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Figure 2: The number of registrations with complete records in our analytic dataset by zip code (panel A), 
and the participant rate per 1,000 residents in the zip code (panel B).  
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Tables 
 
Table 1: Sample characteristics, relative to Santa Clara County population estimates from the 2018 
American Community Survey 
 
 

Characteristic  Sample – 
unweighted 

Sample – 
weighted 

County 

Population (N)  3,330 3,330 1,943,411 

     

Women (%)  63.1 49.7 49.5 

Men (%)  36.9 50.3 50.5 

     

Age (%) 0-4 2.1 2.6 6.2 

 5-18 16.5 14.5 18.6 

 19-64 76.3 78.4 62.3 

 ⩾65 5.0 4.5 12.9 

     

Race/ethnicity (%) Non-Hispanic 
white 

64.1 35.4 33.1 

 Hispanic 8.0 24.9 26.3 

 Asian 18.7 28.9 27.8 

 Other 9.2 10.8 12.8 
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Table 2: Prevalence estimation in Santa Clara County. We report the prevalence and uncertainty bounds 
of estimates from unadjusted frequency counts, estimates adjusted for test performance characteristics, 
and estimates adjusted for test performance characteristics and weighted by zip code, race/ethnicity, and 
sex. We estimate uncertainty using the bootstrap as described in Methods and below.  
 

Approach Point estimate (%) Uncertainty (95% CI) 

Unadjusted (%) 50/3,330 = 1.5 1.1-2.0 (binomial exact) 

   

Adjusted for test 
performance (only, %) 1.2 0.7-1.8 

   

Adjusted for test 
performance and 
weights (%) 

2.8 1.3-4.7 
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Additional Data and Response to Comments 
 
We received many questions and constructive comments in response to the 1st version of our preprint. 
These included comments from colleagues within our institution with expertise in epidemiology and 
statistics as well as additional comments from hundreds of other scientists who offered critiques in public 
and/or in personal communications with our team.  In this section we provide important updates and 
additional analyses that address the major issues with the first version of the preprint. This section 
includes new data and analyses; in addition, new data on test kit performance and the bootstrap estimation 
of the confidence intervals have been incorporated throughout. We welcome additional suggestions.  
 
Section 1: Test kit performance characteristics and implications for estimated population prevalence 
 
In the 1st version of the preprint manuscript we provide the following approaches to assessing the test kit 
performance: 
 

a) Among 37 samples of known PCR-positive COVID-19 patients with positive IgG or IgM 
detected on a locally-developed ELISA test, 25 were kit-positive. Sensitivity 67.6% (95 CI 50.2-
82.0% using exact binomial) 

b) Among a sample of 30 pre-COVID samples, all 30 were negative. Specificity 100% (95 CI 90.5-
100% using exact binomial with a simple transformation of the width of the Clopper-Pearson 
exact confidence interval to estimate uncertainty with p=1.0). 

c) In the manufacturer’s data, among 75 samples of clinically confirmed COVID-19 patients with 
positive IgG, 75 were kit-positive, and among 85 samples with positive IgM, 78 were kit-positive. 
Sensitivity 91.8% (using the lower estimate based on IgM, 95 CI 83.8-96.6%). 

d) In the manufacturer’s data, among 371 pre-COVID samples, 369 were negative. Specificity of 
99.5% (95 CI 98.1-99.9%). (Since the initial publication, we learned that 368 were negative by 
either IgG or IgM, and we use the updated figure in the current manuscript.) 

e) A combination of both data sources provides us with a combined sensitivity of 80.3% (95 CI 
72.1-87.0%) and a specificity of 99.5% (95 CI 98.3-99.9%). 

