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Abstract 

We perform a statistical analysis for understanding the effect of the environmental temperature on the 
exponential growth rate of the cases infected by COVID-19 for US and Italian regions. In particular, we 
analyze the datasets of regional infected cases, derive the growth rates for regions characterized by readable 
exponential growth phase in their evolution spread curve and plot them against the environmental 
temperatures averaged within the same regions, derive the relationship between temperature and growth 
rate, and evaluate its statistical confidence. The results clearly support the first reported statistically 
significant relationship of negative correlation between the average environmental temperature and 
exponential growth rates of the infected cases. The critical temperature, which eliminates the exponential 
growth, and thus the COVID-19 spread in US regions, is estimated to be TC = 86.1 ± 4.3 F0. 
 
 
1. INTRODUCTION 

The daily number of new cases infected by COVID-19 is currently exponentially growing for most 
countries affected by the virus. However, this exponential growth rate varies significantly for different 
regions over the globe. It is urgent and timely to understand the reasons behind this regional variation of 
the exponential growth rates. Little information is known about this matter, while there are indications that 
the environmental temperature may be a factor; for instance, northern and colder US and Italian regions 
experienced much more incidents than others. 

Typically, the evolution curve of the spread of the coronavirus initiates with a pre-exponential phase 
characterized by a mild logarithmic growth, followed by the outburst phase of the exponential growth. 
Social-distancing measures against the spread may affect the evolution curve in a way that the exponential 
growth slows down and starts to decay, depending though on the effectiveness and applicability of these 
measures. However, after the decay of the spread at some place, new infected cases may outburst in other 
places, marked with insignificant number of cases until that moment. Then, a newly growth phase may 
appear. For example, Fig.1 (left) shows the evolution curve of spread for the infected cases in mainland 
China; clearly, we observe the whole growth−decay cycle, as well as, a new re-growth phase. 

Super-strict measures, such as complete shut down and quarantines, can successfully lead to the dece-
leration of the exponential growth of infected cases (Giugliano, 2020). Unfortunately, they cannot be 
successfully applied and followed within vast regions, and especially, for a long and indefinite period of 
time. Inevitably, measures may be loosened during the decay phase, leading to the birth of an equally 
disastrous re-growth phase. 
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Figure 1. Evolution of new cases infected by COVID-19 (on linear-log scale) for mainland China (left) and 
US & Italy (right); phases (color-coded): pre-exponential (pre-exp), exponential (exp) growth, decelerated 
growth, decay, and possibly, a re-growth. Day t=1 corresponds to 1/15/2020 for China, 2/20/2020 for Italy, 
2/27/2020 for US. Evolution in China cases follows the whole growth-decay cycle, and a new re-growth 
phase. Italian cases are characterized by a milder exponential rate, entered the phase of decelerated growth 
on March 12. US suffers with a larger exponential rate, and it is not clear whether has entered the decelerated 
growth phase. The exponential growth rate for China rose as high as λ=0.169±0.017, while for Italy and 
US the rates were λ=0.090±0.004 and 0.121±0.003, respectively (with correlation coefficient > 0.99). 
 

The exponential growth is the most effective phase for the evolution curve of infected cases; and the 
most important question regarding this evolution is still open (Black et al. 2020): What can influence the 
exponential growth rate, and thus, “flatten the curve”? Measures, strict or not, may affect the evolution of 
new infected cases, by shifting the spread curve from the exponential to the decelerated growth. It should 
be noted though that measures do not affect the exponential growth rate itself, but only the period of time 
that this exponential phase applies. Then, what factors do affect the exponential growth rate? 

The age distribution in the place where the outburst occurs is unlikely to be a factor; indeed, the number 
of new cases is known to be positively correlated with age, however, the exponential growth rate (China: 
0.169; US: 0.121; Italy: 0.090 – decreasing rate) appears to be negatively correlated to the age median of 
these countries (China: 37.4; US: 38.1; Italy: 45.5 –increasing age); hence, the age is likely irrelevant to the 
rate variations. 

In addition, culture in social activities may be a factor; for example, this might be contributing in the 
observed differences among the exponential rates in the cases of China, Italy, and US (Fig.1). However, 
what is causing the major variation of exponential rates among different regions of the same culture? It is 
apparent that culture does not constitute the main factor influencing the exponential rate. 

