt
of the infections active on the previous day t. In our notation, the new infections on day t+1

is given by INt+1 := [(It+1 + At+1)− (Dt+1 −Rt+1)]− [(It + At)− (Dt +Rt)]. The new deaths
and recoveries on day t+ 1 is directly DN

t+1 := [(Dt+1 +Rt+1)− (Dt +Rt)], while the number
of active infections on day t is IAt := [(It+At)− (Dt+Rt)]. Hence from our hypothesis above,

INt+1 +DN
t+1 = βtI

A
t .

This equation simplifies to

It+1 + At+1 = (1 + βt)(It + At)− βt(Dt +Rt). (2)

Note that the state variable It+At, is the cumulative count of total infections (active + dead
+ recovered) as opposed to cumulative active infections, which is frequently used in discrete
time epidemiological models (Allen 1994). Due to our use of the IFR to estimate At we find
this version more convenient.

Similarly it is assumed that the new deaths and recoveries on day t+1 is a time varying

4

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 3, 2020. ; https://doi.org/10.1101/2020.04.20.20072892doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.20.20072892
http://creativecommons.org/licenses/by/4.0/


fraction γt of the number of active infections on day t:

DN
t+1 = γtI

A
t .

This equation simplifies to

Dt+1 +Rt+1 = (1− γt)(Dt +Rt) + γt(It + At), (3)

In principle, (2) and (3) can be used to simulate and predict the evolution of infections from
any time onwards. However, just as the total number of infections is a sum of detected and
undetected infections (It + At), the total recoveries at any time t is a sum of detected and
undetected recoveries, which we denote by Rd

t and Ru
t respectively. Hence,

Rt = Rd
t +Ru

t .

In (2) and (3) above, while Rd
t is recorded and known, Ru

t is unknown. Verity et al. (2020)
states that the average time from onset of symptoms to recovery for individuals suffering
from severe infections of COVID-19 to be 24 days, while from the WHO (2020) report the
average recovery time for mild cases is 14 days. We assume individuals whose recoveries are
enumerated on national databases of COVID-19 and are counted in Rd

t , are likely to have
had a severe infection, and consequently would have recovered in 24 days. Conversely, whose
recoveries go undetected (as a part of Ru

t ) are likely to have suffered a milder form of the
disease and would have recovered in 14 days from the start of symptoms. Allowing a four day
window from the start of symptoms for each individual to be recorded as a confirmed/recovery
case, and using using (1), we get,

(1− IFR)(It + At) = Rd
t+20 +Ru

t+10. (4)

The above equation follows from the argument that if an infected individual did not die,
he/she must have recovered in 10 or 20 days based on the severity of their infections. Using
(4), we can calculate Ru

t for all times except the first ten (It−10, At−10 not available) and the
last ten samples (Rd

t+10 unavailable). While the first ten samples are unimportant, we need the
last ten values of Ru

t for further computation. This issue is resolved by studying the trend in
the ratio Lt := Ru

t /R
d
t and fitting an exponential curve (denoted by Ll

t) to the available data
points. Using K l

t, Ll
t and available data, the model parameters are estimated as described

next.
The assumption of time varying model coefficients βt and γt is necessary for a good

model fit to the data in the current scenario of rapidly evolving interventions such as lock-
down/increased testing etc. Using the relations At = KtIt and Ru

t = Ll
tR

d
t , we can express βt
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Figure 1: Estimated Ratio At/It and exponential curve fit

and γt as,

βt =
(1 +Kt+1)It+1 − (1 +Kt)It

(1 +Kt)It − (Dt +Rt)

γt =
(Dt+1 +Rt+1)− (Dt +Rt)

(1 +Kt)It − (Dt +Rt)

The values of βt and γt for each t over a moving window of 10 days preceding the present
day are plotted and linear curves are adaptively fitted to both βt and γt over this moving
window. Using these fitted values, denoted by βl

t and γlt, we find the predicted total number
of infections (It+At) and total deaths and recoveries (Dt+Rt) by iterating (2) and (3) starting
from 10 days in the past, up to the desired forecast horizon into the future.

Results

Results from Step 1: As explained in the Introduction, we use two IFR estimates. The
first estimate is taken as 0.41% from Bommer and Vollmer (2020). The CFR of Kerala on 28
April (= 1%), is taken as the second estimate of the national IFR.