 
Since then, we have learned that, in (a), 27 of the specimens, not 25, were kit-positive, and that the 
specimens in (b) came from healthy adults collected at a hospital in New York. We have also received 
additional information about Premier Biotech test performance characteristics from multiple sources, 
including the manufacturer’s original data, test performance assessments for regulatory documents, and 
independent evaluations. The table below summarizes the information we received from each sample, 
including sample type and provenance. 
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Sample Gold 
standard N 

Kit agreement 
N Sample type Notes/provenance 

Specificity (negative agreement) 

1 371 368 Serum Manufacturer’s data based on pre-
COVID-19 era sera 

2 30 30 Serum Pre-COVID-19 era healthy adults from 
New York 

3 70 70 Serum 

Adults tested negative for Lyme disease 
in a hospital in La Crosse Wisconsin 
pre-COVID-19 + adults admitted in 
early 2020 before first case in county 

4 1,102 1,102 Serum Adults admitted to hospitals pre-
COVID-19 

5 300 300 Plasma Pre-COVID-19 plasma donors, in 
heparin 

6 311 311 Fingerstick 
blood 

Healthy adults, company staff of 
Biotest, the kit manufacturer 

7 500 500 Venous whole 
blood 

Children and adults admitted to hospital 
pre-COVID-19, on heparin 

8 200 198 Serum Pregnant women pre-COVID-19 

9 99 99 Serum Pre-COVID-19 serum of patients with 
<450 U/ml rheumatoid factor 

10 31 29 Serum Pre-COVID serum of patients with 
>600 U/ml rheumatoid factor 

11 150 146 Serum 
China CDC data collected from 
COVID-19-era hospital patients 
negative by PCR in Jiangsu province 

12 108 105 Plasma Pre-COVID-19 plasma donors 

13 52 50 Serum 
COVID-19-era PCR-negative 
specimens, some of which were positive 
for another respiratory virus 

Total 3,324 3,308   
     

Sensitivity (positive agreement) 

14 85 78 Serum Manufacturer’s data using confirmed 
COVID-19 patients 

15 37 27 Serum 
Specimens with confirmed COVID-19 
by PCR and IgG or IgM confirmed by 
ELISA 

16 35 25 Serum 
Specimens with confirmed COVID-19 
by PCR (6-10 days from symptom 
onset) 

Total 157 130   
 
Except for the samples 1, 12, 13, 14, and 16, we obtained individual results for all specimens in each 
sample.  
 
We continue gathering information on test kit performance, and will incorporate as new data becomes 
available.  
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We use the pooled test performance based on the available information: 
Sensitivity: 82.8% (exact binomial 95CI 76.0-88.4%) 
Specificity: 99.5% (exact binomial 95CI 99.2-99.7%) 
 
Of note, 3 of the negative control samples used for specificity calculations are from the COVID-19 era 
and thus have a chance that they may include some undiagnosed infections among these negative 
controls. Excluding these 3 datasets (datasets 6,11,13), the specificity is slightly higher (2801/2811, 
99.6%). 
 
There is some preliminary evidence that young patients with mild symptoms may have lower or even 
undetectable titers of antibodies than older patients.34 The sensitivity of the test kit was assessed based on 
samples from symptomatic patients who came to attention to be tested for SARS-CoV-2. If the sensitivity 
is lower in asymptomatic patients, then the prevalence may be under-estimated. 
 
Finally, it needs to be stated that our kit only tests for the presence of IgG and IgM antibodies. The 
immune response to respiratory viruses is very complex and it involves multiple mechanism besides IgM 
and IgG antibodies, including IgA responses and other cellular mechanisms. For example, the antibody 
response to influenza in the upper respiratory track is dominated by IgA, and seroconversion in adults in 
terms of mucosal IgA responses seems to be higher than serum antibody-based seroconversion.35 IgA 
responses seem to be important also for SARS-CoV-2, and these were not captured by our kit.36 Further, 
while our current understanding of the test kit performance does not rule out the possibility of potential 
cross-reactivity with non-SARS-CoV-2 coronavirus strains, such as coronavirus HKU1, NL63, OC43, or 
229E, the test kit’s high specificity across 3,324 SARS-CoV-2 negative samples suggests very low cross-
reactivity given the relatively higher background prevalence of human coronavirus strains.37 
 
Section 2: Propagation of uncertainty about the specificity in estimation population prevalence 
 
Several people had expressed concerns that, as the 95% CI on the specificity at the time of the release of 
version 1 was bounded at 98.3% on the low end, that implied that all our positives could in fact be false 
positives if there were a false positive rate of 1.7%. This is an intuitive stance, but deserves closer 
scrutiny. First, suggestions that the prevalence estimates may plausibly include 0% are hard to reconcile 
with documented data from Santa Clara (we had approximately 1,000 confirmed cases by PCR at the time 
of the survey) and what we know about the virus and its high contagiousness, as well as growing amounts 
of data from many other locations (such as Los Angeles and New York, as mentioned in the Discussion). 
 
