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Abstract: 

There have been numerous reports that the impact of the ongoing COVID-19 epidemic has 

disproportionately impacted traditionally vulnerable communities, including well-researched social 

determinants of health, such as racial and ethnic minorities, migrants, and the economically challenged. 

The goal of this ecological cross-sectional study is to examine the demographic and economic nature of 

spatial hot and cold spots of SARS-CoV-2 rates in New York City and Chicago as of April 13, 2020.  

In both cities, cold spots (clusters of low SARS-CoV-2 rate ZIP code tabulation areas) demonstrated 

typical protective factors associated with the social determinants of health and the ability to social 

distance. These neighborhoods tended to be wealthier, have higher educational attainment, higher 

proportions of non-Hispanic white residents, and more workers in managerial occupations. Hot spots 

(clusters of high SARS-CoV-2 rate ZIP code tabulation areas) also had similarities, such as lower rates of 

college graduates and higher proportions of people of color. It also appears to be larger households 

(more people per household), rather than overall population density, that may to be a more strongly 

associated with hot spots. 

Findings suggest important differences between the cities’ hot spots as well. They can be generalized by 

describing the NYC hot spots as working-class and middle-income communities, perhaps indicative of 

service workers and other occupations (including those classified as “essential services” during the 

pandemic) that may not require a college degree but pay wages above poverty levels. Chicago’s hot spot 

neighborhoods, on the other hand, are among the city’s most vulnerable, low-income neighborhoods 

with extremely high rates of poverty, unemployment, and non-Hispanic Black residents.  
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Introduction: 

There have been numerous reports that the impact of the ongoing COVID-19 epidemic has 

disproportionately impacted traditionally vulnerable communities, including well-researched social 

determinants of health(1), such as racial and ethnic minorities, migrants, and the economically 

challenged both globally (2) and domestically (3). For instance, according to an  April 8th Centers for 

Disease Control and Prevention’s Morbidity and Mortality Weekly Report, of the 580 hospitalized 

patients in 99 counties in 14 states found that non-Hispanic (NH) black were disproportionately affected 

(4). Poverty and low income have also been identified as important issues not just as a function of 

potentially classist policy, but also due to the increased difficulty for those in more tenuous financial 

situations and occupations to implement physical distancing and isolation. Individuals at or below the 

poverty line are affected by residential overcrowding, increased smoking rates (5), exposures to 

environmental pollutants (6), and lack of access to healthcare according to a UN report - all of which can 

increase the spread of the virus or cause adverse outcomes (7). However, it is important to note that at 

this point there is very little data at smaller geographies (e.g., counties or sub-county units) that report 

on demographic or economic characteristics of those with the virus, hospitalizations, or deaths (8).  

These types of health disparities, which are not new to this pandemic, may be a function of elements of 

the social and physical environments, as well as factors associated with systemic and institutionalized 

racism and classism resulting in suboptimal access to resources, including health care and support 

services (9, 10). Additionally, these vulnerable communities’ risk of having worse outcomes from COVID-

19 infection may be increased due to a higher prevalence of comorbidities or underlying conditions such 

as asthma, diabetes, and other conditions (11-14). This suggests that existing health disparities are likely 

to be magnified in the context of COVID-19, and potentially extend well beyond the lifespan of the 

epidemic due to sociodemographic inequity, and economic hardships at the global, national, and local 

levels which themselves have a differential impact on individuals and populations both directly and 

indirectly (15-18).  