Figure 2 shows the regional variation of infected cases (left) and average winter temperature (right) in 
Italy. The possible negative correlation, observed between regional number of infected cases and winter 
temperature in Italy, is an indication of the influence of temperature on the exponential growth, but it 
certainly does not constitute a necessary condition. The reason is that the map plots the total number of the 
infected cases Nt, which does not depend only on the exponential rate λ, but also on the initial number of 
cases N0. 

It is generally accepted that the initial infected cases in Italy were travelled directly from China; since 
some destinations are more favorable than others, then, the initial number of cases N0, as well as the current 
number of cases Nt (which is proportional to N0), should be subject of regional variation. Therefore, there 
is a non-negligible possibility, the observed regional variation of the number of infected cases Nt to be 
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caused by the regional distribution of the initial cases N0. In such a case, main airport cities would have 
incredibly high number of infected cases outplaying a possible negative correlation of daily infected cases 
with regional average temperature T; the latter may be one of the reasons of the high numbers of cases 
observed in New York City and Rome. 
 

 
Figure 2. Regional distribution of infected cases Nt by the end of March (left), and average winter 
temperature T in mainland Italy (right). 
 

On the other hand, in their letter to the White House, members of a National Academy of Sciences 
committee said that "There is some evidence to suggest that [coronavirus] may transmit less efficiently in 
environments with higher ambient temperature and humidity; however, given the lack of host immunity 
globally, this reduction in transmission efficiency may not lead to a significant reduction in disease spread 
without the concomitant adoption of major public health interventions" (Relman, 2020). 

Nevertheless, it has to be stressed out that there were no statistical analyses focused on the exponential 
growth rates of the infected cases in regions with different temperatures. For instance, several authors (e.g., 
Pawar et al., 2020; Yao et al., 2020) found insignificant correlations between temperatures and confirmed 
cases. However, their analysis was performed on the number of the infected cases Nt, which is subject to 
the randomness of the initial cases N0 as explained above, and not to the exponential growth rate λ, which 
is dependent on physical characteristics of the coronavirus, binding protein, and environment. 

Analysis of regional cases can show whether the speculated negative correlation between temperature 
and number of infected cases is true, meaning a negative correlation between temperature and exponential 
growth rate. If the environmental temperature plays indeed a substantial role on the virus spread, then, this 
can provide promising results, such as, the estimation of the critical temperature that may eliminate the 
number of daily new cases in heavily infected regions. 

The purpose of this paper is to improve understanding of the effect of environmental temperature on the 
spread of COVID-19 and its exponential growth rate. Then, we calculate the exponential growth rates of 
infected cases for US and Italian regions, derive the relationship of these rates with the environmental tem-
perature, evaluate its statistical confidence, and determine the critical temperature that eliminates this rate. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.21.20072405doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.21.20072405
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 
 

2. THEORY 
2.1 Modeling behind “Flattening the curve” 

A standard model for describing the evolution of the infected cases by viruses is given by 

 ( ) ( )t t tx E x I x   , with ( ) λE x x   , ( ) 1 bI x x   ,  (1) 

where max/t tx N N , 0 0 max/x N N ; Nt is the number of total infected cases evolved from the initial N0 

cases, Nmax is the maximum possible number of infected cases; λ is the exponential growth rate, and 
becomes clear for xt <<1, where I is negligible, leading to: 

 0 exp(λ )tx x t   or 0 exp(λ )tN N t  , for x<<1 where ( ) 1I x   .  (2) 

The function of negative feedback I models factors that flattens the curve, such as, the measures taken 
against spreading. While these factors are not affecting the exponential growth rate λ, they become more 
effective as the number of cases increases, getting closer to Nmax; exponent b controls the effectiveness of 
these factors; strict {loose} measures correspond to smaller {larger} values of b. 

Figure 3 shows the evolution curve of the number of new (ΔNt = Nt+1−Nt) and total infected cases (Nt) 
and how this curve flattens for stricter measures (smaller values of b). 
 

 
Figure 3. Plots of total Nt and new ΔNt infected cases according to model (1), showing the flattening of the 
spread curve with the interplay of (a) stricter measures (decreasing b), or (b) weaker rates (decreasing λ). 
 

As observed in Fig.3(b), stricter measures, nicely modeled by decreasing b, do not affect the exponential 
rate λ but they successfully flatten the curve. However, the same can be achieved by downgrading the 
exponential growth rate. It is apparent, then, how much useful would it be to know the factors that can 
flatten the curve by decreasing directly the exponential rate. Applied measures could be loosen and shorter! 