Second, additional data about the performance characteristics of the test kits is already helping improve 
the precision about the specificity point estimates, as noted above. With the additional kit performance 
data, the lower bound on the specificity 95CI is currently higher than in the original manuscript.  
 
Third, for 0 true positives to be a possibility, one needs not only the sample prevalence to be less than (1-
specificity) (something that is incompatible with the current 95CI or even 99CI of specificity), but also to 
have no false negatives (100% sensitivity) which is also entirely incompatible with the available data.  
We maintain, as in the original manuscript, that “New information on test kit performance and population 
should be incorporated as more testing is done, and we plan to revise our estimates accordingly.” 
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Fourth, our Methods and Statistical Appendix go through our approach to carrying forward the 
uncertainty in the specificity, sensitivity, and the sample in estimating the uncertainty about the 
population prevalence. In particular, several commenters have argued that under a prior of low 
prevalence, the expected number of false positives in our sample exceeds the observed positives. Such an 
argument is misleading because our adjusted prevalence estimate is a combination of all 3 random 
variables. Our methods account for all three random variables simultaneously. 
 
Finally, we now include the Statistical Appendix in the same file as the full paper for ease of reference. 
 
To address the many constructive criticisms we have received regarding our standard error estimation – 
and in particular to address the point that our prior approach (the delta method) produces a symmetric 
confidence interval – we now calculate confidence intervals about our weighted and unweighted sample 
prevalence estimates based on a non-parametric percentile bootstrap that does not necessarily yield 
symmetric confidence intervals. Our bootstrap procedure resamples data from our actual datasets for 
sensitivity, specificity, and prevalence. We use the following procedure, repeated for each test 
performance scenario: 
 

a) First, we draw a single bootstrap sample (i.e. with replacement) from the empirical distribution of 
the sensitivity data. For this sample, we calculate the mean value of sensitivity. Let 𝑟̅! represent 
this value for the jth iteration of this procedure. 

b) We draw a single bootstrap sample from the empirical distributions of the specificity data. From 
this sample, we calculate the mean value of specificity. Let 𝑠̅! represent this value for the jth 
iteration of this procedure. 

c) We draw a single clustered bootstrap sample from the Santa Clara County survey sample. That is, 
we draw clusters of individuals belonging to the same family with replacement. Each cluster 
either consists of a single adult, or an adult and child belonging to the same family. For our 
unweighted estimates, we calculate the unweighted fraction of individuals with either a positive 
IgG or IgM test reading. Let 𝑞&!"# represent this value for the jth iteration of this procedure.  

 
For our weighted estimates, we run the same algorithm as above, except we replace step c with the 
following: 
 

c') We draw a single clustered bootstrap sample from the Santa Clara County survey sample. That is, 
we draw clusters of individuals belonging to the same family with replacement. Each cluster 
either consists of a single adult, or an adult and child belonging to the same family. For our 
weighted estimates, we calculate the weighted fraction of individuals with either a positive IgG or 
IgM test reading, calculated using the sample weights for each person in the bootstrap sample. 
Let 𝑞&!# represent this value for the jth iteration of this procedure. We recalculate the weights in 
each bootstrap sample using the same procedure we use for calculating our original sample 
weights: we recalculate sample weights in each bootstrap draw to align bootstrap zip/race/sex 
frequency with the county zip/race/sex population frequencies. 

d) We then calculate the test-error adjusted prevalence of antibodies to SARS-CoV-2 for the jth 
bootstrap sample using the following formula (derived in the statistical appendix): 

 

𝜋!"# =
𝑞&!"# + 𝑠̅! − 1
𝑟̅! + 𝑠̅! − 1

 Test-error adjusted prevalence (unweighted) 
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𝜋!# =
𝑞&!# + 𝑠̅! − 1
𝑟̅! + 𝑠̅! − 1

 Test-error adjusted prevalence (weighted) 

 
 

e) Repeat the steps above for 10,000 bootstrap samples. 
f) In our tables, we report the 2.5th percentile and the 97.5th percentiles of the distributions of 𝜋!# 

and 𝜋!"# over the 10,000 bootstrap samples as the lower and upper ends of the 95% bootstrap 
confidence intervals. The point estimate we report are the respective means of these distributions.  
Of particular interest is the fact that even the minima of these distribution are above zero. 