Based on these two IFRs, At values for t (4th March - 14th April) are obtained directly
from (1) and using Dt recorded up to 28th April. Ratios of At/It(= Kt) over time t (4th March
- 14th April) for both IFRs are shown in Figure 1. However, (1) cannot be used directly for
15th to 28th April since we do not yet have the corresponding Dt+14 values. Hence, we utilise
the variation in the ratios At/It with time to estimate At for 15 - 28th April.

From Figure 1, it is quite clear that the nature of the plot differs before (increasing
with time) and during the lockdown period (decreasing with time after 29th March). Since, we
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Figure 2: Detected cases It (from data set) and undetected cases At, estimated using Kt and
K l

t. Note the difference in scales for It and At.

Fitted Model Coefficients Estimates Confidence bounds RMSE
b1 2.82× 10−5 (-0.0063,0.0064) 0.025

βl
t b2 0.1646 (0.1250,0.2043)

b1 -0.0082 (-0.0205,0.0040) 0.0482
γlt b2 0.1697 (0.0938,0.2457)

Table 1: Estimates and confidence bounds for βl
t and γlt using an IFR of 0.41%. RMSE

represents root mean squared error.

are interested in understanding the effect of the lockdown period, we fit an exponential curve
K l

t to Kt from 29th March to 14th April. The fitted K l
t’s (shown by the red lines in Figure 1)

indicate exponentially decreasing ratios of undetected to detected infections in the lockdown
period. The data appears to indicate that though the lockdown is effective in decreasing the
infections it may not be able to completely eradicate the number of undetected infections.
Hence we choose an exponential curve with an intercept to fit the Kt values. As can be seen
from Figure 1, the fitted K l

t is a good approximation for Kt after March 29th, and even after
5 April when Kt starts to flatten out. This observation seems to indicate that the ratio of
undetected to detected cases might hold constant or decrease only marginally up to the end
of lockdown.

Using the exponentially fitted K l
t and the recorded It from our data, we estimate At

for 15 - 28th April. These estimated undetected cases and the observed detected cases from
28th March till 28th April are plotted in Figure 2 for both IFRs.

Results for Step 2:
We find the values of Ru

t using (4). The ratios Ru
t /R

d
t are plotted in Figure 3 for both
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Figure 4: Model Parameter estimates over the preceding 10 day window
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predictions are obtained from (2).
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Figure 6: Predicted values of At, It, It + At and observed values of It for IFR 1%. The
predictions are obtained from (2).
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IFRs. From the figure, we note that this ratio exhibit a similar behaviour (with a lag of 10
days) as the ratio of At/It. This is expected since the relatively high values of At and Ru

t ,
compared to It and Rd

t respectively, dominate these ratios, and through (4), Ru
t lags At by

10 days. Recall that Ru
t cannot be computed directly from (4) for the last 10 days preceding

present time. As explained above, an exponential curve (with an intercept) is fitted to the
available data points for Ru

t /R
d
t starting from 7th April (shown in red in Figure 3). This date

is chosen since the data for Ru
t /R

d
t shows an exponential decay (similar to Kt for 29th March)

from that day onwards.
The values of βt and γt for 10 days preceding the present time (18 - 28 April) are

plotted in Figures 4a and 4b respectively, for IFR of 0.41%. We adaptively estimate βt and γt
for both IFRs, by using the most recent disease data with a moving window of 10 preceding
days. This is done to capture the most recent patterns in the disease data while estimating
βt and γt. The window size of 10 days was arrived at by trial and error. A larger window
size cannot capture quickly changing trends in βt or γt, while a very small window gives noisy
estimates of both. A 10 day window is also justifiable since it is the minimum number of days
required for effects of policy changes to be recorded in any data series (death, recovered or
infection counts). The standard errors and confidence bounds for estimation of βt and γt are
reported in Table 1. Using these confidence bounds we can find upper and lower estimates for
our predicted infection counts. To maintain simplicity, the bounds for the infected counts are
however not shown here.

Using βl
t and γlt, the proposed model (2) and (3) is initialized with the measured values

of It, At, Dt and Rt on 18th April and iterated up to 8th May to simulate each variable up
to this time for both values of IFR. The predicted values are plotted in Figures 5 and 6 for
IFRs 0.41% and 1%, respectively, along with observed data up to 28th April. The summary
statistics of the model fit and predictions are shown in Tables 2 and 3, for IFRs of 0.41%
and 1% respectively. From the model fitting and prediction, the important findings can be
summarised as:

• From Tables 2, using an IFR of 0.41%, we note that the total number of predicted
infections (detected plus undetected) at the end of the lockdown period (3rd May) is 6.8
lakhs.