Scale is an important element when examining any phenomenon that has a locational component, and 

the choice of both unit of analysis and study area can have large effects on the outcomes of the 

analyses. For instance, when quantifying the association between a health outcome and population 

density, using a county-scale could obscure the heterogeneity of both the outcome of interest (e.g., 

there may be very high rates in one part of the county, and low rates everywhere else) and the 

associated variable (e.g., one neighborhood in the county could house a large number of resident in 

high-rise buildings and the remainder could be low intensity single family homes and park land). This 

issue, often called the modifiable area unit problem (MAUP), has been documented in multiple research 

domains, including health (19, 20), exposure estimation (21), measures of access (22), and 

environmental justice (23, 24). A related phenomenon is the choice of the overall study area. For 

instance, based on the American Community Survey 2018 5-year estimates (25), Staten Island, one of 

the boroughs of New York City, may seem to have very high population density (over 8000 people per 

square mile) when compared other counties in the entire U.S., some of which have values far below one 

person per square mile (e.g., Denali, Alaska and Esmeralda, Texas). However, Staten Island is the least 

densely population borough of New York City, with Manhattan having more than 70,000 residents per 

square mile. As such, it would appear comparatively dense at a national scale, but relatively less-dense 

at a city scale. Since social interaction is the basis of community transmission of the virus, it stands to 

reason that denser areas would be more rapidly and severely impacted than low-population areas. 
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Although this may be true at a national or even global level at this stage of the epidemic (26), where 

transmission may be easier in urban regions versus rural areas, it is unclear if this is the case at an intra-

urban, sub-city, scale.  

The understanding of the disease characteristics at national and global scales is unquestionably 

important, however it is also necessary to appreciate its dynamics at a more granular, neighborhood-

level. According to data collected by the New York Times aggregated by county, as of April 13, NYC has 

the most reported cumulative cases (106,764) and deaths (7,154) in the United States. Cook County, 

Illinois, which contains Chicago, is fifth on the list for that day, with 15,474 cases and 543 deaths (27). 

However, the spatial distribution of reported positive cases are not homogeneously distributed across 

either city. 

The goal of this ecological cross-sectional study is to examine the spatial and demographic nature of 

reported SARS-CoV-2 diagnoses in New York City (NYC) and Chicago (CHI) as of April 13, 2020. 

Specifically, we examine SARS-CoV-2 diagnosis rates per ZIP code tabulation area (ZCTA) and compare 

sociodemographic and economic characteristics between spatial hot spots and cold spots. The 

characteristics of the NYC and CHI hot / cold spots are then compared to reveal differences and 

similarities between the cities.  

 

Data:  

Cumulative counts of SARS-CoV-2 diagnoses (“cases”) for NYC are from New York City Department of 

Health and Mental Hygiene’s Incident Command System for COVID-19 Response (4/13/2020) (28).  Of 

the 211 Zip Code tabulation areas in NYC, 34 (16.1%) had no data, likely due to low or no populations 

(e.g., airport, commercial areas, parks). Reported SARS-CoV-2 diagnoses (> 5 cases per ZIP code) are 

from the Illinois Department of Public Health (4/13/2020) (29). ZCTAs were included in the CHI analysis if 

their centroid was within the published city boundary or greater than 20% of the ZCTA area was within 

the city. Of the 60 ZCTAs, three (5.0%) were excluded due to missing data, likely due to low populations 

or reporting five or fewer cases. Demographic and economic data are from American Community Survey 

(ACS) 2018 5-year estimates via NHGIS.org (25). 

It is vitally important to note that these data may not necessarily represent the true distribution of 

SARS-CoV-2 based on biases in testing and extremely limited or differential testing and/or access. 

Testing for SARS-CoV-2 also has resulted in high percentage of false negatives. This is due to two 

reasons, development of rapid testing during an epidemic and need the need to collect a sample from 

deep in the pharynx which can be uncomfortable for the patient and is time consuming for the health 

care worker. False negatives are especially problematic since the infected individual can continue to 

spread the virus without being aware. There have also been instances of false positives being reported 

in health care setting due to the high viral load present in the environment (30). These factors can 

decrease the reliability and accuracy of the data and make comparisons within and across geographical 

regions difficult.  
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Methods: 

Raw rates of reported SARS-CoV-2 cases were calculated by normalizing the number of diagnoses by the 

ZCTA population (cases per 1,000 residents) and spatialized and analyzed using ArcGIS 10.7 (ESRI, 