 
Our bootstrap analysis shows the following estimates (also in Table 2): 
 

Approach Point estimate (%) Uncertainty (95% CI) 

Unadjusted (%) 50/3,330 = 1.5 1.1-2.0 (binomial exact) 

   

Adjusted for test 
performance (only, %) 1.2 0.7-1.8 

   

Adjusted for test 
performance and 
weights (%) 

2.8 1.3-4.7 

 
Section 3: Sample bias in favor on those with higher likelihood of COVID-19 
 
Several commentators who read the preprint expressed a concern that our sample was enriched in people 
who had COVID-19 because those who thought they may have had COVID-19 would have greater desire 
to get tested and register for the study. While this is a limitation of any study involving voluntary 
participation, this is a source of bias that we assessed in several ways. 
 
First, we provide additional narrative detail about the participant recruitment process. The Facebook ad 
was designed to reach individuals determined by Facebook's algorithm to reside in Santa Clara County 
zip codes, with representative reach across zip codes. Within 2 hours from the moment our Facebook ad 
went live on April 2, we had nearly 1,000 registrations, dominated by relatively wealthy zip codes. These 
registrations appear to have been driven by sharing of the Facebook ad and registration links in local 
social media and listservs amongst residents of relatively wealthy zip codes. We learned of at least one 
incident where the survey link from the Facebook ad, as well as inaccurate information about the study 
purpose, were shared to a listserv without our knowledge or consent. During the study, when we realized 
that our registrations were heavily skewed towards those zip codes, we moved to preferentially accept 
registrations from under-represented zip codes of the county into the sample.  While we acknowledge the 
limitations of this approach to participant recruitment, we were also balancing a quick timescale 
(attempting to recruit >2,500 participants within 24 hours) and current shelter-in-place policies. 
Alternative convenience sampling approaches, such as sampling outside of grocery stores (an approach 
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other seroprevalence studies are using), would have captured individuals from a smaller subset of zip 
codes and been subject to other selection concerns. 
 
As has been suggested, it is possible that across all populations there was a bias towards those with 
greater suspicion for current or past disease. We believe the speed with which registrations happened 
more likely selected for those who were ready to respond to a notice on Facebook. At the end of the ~24 
hours when we had the registration open, we had ~11,000 people get to the registration site from 
Facebook alone, suggesting that the most eager participants who managed to sign up quickly entered our 
sample, not necessarily those at greatest risk. During the survey days, we were concerned about the 
apparent over-representation of wealthy and healthy-appearing participants. This bias is consistent with a 
common type of healthy volunteer bias which leads to under-participation of sicker populations in trials 
and surveys.  
 
Second, we performed the following analyses to assess the possible magnitude of selection bias. We 
asked our participants about cough and fever symptoms in the past 2 weeks and in the past 2 months. We 
use this information as follows. First, we assess the frequency of symptoms in our sample: 
 

 Unweighted sample (n, %) 
Cough + fever in past 2 weeks 101, 3.0 
Cough + fever in past 2 months 692, 20.8 

 
We then assess the relationship of symptoms to test positivity using simple frequencies. The table below 
shows that symptoms are positively associated with testing positive. (This is, incidentally, indirect 
evidence that the people who tested positive in our sample are true positives rather than false positives.) 
 