Model (1) originates from the logistic map family (e.g., Livadiotis, 2005; and references therein; Wu et 
al. 2020); other complicate versions, such as, the Susceptible–Infectious–Recovered models (e.g., Ciarochi, 
2020) may be expressed by multi-dimensional differential or difference equations (e.g., Elaydi, 2005, and 
references therein; Livadiotis et al. 2016), but still, the curve flattening is governed by the same features. 
The two composites, the exponential growth E and the negative feedback I, are just the main and necessary 
conditions for reproducing the growth-decay phases of the spread curve. Their interplay shows how the 
spread curve can be flattened as a result of stricter measures, independently of the existent exponential rate. 
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2.2 Main factors influencing the exponential growth rate 
What are the main factors that can affect the exponential growth rate λ of COVID-19 spread? 
The rate λ is expected to have positive correlation with the reproduction number R0 (e.g., proportional 

to its logarithm), and negative correlation with the incubation period τ (e.g., inverse proportional) (Milligan 
and Barrett, 2015). The number R0 is a measure of how contagious a disease is; it provides the average 
number of people in a susceptible population that a single infected person will spread the disease to over 
the course of their infection (Ciarochi, 2020), and depends on the physical characteristics of coronavirus 
(Hao 2020). The incubation period τ is the time elapsed between exposure to coronavirus and first 
symptoms; during this period, an infected individual cannot infect others; other characteristic periods and 
time intervals are the latent period between exposure and infection, and the generation time, mostly 
concerned with transmission process (Nishiura, 2010). Characteristic values for COVID-19 are τ~5-6 days 

and R0~2-4 (Chen, 2020). The rate expression can be written as 0λ ln /R  , and involves all the physical 

characteristics of the mechanisms of infection and the environmental interactions; this can be easily derived, 
considering difference equations (that is, iterated discrete maps) (e.g., see: Livadiotis and Elaydi, 2012; 
Kwessi et al., 2018; Dayeh et al, 2018). Setting the time to be given in discrete τ-steps, then, 

 0 0 0

t

t tN R N R N
     ,  (3) 

which can be written in terms of Eq.(2), 

  0 0 0exp ln / exp(λ )tN N R t N t     ,   (4) 

where the exponential rate is given by: 

 0λ (ln ) /R   .   (5) 

The main factors that can affect the exponential rate λ are: (a) culture in social activities, and (b) 
environmental temperature and/or other thermodynamic parameters. Intense cultural and social activities 
have reasonably a positive correlation with R0. As previously mentioned, measures against the virus spread 
do not effectively influence the exponential growth rate; e.g., they do not change the culture in social 
activities, which are characteristics of the particular population, but they can just cease these activities for 
some period of time. On the other hand, the environmental temperature T can affect all the parameters 
influencing exponential rate. We approach this dependence by (i) a linear approximation of the 
phenomenological relationship between exponential rate and temperature, and (ii) the connection of 
reproduction number with Arrhenius behavior (with negative activation energy): 

(i) The temperature can affect the physical properties of coronavirus, such as, the incubation time τ, as 
well as, the reproduction number R0 that depends on these physical properties (Hao, 2020). A linear 
approximation absorbs the (weak) temperature dependence of any parameters involved in the exponential 
rate; then, Eq.(5) gives: 

 
NTPNTP NTP 21

0λ( ) ln( ) λ/ ( ) ( )T R T T T O T        ,   (6) 

where we set the intercept to be given in normal conditions of atmospheric temperature and pressure (NTP) 
(that is, T=20 C0, P= 1atm). Then, we rewrite the exponential rate as: 

  1
0 Cλ( ) λ 1T T T     , with   (7a) 

 
NTPNTP NTP1

0 0λ ln( ) λ/R T T      , 
NTP1

2 0 Cλ λ/p T T       .  (7b) 

(ii) Coronavirus uses their major surface spike protein to bind on a receptor — another protein that acts 
like a doorway into a human cell (Wrapp et al., 2020). The whole process is a slow chemical reaction, where 
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the mechanism behind can lead to rates negatively correlated with temperature, i.e., increasing rate with 
decreasing temperature. This is consistent to reaction rate expressed by the Arrhenius exponential with 

negative activation energy Bexp / ( )aE k T    (Mozurkewich and Benson, 1984). Then, the effective 

reproduction number 0 ( )R T  is expressed as a product combining the reproduction number in the absence 

of temperature effect, 0R  , and the Arrhenius exponential rate, namely, 

 0 0 B( ) exp / ( )aR T R E k T       , with NTP NTP
0 0 Bexp / ( )aR R E k T       .   (8) 