Redlands California). The Global Moran’s I based on ZCTA contiguity revealed clustering (z-scores = 5.14 

and 13.2 for CHI and NYC, respectively. Both p-values < 0.001), suggesting that it is highly unlikely for the 

clustered pattern to be a result of random chance. Hot spots of rates for each city were then calculated 

using the Getis-Ord (GI*) statistic parameterized using contiguity (i.e., ZCTAs sharing a boundary or 

corner). Resulting hot spots represent clusters of contiguous ZCTAs with higher values within the city 

(GI* was calculated once for NYC and once for CHI), whereas cold spots represent clusters of ZCTAs with 

low values. Clusters with >= 95% confidence were included in the analyses (figure 1). It is important to 

note that identifying statistical hot and cold spots is not the same as simply selecting the ZCTAs with the 

highest rates (e.g., top quartile). Unlike using quantiles or some other classification technique, hot (or 

cold) spots require clusters of ZCTAs to have high (or low) values relative to the study area which are 

accepted or rejected based on a significance value. 

 

 

Figure 1: Reported SARS-COV-2 cases per 1,000 ZCTA residents. Note: cities are shown at different scales. TOP LEFT: 

NYC raw rates in quintiles. TOP RIGHT: NYC hot spots and cold spots (GI*) at >= 95%, confidence.  BOTTOM LEFT: 

CHI raw rates in quintiles. BOTTOM RIGHT: CHI hot spots and cold spots (GI*) at >= 95%, confidence.  
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American Community Survey (ACS) data were mapped by ZCTA and linked with SARS-CoV-2 case rates 

and hot/cold spots for exploration and analysis (Figure 2). ZCTA averages, stratified by hot/cold spot 

status, were calculated for variables of interest which include: (1) SARS-CoV-2 cases per 1000 residents, 

(2) total population, (3) population density, (4) average household size, (5) % of housing units with > 1 

occupant per room, (6) % NH White, (7) % NH Black, (8) % Latinx / Hispanic, (9) % foreign-born, (10) % 65 

years or older (11) % of workers who commute using public transportation, (12) % of adults without a 

high school degree, (13) % of adults with a bachelor's degree or higher, (14) % of residents earning 

under the federal poverty threshold, (15) median household income, (16) % of the civilian workforce 

who is unemployed, and (17) % in of workers in management, business, science, and arts occupations. 
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Figure 2: Selected ZCTA-level demographics for NYC and CHI in quintiles. Note: cities are shown at different scales. 

TOP ROW: % NH white. SECOND ROW: median household income (in 2018-adjusted dollars). THIRD ROW: 

population density (people per square mile). FOURTH ROW: % unemployed.  
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SAS Statistical software (version 9.4, SAS Institute, NC) was used to conduct all statistical analyses. 

Means were calculated across ZCTA for both cities. A Wilcoxon Two-Sample Test was used to calculate 

differences in demographic variables at the ZCTA level between the two cities. Due to the small sample 

size the t-approximation was used to calculate p-values.  

 

Results: 

Table 1: NYC and Chicago city-wide demographics 

 Variable NYC* CHI* 

# of ZCTAs 211 60 

Case rate (per 1000) 12.5 3.3 

Population (in millions) 8.4  2.8  

Area (square miles) 294 262  

Population density  
(in thousands per square mile) 

28.7 10.8 

Average household size 2.7 2.6 

% >1 occupancy per room 9.0 3.8 

% NH white 32.1 33.1 

% NH Black 22.0 29.4 

% Latinx/Hispanic 29.1 29.1 

% foreign-born 37.0 20.8 

% 65 year and older 14.1 12.1 

% public transp. commuter 56.3 27.6 

% without high school degree 18.4 15.5 

% with bachelor's or higher 37.4 37.8 

% in poverty 18.9 19.3 

Median household income  
(in thousands of dollars) 

64.2  57.3  

% unemployed 6.9 8.9  

% management occupation 41.3 40.4 

* These data are based solely on ZCTAs used in the analysis and may differ from published demographic estimates 

as well as SARS-CoV-2 rates (as of 4/13/20). 