 Test positive among those with 
no symptoms (%)  

Test positive among those with 
symptoms (%) 

Cough + fever in past 2 weeks 1.3% 4.0% 
Cough + fever in past 2 months 1.3% 2.0% 

 
We then use these estimates to assess the impact of potential sample enrichment relative to the 
background prevalence of COVID-19-related symptoms in the county. We do this by estimating the 
number of additional positive cases in our sample relative to a scenario where our sample would have 
three times fewer people with cough and fever (chosen to approximate a lower bound). In other words, we 
calculate the population prevalence under two scenarios: (S1) where 1.0% of our sample came in with 
cough and fever in past two weeks (a third of 3.0%) or (S2) where 6.9% of our sample came in with 
cough and fever in past two months (a third of 20.8%). We calculate the prevalence as in our main 
manuscript, using the bootstrap, adjusted for test performance characteristics, for each scenario. For 
example, in scenario S1, the 2.0% decline in cough and fever symptoms (3.0% to 1.0%) would imply 
about 67 fewer people with cough and fever symptoms (3,330 x 2.0%). We then multiply this with the 
marginal probability of cough and fever symptoms on testing positive (2.7 percentage points), which 
implies 2 fewer positives. Similarly, scenario S2 implies 4 fewer positives. The implications of this 
potential bias for the weighted and test-performance adjusted prevalence is below: 
 

 Additional positives implied by 
potential sample bias 

Population prevalence in case-
depleted sample (%, 95CI) 

Cough + fever in past 2 weeks 2 2.7, (1.3-4.6) 
Cough + fever in past 2 months 4 2.6, (1.1-4.5) 
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The adjusted and weighted prevalence in our original sample was 2.8%. In other words, under 
assumptions of 3-fold selection based on fever and cough, our population prevalence estimates are only 
moderately different from our base estimates. Moreover, for February and March, the proportion of 
participants with cough + fever may actually be lower than what is typical in California, and, if so, the 
bias in the estimation of prevalence may be even in the opposite direction (prevalence may be a bit 
underestimated).38 
 
Weighting our sample to account for differences relative to the demographics of Santa Clara County plays 
an important role in this study. Applying weights to our sample results in prevalence estimates that are 
higher than the unweighted sample. Below we provide the distribution of the weights we applied to our 
sample, separately for those that tested positive (orange) and negative (green). The figure again illustrates 
that those that tested positive were, on average, drawn from demographic groups that were under-
represented in our sample, while those that tested negative were, on average, drawn from groups that were 
over-represented in the sample. 
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Section 4: Univariate frequencies of positivity based on demographics and symptoms 
 
Multiple readers asked about the relative frequency of antibody positivity along demographic features and 
symptoms. This was not provided in the original manuscript to allow a focus on the population 
prevalence. However, we provide this table here. While any gradients may be spurious, the differences in 
positivity along race/ethnicity and symptoms that have been observed to go along with COVID-19 may 
be taken as supportive of the ability of our test kit to distinguish true positives and true negatives. 
 
Table 3: Univariate frequencies of positivity along demographic and clinical features 

  N in population Portion positive, 
unadjusted (%) 

Race/ethnicity White 2,118 1.0 
 Asian 623 1.9 
 Hispanic 266 4.9 
 Other 306 1.3 
 Total 3,313* 1.5 
    
Sex Male 1,229 1.5 
 Female 2,101 1.5 
 Total 3,330 1.5 
    
Age 0-4 71 1.4 
 5-18 550 1.5 
 19-64 2542 1.5 
 ⩾65 167 1.2 
    
Symptoms in past 2 
weeks 

Fever 148 3.4 

 Cough 618 2.6 
 Shortness of breath 200 3.0 
 Runny nose 568 2.1 
 Sore throat 542 1.8 
 Loss of smell 60 21.7 
 Loss of taste 59 22.0 
    
Symptoms in past 2 
months 

Fever 866 2.0 

 Cough 1,534 1.6 
 Shortness of breath 542 2.2 
 Runny nose 1,329 1.5 
 Sore throat 1,397 1.8 
 Loss of smell 188 11.2 
 Loss of taste 187 10.7 
    

 
* 17 people did not indicate race. 
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We are grateful for the enormous interest in our work and for the helpful suggestions raised by other 
scientists that have helped us strengthen our data and inferences. We feel that our experience offers a 
great example on how preprints can be an excellent way of providing massive crowdsourcing of helpful 
comments and constructive feedback by the wider scientific community in real time for timely and 
important issues. We continue to strive for transparency in our approaches to dealing with these issues 
and with interpreting the results. We are open to all debates over this issue. Ultimately, this is just one 
study, and more studies will further our understanding of the seroprevalence of SARS-CoV-2 antibodies 
in Santa Clara and other counties and locations around the world. 
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Statistical Appendix 
 
In this appendix, we describe our statistical methods in more detail. Section 1 describes our approach to 
calculating population weights. Section 2 describes our approach to adjusting our population prevalence 
estimate for the sensitivity and specificity properties of the test kit we are using.   
 