Then, Eq.(5) gives 

  NTP NTP 11 1
B 0 Bλ( ) / ( ) ln( ) /a aT E k T R E k T 

        .   (9) 

We rewrite this expression as: 

  1
0 Cλ( ) λ 1T T T       , with   (10a) 

 NTP NTP1
0 B 0λ / ( ) ln( )aE k T R      , 2 0 C Bλ / ( )ap T E k   .   (10b) 

Reactions of negative activation energy are barrier-less, relying on the capture of the molecules in a 
potential well. Increasing {decreasing} the temperature leads to a reduced {gained} probability of the 
colliding molecules capturing one another. Exponential spread is mainly related to outdoors activities while 
the decelerated growth caused by effective measures is related to indoors activities. Therefore, as long as 
the exponential growth takes place, the environmental temperature has an effective role on the chemical 
reaction between virus and spike protein. Due to the negative activation energy, decreasing the 
environmental temperature reduces the probability of virus-protein reaction, thus the virus may stay inactive 
on air or surfaces and eventually die. 

It should be noted that both the models (7b) and (10b) consider that the exponential rate λ, or the 
reproduction number R0, are subjects to a component influenced by the culture in social activities (intercept 
λ0) and a component mostly influenced by the temperature (slope p2). In this way, the slope may indicate 
to some universal quantity involved, such as, the (negative) activation energy. 

Next, we employ the above two expressions of exponential rate λ and temperature T, Eqs.(7a,10a), in 
order to set the two types of statistical models for fitting (Τ, λ) measurements for US and Italian regions. 
 
3. METHOD 

We use publicly available datasets of: (1) average enviromental temperature of US and Italian regions 
(e.g., see: www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/climate-normals; 
it.climate-data.org; www.weather-atlas.com); (2) time series of the number of daily infected cases of US 
and Italian regions (e.g., see: www.thelancet.com; www.protezionecivile.gov.it). 

We analyze the datasets of regional infected cases in US and Italy, derive the relationship of the 
exponential growth rate of the number of cases with temperature, and evaluate its statistical confidence. 
First, we derive the exponential growth rates of the infected cases characterizing each examined region of 
Italy and US; then, we plot these values against the environmental temperatures of each region, and perform 
the corresponding statistical analysis. We proceed according to the following steps: 

(i) Collect the time series of the current infected cases Nt for all US and Italian regions. 
(ii) For each of the US and Italian regions, we plot log(Nt) and log(ΔNt) with time t, detect the time 

intervals of linear relationship corresponding to the phase of exponential growth, fit the data-
points within this region, and derive the slope (on linear-log scale), that is, the exponential 
growth rate λ. The total Nt and new cases ΔNt should be characterized by the same exponential 
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rate, λ, thus the slopes resulted from the linear fits of log(Nt) and log(ΔNt) with time are 
(weighted) averaged (Fig.4). 

(iii) Collect environmental temperature data and calculate the temperature averaged over the whole 
examined region. The incubation period τ is longer than the time scale of a single day or night, 
thus the temperature is averaged over the daily and nightly measurements. 

(iv) Co-plot all the derived sample values (Τ±δΤ, λ±δλ), where each pair corresponds to each 
examined region; then, apply a linear fitting in order to derive the linear relationship between T 
and λ, as well as evaluate the statistical confidence of this relationship; repeat the same for all 
US and Italian regions. 

(v) Determine the critical temperature TC for which the rate becomes negligible; to eliminate the 
uncertainties of TC as a fitting parameter, we perform the linear fitting with the statistical model 
λ=λ0(1−Τ/TC) instead of λ=p1+p2∙T. 

(vi) Repeat (iv) and (v) with pairs of (T-1±δT-1, λ±δλ); we estimate again TC by performing the linear 
fitting with the statistical model λ=λ0(-1+ΤC/T) instead of λ=p1+p2∙T-1. 

 

 
Figure 4. Linear fitting of the number of the total Nt and new ΔNt infected cases with time (on linear-log 
scale) for the states of California and Illinois, where the slope reads the exponential rate λ. The resulted 
rates from the linear fitting of log(Nt) (black) and log(ΔNt) (red) are (weighted) averaged (blue). The phases 
are color-coded as in Figure 1. 
 