Demographics in the NYC and CHI study areas are summarized and described using population-weighted 

averages (table 1). The overall positive test rate on April 13 for NYC was 12.5, which was approximately 

four times greater than CHI. New York City and CHI were comparable in terms of median household 

income, percent non-Hispanic White, percent with a bachelor’s degree, and percent below the poverty 

line. The main difference between the two cities was in terms of population density and percent foreign-

born. Although NYC and CHI are roughly the same area (294 mi2 and 262 mi2, respectively) NYC has 

almost three times as many people per mi2. The density is also observed in households, with NYC having 

nearly three times the rate of having more than one person per room compared to CHI. The 

dissimilarities in density and urban landscape are also reflected in the percentage of individuals using 

public transportation, with 56.3% of NYC residents relying on public transportation and only 27.6% in 

CHI.  
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Table 2: Hot / cold spot characteristics of NYC and Chicago (ZCTA-level averages) 

Variable  

NYC CHI 

cold spot hot spot rest of 
city* 

hot vs. 
cold  

p-value 

cold spot hot spot rest of 
city* 

hot vs. 
cold  

p-value 

# of ZCTAs 28 31 118 -- 5 8 44 -- 

Case rate (per 1000) 6.8 19.2 11.9 -- 2.2 4.9 3.1 -- 

Population (in millions) 1.11 1.46 5.85 -- 0.24  0.45  2.13  -- 

Area (mi2) 17 93 175 -- 12  48  202  -- 

Population density  
(in thousands per square mile) 

68.9 22. 9 45.3 <0.01 23.4 10.0 15.7 0.02 

Average household size 2.1 3.0 2.7 <0.01 2.0 2.8 2.5 0.03 

% >1 occupancy per room 6.1 7.9 8.9 0.39 2.1 3.9 3.9 0.36 

% NH white 57.0 27.1 33.6 <0.01 66.1 4.3 40.1 0.01 

% NH Black 11.4 29.5 19.1 0.01 7.2 82.9 23.0 0.01 

% Latinx/Hispanic 12.9 28.9 28.4 <0.01 15.7 11.4 25.8 0.12 

% foreign-born 24.6 35.5 37.8 <0.01 15.7 5.8 22.7 0.06 

% 65 year and older 12.6 15.0 14.5 0.04 9.1 14.5 12.4 0.04 

% public transp. commuter 58.4 42.1 55.1 <0.01 32.5 30.1 23.9 0.62 

% without high school degree 8.6 16.6 18.5 <0.01 5.8 20.0 13.5 0.04 

% with bachelor's degree 70.5 27.9 36.8 <0.01 72.6 16.7 41.2 0.01 

% in poverty 12.7 13.5 18.4 0.47 9.9 31.2 17.8 0.01 

Median household income  
(in thousands of dollars) 

117.3 70.0 64.3 <0.01 96.5 34.6 63.1 0.01 

% unemployed 4.8 6.5 7.1 <0.01 3.7 17.7 8.6 0.01 

% management occupation 67.1 33.6 39.7 <0.01 62.7 23.1 41.2 0.01 

* “Rest of city” refers to ZCTAs that were not in hot or cold spots. 

Demographics in the NYC and CHI hotspots were summarized and described using ZCTA averages (table 

2). There were striking differences between hot spots and cold spots in each city, as well as marked 

differences comparing across study areas. The NYC hot spots included 31 ZCTAs, representing nearly 1.5 

million people (~ 17.4% of the population in the NYC study area) and CHI hotspots consisted of 8 ZCTAs 

with 445,000 residents (~15.8% of the CHI study area population). Hot spot neighborhoods in both cities 

tended to have lower proportions of non-Hispanic (NH) white residents, higher proportions of NH Black 

/ African-American residents, a greater percentage of older residents, fewer college graduates, and 

lower proportions of workers in managerial occupations compared to cold spots or the “rest of city”.  