Population weighting 
In all but the unadjusted prevalence results, we reweight our sample to reflect the sex, race/ethnicity, and 
zip code of residence distribution of Santa Clara County. We derive these weights from the 2018 
American Community Survey, from which we derived an estimate of the population of each zip code, as 
well as the race/ethnicity and sex distribution of county residents. We applied the county-wide sex 
distribution to each race/ethnicity group in each zip code to estimate the number of people within each 
zip-race-sex group. For example, zip code 95037 has a total of 51,652 residents, of which 50.6% are 
female, 49.7% are white, 7.7% are Asian, 33.0% are Hispanic, and 9.5% are other. We applied the female 
proportion to each race category in the zip code to obtain the number of residents in each zip-race-sex 
group. 
 
Let 𝐸𝑝𝑜𝑝$%&,()*+,,+- be the number of people in each zip-race-sex cell produced by this calculation. Let 
𝑆𝑚𝑝𝑆𝑧$%&,()*+,,+- be the number of people in our sample population in each cell.  We need to up-weight 
cells that are underrepresented in our population relative to their frequency in Santa Clara County, and 
down-weight cells that are overrepresented.  We can accomplish this by weighting proportional to the 
following ratio: 

𝜃3$%&,()*+,,+- =
𝐸𝑝𝑜𝑝$%&,()*+,,+-
𝑆𝑚𝑝𝑆𝑧$%&,()*+,,+-

 

 
We renormalize the weights so that the sum of our weights equals the size of the SCC sample, 𝑁.  Define 

𝑆 ≡ 6 𝜃3$%&,()*+,,+-
$%&,()*+,,+-

. 

Our final sample weights are: 

𝜃$%&,()*+,,+- =
𝑁
𝑆
𝜃3$%&,()*+,,+- 

 
This formula provides sample weights that are the same for all individuals in our sample within each 
zip/race/sex group. To make our notation clear, let i denote each individual in our population and let 𝑧𝑖𝑝%, 
𝑟𝑎𝑐𝑒%, and 𝑠𝑒𝑥% be the zip code of residence, race, and sex of individual i. We assign a sample weight of 
𝜃$%&!,	()*+!,	,+-! for person i.  
 
To provide a concrete example, suppose the county had two zip codes, A and B. The populations of each 
zip code include 10,000 men and 10,000 women (40,000 total population). Our sample included 250 men 
and 500 women from zip A, and 750 men and 1500 women from zip B. This is typical of the imbalance in 
our sample. Applying the formula above, we get relative weights of 3 each man in zip A, 1.5 for each 
woman in zip A, 1 for each man in zip B, and 0.5 for each woman in zip B. 
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Adjusting the prevalence estimate for test kit accuracy 
Our main goal is to derive an estimate of the prevalence of specific COVID-19 antibody seroconversion 
in Santa Clara County.  However, we observe an inaccurate measure of antibody presence because the test 
kit we use has both false positives and false negatives.39 In this section, we describe our approach to 
adjusting for these errors. To spare notation, we do not incorporate the sample weighting process we 
describe above. Introducing sample weighting would complicate our notation, but would not change the 
approach. The analytic weights were used in the results shown in Table 2. 
 
Let 𝜋 = 𝑃(𝐶𝑂𝑉𝐼𝐷 +) represent the population prevalence of antibodies to COVID-19, and let 𝑞 =
𝑃(𝑇𝐸𝑆𝑇 +) be the proportion of participants who test positive in our sample (this latter quantity 
measured using our sample weights). Note: we consider 𝑇𝐸𝑆𝑇 + as any band on the test kit indicating the 
presence of IgG or IgM antibodies or both. 
 