• From Table 3, using the higher IFR value of 1%, we note that the total number of
predicted infections at the end of the lockdown period (3rd May) are 2.8 lakhs.

• In the first 14 day period (22nd March - 5th April) of the lockdown, there is a 10.7
times increase in the detected infections. The increase reduces to 2.5 times in the last
fortnight period (19th April - 3rd May).
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t It At At + It It/It +At

22-Mar 403 28377 28780 0.014
05-Apr 4293 (10.7) 132292 (4.7) 136585 0.0314 (4.7)
19-Apr 17305 (4) 292492 (2.2) 309797 0.0559 (2.3)
03-May 43214 (2.5) 636787 (2.2) 680001 0.0635 (2.2)

Table 2: Predicted Values of At, It and At + It and ratio of detections using an IFR of 0.41%.
The times increase are given in parenthesis.

t It At At + It It/It +At

22-Mar 403 11397 11800 0.0342
05-Apr 4293 (10.7) 51707 (4.5) 56000 0.0767 (4.7)
19-Apr 17305 (4) 109711 (2.1) 127016 0.1362 (2.3)
03-May 42703 (2.5) 232798 (2.1) 275501 0.155 (2.2)

Table 3: Predicted Values of At, It and At + It and ratio of detections using an IFR of 1%.
The times increase are given in parenthesis.

• For both IFR values, there was at least 4.5 times increase in undetected infections
over the first fortnight into lockdown. However, in the last two weeks of lockdown the
increase reduced to 2.1 times. These numbers indicate the rise in undetected infections
have decreased due to the lockdown and testing intervention effect.

• The percentage of detections increased from 1% to 6% during lockdown for an IFR of
0.41%. Elevating the IFR to 1%, the rate of detection grew from 3% to 15%.

• It is noted from Figures 5 and 6 that the linear parameter varying model matches the
data satisfactorily. Significantly, the proposed model can reproduce the sub-exponential
growth of infection numbers observed over the lockdown period in India.

Discussion

The focus of our work is on predicting the total number of infections in India due to COVID-19
over a short forecast horizon and also studying the effect of lockdown and increased testing
on these total infections.

The important observations from the first part of the Results section, are: From Figures
1 we see that in the pre-lockdown stage, the ratio (At

It
) increased with time t. By 28th March

the undetected cases were at least 60000 for an IFR of 0.41%. However, once the lockdown
started, the ratio (At

It
) became almost constant over time. This slowing down effect on the

rise in the undetected cases may be assumed to be the immediate effect of lockdown. From
second week of the lockdown (29th March), the ratio (At

It
) is noted to be decreasing with

time. This leads to a further decrease in the number of undetected cases. This further
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decrease may be attributed to the additional effects of increased testing and active hotspot
containment during the lockdown period. Thus, it seems from the data, that lockdown and
increase in testing have lowered or slowed down the rate of rise in the number of undetected
cases. Recently, however the decrease in this ratio seems to have saturated indicating that
the current containment measures have reached their limits. From Figures 1a and 1b, we
expect this ratio to hold constant or decrease only marginally until the end of the lockdown
period. In addition, one should also note carefully the increasing At/It ratios prior to lockdown
and consider the possible effect of increasing undetected cases, once the current intervention
measures are relaxed. From the model fit and prediction in second step of the Results section,
we note a fall in the increase in undetected cases and a simultaneous increase in detection of
infections. At the end of the lockdown, we note that 42703 - 43214 infections will be detected
while the undetected cases will vary between 2.3 - 6.4 lakhs, given the two IFR values. Thus,
it seems lockdown and increased testing have been effective measures in reducing the rise in
infections from COVID-19 in India. However, as a word of caution, we would like to add
that though the rate of increase of undetected cases seems to have slowed down with the
interventions, at the end of lockdown we will still have 2.8 - 6.8 lakhs total existing infections
to combat.

We would also like to point out that the linear fit to the model coefficients (βt and γt)
are valid only in the short term, and the proposed infection model should not be used for long
term predictions.

We understand that ignoring the susceptible population dynamics, limits the fore-
casting capabilities of the proposed model. However, we believe that this is a reasonable
assumption in the short to medium term when the susceptible population remains very high
and the recovered population is negligible. As reported above, we see a dampening in the
exponentially increasing infection figures over differing time periods (during and up to the
end of the formal lockdown period). We believe that this decrease in the infection rate is due
to intervention measures and gradual buildup of awareness in the general population rather
than development of herd immunity or recovery dynamics. As an extension of this work, we
plan to use our model for predicting state-wise total infections.
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