Spatial density is an important factor in the spread of communicable diseases. Hot spots in both cities 

had significantly larger household sizes compared to cold spots. However, hotspots were located in 

neighborhoods that were significantly less dense and the proportion of housing units with more than 

one occupant per room were not significantly different (0.39 and 0.36 in NYC and CHI, respectively) 

between hot and cold spots.  Additionally, there were lower proportions of public transportation 

commuters in both cities’ hot spots than cold spots, the difference in NYC (p < .01) was more meaningful 
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than that in CHI (p = 0.62). This is not reflective of public transportation use during the outbreak, but 

rather a measure of “connectedness” or “centrality” of a neighborhood. 

There are some variables that suggest different patterns between NYC and CHI. Poverty rates, for 

instance, are lower for both hot and cold spots compared to the rest of the city in NYC; whereas in CHI 

the poverty rates are highest in the hot spots. Unemployment follows a similar trend, where the NYC 

rates are highest in the areas which are neither hot spots nor cold spots, but in CHI the rates are by far 

the highest in the hot spots. Although median household income is highest in cold spots for both cities, 

in NYC the income in hot spots is higher than the rest of the city, whereas in CHI hot spot incomes are 

much lower than the rest of the city. Finally, the proportions of both foreign-born (p < 0.01) and Latinx 

(p < 0.01) residents are higher in NYC hot spots than cold spots (but hot spot values are similar to the 

rest of the city), whereas the opposite is true for Chicago with foreign-born (p < 0 .06) and Latinx (p = 

0.12) appearing protective.  

 

Conclusion and Discussion:  

In both Chicago and New York City, cold spots demonstrated typical protective factors associated with 

the social determinants of health and the ability to social distance. These neighborhoods tended to be 

wealthier, have higher educational attainment, higher proportions of non-Hispanic white residents, and 

more workers in managerial occupations. Hot spots between the cities also had some similarities, such 

as lower rates of college graduates and higher proportions of people of color. However, there are some 

other findings which must be highlighted. For instance, in both cities it is not the densest areas which 

appear to be most impacted by SARS-CoV-2, but rather it is the less-centralized, lower-density 

neighborhoods. In these two large U.S. cities it appears to be larger households (more people per 

household), rather than overcrowding or overall population density - which may be reflective of 

neighborhood socioeconomic status - that may be a more strongly associated with geographic hot spots. 

Perhaps most striking are the differences in the economic and racial composition of the hot spots 

between NYC and CHI. At this point in the epidemic, NYC has a mix of racial/ethnic neighborhoods. For 

instance, the Staten Island hot spot in NYC is nearly 60% NH white, whereas the hot spot in Eastern 

Queens is less than 6% NH white (figures 1 and 2). In NYC overall, the ZCTA-level average shows 

approximately 27% of the population as NH white, 30% NH Black, and 29% Latinx/Hispanic. In Chicago, 

the hot spots ZCTAs are on average approximately only 4% NH white, 11% Latinx/Hispanic, and nearly 

83% NH Black. Although in both cities NH white residents may be underrepresented in hot spots, 

Chicago shows the inequities much more clearly. Economic distinctions are even more stark. The 

population in NYC’s hot spots are, overall, middle income with ZCTA-level average median household 

incomes around $70,000, which, although lower than the cold spots ($117,000), are higher than the rest 

of the city ($64,000). Conversely, the average median household income in Chicago’s hot spots is only 

$35,000 with cold spots and the rest of the city being $97,000 and $63,000, respectively. Poverty rates 

in NYC hot and cold spots were both around 13%, whereas the rate in the rest of the city was over 18%. 

Chicago, on the other hand, had hot spots with poverty rates of over 30% which is higher than both cold 

spots (10%) and the rest of the city (18%). This is mirrored by unemployment rates, where the NYC hot 

spots had rates of under 7% compared to Chicago’s nearly 18%. 
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These characteristics can be generalized by describing the NYC hot spots as working-class and middle-

income communities, perhaps indicative of service workers and other occupations (including those 

classified as “essential services” during the pandemic) that may not require a college degree but pay 

wages above poverty levels. Chicago’s hot spot neighborhoods are among the city’s most vulnerable, 

low-income neighborhoods with extremely high rates of poverty, unemployment, and NH Black 

residents. 