Let 𝑟 = 𝑃(𝑇𝐸𝑆𝑇 + |	𝐶𝑂𝑉𝐼𝐷 +) be the sensitivity of the test and let 𝑠 = 𝑃(𝑇𝐸𝑆𝑇 − |	𝐶𝑂𝑉𝐼𝐷 −) be the 
specificity of the test.  Let 𝑧 = 𝑃(𝐶𝑂𝑉𝐼𝐷 + |	𝑇𝐸𝑆𝑇 +) be the positive predictive value of the test, and 
𝑦 = 𝑃(𝐶𝑂𝑉𝐼𝐷 + |	𝑇𝐸𝑆𝑇 −) be the (one minus) the negative predictive value of the test. 
 
By Bayes rule,  

𝑃(𝐶𝑂𝑉𝐼𝐷 + |	𝑇𝐸𝑆𝑇 +) =
𝑃(𝑇𝐸𝑆𝑇 + |	𝐶𝑂𝑉𝐼𝐷 +)𝑃(𝐶𝑂𝑉𝐼𝐷 +)

𝑃(𝑇𝐸𝑆𝑇 + |	𝐶𝑂𝑉𝐼𝐷 +)𝑃(𝐶𝑂𝑉𝐼𝐷 +) + 𝑃(𝑇𝐸𝑆𝑇 + |	𝐶𝑂𝑉𝐼𝐷 −)𝑃(𝐶𝑂𝑉𝐼𝐷 −)
 

 
and 

𝑃(𝐶𝑂𝑉𝐼𝐷 + |	𝑇𝐸𝑆𝑇 −) =
𝑃(𝑇𝐸𝑆𝑇 − |	𝐶𝑂𝑉𝐼𝐷 +)𝑃(𝐶𝑂𝑉𝐼𝐷 +)

𝑃(𝑇𝐸𝑆𝑇 − |	𝐶𝑂𝑉𝐼𝐷 +)𝑃(𝐶𝑂𝑉𝐼𝐷 +) + 𝑃(𝑇𝐸𝑆𝑇 − |	𝐶𝑂𝑉𝐼𝐷 −)𝑃(𝐶𝑂𝑉𝐼𝐷 −)
. 

 
Rewriting these in our notation, we have: 

𝑧 =
𝑟𝜋

𝑟𝜋 + (1 − 𝑠)(1 − 𝜋)
, and 

𝑦 =
(1 − 𝑟)𝜋

(1 − 𝑟)𝜋 + 𝑠(1 − 𝜋)
. 

 
By the definition of conditional probability, we also have: 

𝑃(𝐶𝑂𝑉𝐼𝐷 +) = 𝑃(𝐶𝑂𝑉𝐼𝐷 + |	𝑇𝐸𝑆𝑇 +)𝑃(𝑇𝐸𝑆𝑇 +) + 𝑃(𝐶𝑂𝑉𝐼𝐷 + |	𝑇𝐸𝑆𝑇 −)𝑃(𝑇𝐸𝑆𝑇 −), 
 
Or in our notation: 

𝜋 = 𝑧𝑞 + 𝑦(1 − 𝑞). 
 
If we plug in our expressions for 𝑦 and 𝑧 and simplify, we have a quadratic expression in 𝜋. 

1 =
𝑟𝑞

𝑟𝜋 + (1 − 𝑠)(1 − 𝜋)
+

(1 − 𝑞)(1 − 𝑟)
(1 − 𝑟)𝜋 + 𝑠(1 − 𝜋)

. 

 
We solve for 𝜋 as a function of the sample prevalence, sensitivity, and specificity: 

𝜋 =
𝑞 + 𝑠 − 1
𝑟 + 𝑠 − 1

. 
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There is one important caveat to this formula: it only holds as long as (one minus) the specificity of the 
test is higher than the sample prevalence. If it is lower, all the observed positives in the sample could be 
due to false-positive test results, and we cannot exclude zero prevalence as a possibility. As long as the 
specificity is high relative to the sample prevalence, this expression allows us to recover population 
prevalence from sample prevalence, despite using an imperfect diagnostic test. 
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