4. STATISTICAL ANALYSIS 

The hypothesis to be tested is that the exponential growth rate λ varies linearly with temperature; (x is 
set to be the temperature or its inverse). This is tested by examining the chi-square corresponding to the 
fitting of the two-parameter linear statistical model 1 2 1 2( ; , )x p p p p x    to the given N data points. 

Therefore, we minimize the chi-square 2 2 2
1 2 2 1 21

( , ) ( ) ( )
N

i i ii
p p p p p x  


   , where the total variance 

that characterize each data point is now given by 2 2 2 2
2 2( )i i xip p     (Fasano & Vio 1988). The global 

minimum of the chi-square function 2
1 2( , )p p  gives the optimal parameter values, ),( *

2
*
1 pp , by solving 

the normal equations 0/),( 121
2  ppp  and 0/),( 221

2  ppp ; the minimum chi-square value is 

2 2 * *
min 1 2( , )p p  . The statistical errors of these values are given by 12

red
*

st,
   Hp , α=1,2, where H is 

the Hessian matrix of the chi-square at the global minimum, and 1
H  is the α-th diagonal element of its 
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inverse matrix (Livadiotis, 2007); 2 21
red min2N   is the reduced chi-square value for degrees of freedom 

(dof) equal to M=N-2. The propagation errors of the measurements 1{( , )}N
i xi i i ix       are given by 

* * 2 2 * 2 2
,pr ( / ) ( / )i x i i ip p x p            , α=1,2, where the derivatives are numerically derived. 

We will use two linear statistical models, (a) 1
0 Cλ( ) λ (1 )T T T    , and (b) 

1 1
0 Cλ( ) λ ( 1 )T T T      , as given by Eqs.(7a,10a); both can be written with the linear expression: 

 1 2 1 2λ( ; , )x p p p p x    , where   (11a) 

 (i) x T , 1 0λp  , 1
2 0 Cλp T   , and (ii) 1x T  , 1 0λp   , 2 0 Cλp T  .  (11b) 

The statistical confidence of the dependence of the exponential growth rate on the environmental average 
temperature may be sufficiently high for the acceptance of any of the two statistical models. The goodness 
of the fitting of each model is evaluated using two types of statistical tests, the "reduced chi-square", the 
"p-value of the extremes", and their combination (e.g., Frisch et al., 2013; Schwadron et al., 2013, Fuselier 
et al., 2014), while Student’s t-test is also used for evaluating the statistical confidence of the derived slopes: 

- Reduced Chi-Square: The goodness of a fit is estimated by the reduced chi-square value, 2 21
red minM 

. The meaning of 2
red  is the portion of 2  that corresponds to each of the degrees of freedom, and this 

has to be ~1 for a good fit. Therefore, a fit is characterized as "good" when 2
red ~1, otherwise there is an 

overestimation, ( 2
red <1), or underestimation, ( 2

red >1), of the errors. One order of magnitude more, 2
red

=0.1, or less, 2
red =10, can be set as the accepted limits, i.e., 0.1≤ 2

red ≤10. 

- P-value of the extremes: The goodness of the fit is evaluated by comparing the estimated minimized 

chi-square value, 2
min , and the chi-square distribution, 

212 2 2

2

12 22
( )

( ; ) ( )
M M

MP M e  
  


 , that is, the distribution 

of all the possible 2  values (parameterized by the degrees of freedom M). The likelihood of having a 
2  value, equal to or larger than the estimated value 2

min , is given by the complementary cumulative 

distribution. The probability of taking a result 2 , larger than the estimated value 2
min , defines the p-

value that equals 
2
min

2 2 2 2
min( ) ( ; )P P M d


   


     . The larger the p-value, the better the fitting. 

According to this method, the probability of taking a result with 2  being extremer than the observed 

value 2
min , defines the p-value of the extremes; this equals the minimum between the two probabilities, 
2 2

min(0 )P     and its complementary, 2 2
min( )P     . Fits associated with p-values smaller than the 

significance level of 0.05 are typically rejected. 
- Combined P-value and Chi-Square: The p-value of the extremes has very similar behavior with the 

reduced chi-square (Livadiotis, 2014), because, (i) the p-value attains the optimal value (p=0.5) when 

chi-square does ( 2
red =1), (ii) larger values of 1-2p corresponds to larger values of 2

red 1  , (iii) both 

fractions (1 2 ) / (1 2 )p p   and 2 2
red red(1 ) / (1 )    range from 0 to 1, reduced to 9/11 when the accepted 

limits, p=0.05 or 0.1≤ 2
red ≤10, are reached. Then, a combined measure can be defined by the sum of the 

squares of these fractions, i.e., 2 2 2 2
red red[(1 2 ) / (1 2 )] [(1 ) / (1 )]p p       . 