It is important to note that this represents an ecological analysis and does not use individual level data. 

The results characterize the neighborhoods (clusters of ZCTAs) and not necessarily the individuals living 

in those neighborhoods. The goal of this project is not to suggest causation, but rather to demonstrate 

the nature of SARS-CoV-2 hot and cold spots in two large U.S. cities. The information about the 

demographic and economic characteristics of hardest hit areas may help direct resources to mitigate the 

impact of COVID-19 properly and preemptively. However, the differences found, although striking, may 

be at least partially a function of a number of factors, including potential bias and extremely limited 

testing/reporting and possible false positives/negatives. For instance, it is possible that the Staten Island 

cluster is a result of more aggressive testing practices in those neighborhoods compared to other areas 

with less social or political capital. It is also important to note that this analysis is based on testing 

results, and do not examine COVID-19-related hospitalizations or deaths. Additionally, NYC and CHI are 

not only different in urban morphology and demographics, but also may be in different stages of the 

epidemic. The cumulative SARS-CoV-2 rates, particularly when comparatively low as is the case in some 

Chicago ZCTAs, can change rapidly due to the dynamic nature of infectious disease spread as well as a 

hopeful increase in thorough testing. However, it is clear that as of April 13, 2020, Chicago and New York 

City have some similarities, particularly in with respect to possible “protective” factors, as well as 

important distinctions. Further study will be needed to determine if other cities, domestic or global, 

have comparable trends and hypotheses will need to be generated and tested to attempt to identify 

associations as more complete and reliable data become more available.  

 

References 

1. Marmot M, Allen JJ. Social determinants of health equity. American journal of public health. 
2014;104 Suppl 4(Suppl 4):S517-S9. 
2. Wang Z, Tang K. Combating COVID-19: health equity matters. Nature Medicine. 2020;26(4):458. 
3. Devakumar D, Shannon G, Bhopal SS, Abubakar I. Racism and discrimination in COVID-19 
responses. The Lancet. 2020;395(10231):1194. 
4. Shikha G, Lindsay Kim MD, Michael Whitaker MPH, Alissa O’Halloran M, Charisse Cummings 
MPH, Rachel Holstein MPH, et al. Hospitalization Rates and Characteristics of Patients Hospitalized with 
Laboratory-Confirmed Coronavirus Disease 2019 — COVID-NET, 14 States, March 1–30, 2020. MMWR 
Morb Mortal Wkly Rep. 2020;69(early release). 
5. Vardavas CI, Nikitara K. COVID-19 and smoking: A systematic review of the evidence. Tob. 
2020;18:20-. 
6. Wu X, Nethery RC, Sabath BM, Braun D, Dominici F. Exposure to air pollution and COVID-19 
mortality in the United States. medRxiv. 2020:2020.04.05.20054502. 
7. UN News. US must improve COVID-19 strategy to keep tens of millions from falling into poverty, 
urges rights expert 2020, 04/17 [Available from: https://news.un.org/en/story/2020/04/1061982. 

https://news.un.org/en/story/2020/04/1061982


 

11 
 

8. Krieger N, Gonsalves G, Bassett MT, Hanage W, Krumholz HM. Health Affairs Blog 
[Internet]2020, April 14. 
9. Paradies Y, Truong M, Priest N. A Systematic Review of the Extent and Measurement of 
Healthcare Provider Racism. Journal of General Internal Medicine. 2014;29(2):364-87. 
10. Shavers VL, Shavers BS. Racism and health inequity among Americans. Journal of the National 
Medical Association. 2006;98(3):386-96. 
11. CDC Covid-Response Team. Preliminary Estimates of the Prevalence of Selected Underlying 
Health Conditions Among Patients with Coronavirus Disease 2019 — United States, February 12–March 
28, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(early release). 
12. Liu PP, Blet A, Smyth D, Li H. The Science Underlying COVID-19: Implications for the 
Cardiovascular System. Circulation. 2020. 
13. Hu Y, Deng H, Huang L, Xia L, Zhou X. Analysis of Characteristics in Death Patients with COVID-19 
Pneumonia without Underlying Diseases. Academic Radiology. 2020. 
14. Emami A, Javanmardi F, Pirbonyeh N, Akbari A. Prevalence of Underlying Diseases in 
Hospitalized Patients with COVID-19: a Systematic Review and Meta-Analysis. Arch. 2020;8(1):e35. 
15. Chin T, Kahn R, Li R, Chen JT, Krieger N, Buckee CO, et al. U.S. county-level characteristics to 
inform equitable COVID-19 response. medRxiv. 2020:2020.04.08.20058248. 
16. Labonte M. COVID-19: Potential Economic Effects [March 11, 2020]. 2020. 
17. Kabir M, Afzal MS, Khan A, Ahmed H. COVID-19 pandemic and economic cost; impact on forcibly 
displaced people. Travel Medicine & Infectious Disease. 2020:101661. 
18. Hossain MA. Is the spread of COVID-19 across countries influenced by environmental, economic 
and social factors? medRxiv. 2020:2020.04.08.20058164. 
19. Maroko AR, Maantay JA, Grady K, editors. Using Geovisualization and Geospatial Analysis to 
Explore Respiratory Disease and Environmental Health Justice in New York City. Association of American 
Geographers Annual Meeting; 2011; Seattle, WA: AAG. 
20. Parenteau M-P, Sawada MC. The modifiable areal unit problem (MAUP) in the relationship 
between exposure to NO2 and respiratory health. International Journal of Health Geographics. 
2011;10(1):58. 
21. Maroko A, Maantay J, Pérez Machado RP, Vizeu Barrozo  L. Improving Population Mapping and 
Exposure Assessment: Three-Dimensional Dasymetric Disaggregation in New York City and São Paulo, 
Brazil. Papers in Applied Geography. 2019:1-13. 
22. Miyake KK, Maroko AR, Grady KL, Maantay JA, Arno PS. Not Just a Walk in the Park: 
Methodological Improvements for Determining Environmental Justice Implications of Park Access in 
New York City for the Promotion of Physical Activity. Cities and the environment. 2010;3(1):1-17. 
23. Sui D. GIS, environmental equity analysis, and the Modifiable Areal Unit Problem (MAUP). In: 
Craglia M, Onsrud H, editors. Geographic information research: transatlantic perspective. London: Taylor 
and Francis; 1999. p. 41-54. 
24. Maantay JA. Mapping Environmental Injustices: Pitfalls and Potential of Geographic Information 
Systems in Assessing Environmental Health and Equity. Environmental Health Perspectives. 
2002;110(2):161-71. 
25. Manson S, Schroeder J, Van Riper D, Ruggles S. IPUMS National Historical Geographic 
Information System: Version 14.0 [Database]. Minneapolis, MN: IPUMS2019. 
26. Rocklöv J, Sjödin H. High population densities catalyze the spread of COVID-19. Journal of Travel 
Medicine. 2020. 
27. New York Times. Coronavirus (Covid-19) Data in the United States 2020 [Available from: 
https://github.com/nytimes/covid-19-data. 
28. NYC Department of Health and Mental Hygiene. NYC Coronavirus (COVID-19) data 2020 
[Available from: https://github.com/nychealth/coronavirus-data. 

https://github.com/nytimes/covid-19-data
https://github.com/nychealth/coronavirus-data


 

12 
 

29. Illinois Department of Public Health. COVID-19 Statistics 2020 [Available from: 
http://dph.illinois.gov/covid19/covid19-statistics. 
30. Carbone M, Green JB, Bucci EM, Lednicky JA. Coronaviruses: Facts, Myths, and Hypotheses. 
Journal of Thoracic Oncology. 

 

 

http://dph.illinois.gov/covid19/covid19-statistics