- Student’s t-test: This is another test for evaluating the statistical confidence of the slope derived from 
the linear fitting of the temperature-rate sample points (Ti±δTi, λi±δλi) and (Ti

-1±δTi
-1, λi±δλi). We 

examine, whether the slope p2±δp2 has significant difference from the zero slope (null hypothesis: slope 
is zero), by performing the Student’s t-test with tm=p2/δp2, where the corresponding p-value is derived 
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from the integration of t-distribution 
21 1 1

2 2 2

2

[ ( 1)] ( 1)2

( )
( ; ) (1 / )M

M M
t M

P t M e t M



    


   for mt t   , i.e., 

m
m( ; ) ( ; )t tt

p t M P t M dt


  . The Student’s t-test is not passed for the null hypothesis that they examined 

slope equals zero, when the corresponding pt-value is less than the acceptable confidence limit of 0.05; 
then, the null hypothesis is rejected, meaning the slope has statistically significant difference for zero. 
In addition, we examine the slopes estimated for US with those estimated for Italian regions, by deriving 

2 2
US IT US ΙΤ/mt b b      and 2 2 2 2 2

US ΙΤ US US ΙΤ IT( ) / ( / / )mM M M      , and then, finding again m m( ; )tp t M . 

 
5. RESULTS 

The linear fitting of log(Nt) or log(ΔNt) with time t within the region of exponential growth phase, 
resulted to the respective rates (given by the fitted slope); their weighted averages are shown in Table 1 for 
US and in Table 2 for Italian regions, while plotted against the average regional temperature in Figs. 5 and 
6, respectively. The method of weighted fitting for double uncertainties (xi±δxi, λi±δλi), as described by 
Fasano and Vio, 1988), is used for estimating the fitting parameters λ0, TC, together with their statistical, 
propagation, and total errors. The fits of the linear statistical model with temperature, xi=Ti, (left panels in 
Figs. 5, 6), as well as of the alternative statistical model with inverse temperature, xi=Ti

-1, δxi=δTiꞏTi
-2, (right 

panels in Figs. 5, 6), are both characterized with high statistical confidence, attaining high p-values (>0.05) 

and reduced chi-squares 2
red  values (close to 1); also, both fits provide similar estimations of TC. The fitting 

results are shown in Table 3. 
We also examine whether the sample points (Ti±δTi, λi±δλi) are subject to statistically significant 

concentrations or rarefactions, namely, whether possible heterogeneities within the distribution of sample 
points plays significant role in the fitted relationship. For this, we derive the temperature-rate relationship 
and its statistical confidence by fitting the homogenized set of sample points, instead of the raw sample 
points; then, we examine whether the fitting parameters differ from those derived from fitting the raw 
sample points. We homogenize the sample points by grouping them in temperature binning of ΔT ~ 1 C0 
(e.g., see: Livadiotis & Desai 2016). We estimate the weighted mean and error of the rates included in each 
bin. In the case of US regions we also performed a homogenization of rates, by grouping the temperature-
binned means in rate binning of Δλ ~ 0.01 d-1. In the case of sample points with inverse temperatures, (Ti

-

1±δTi
-1, λi±δλi), the procedure is exactly the same. Homogenized datasets result in a smooth relationship 

between the values of binned temperature and rate, as it can be observed in the plots of rate against 
temperature or inverse temperature (left or right lower panels, respectively), and for both US and Italy 
regions (Figs. 5 and 6, respectively). The results are highly supportive of the negative correlation between 
rate and temperature. The results are shown in Table 4. We observe that the linear relationships of the 
growth rate with temperature or inverse temperature are characterized by high statistical confidence for the 

homogenized datasets (p-values much higher than significant limit of 0.05; 2
red  far from the significant 

limits of 0.1 and 10). Therefore, the arrangement of sample points do not affect significantly the fitting 
results. 

In addition, as shown in Tables 3 and 4, the linear fits of sample points (Ti±δTi, λi±δλi) and (Ti
-1±δTi

-1, 
λi±δλi) do not pass the Student’s t-test for the null hypothesis that their slopes equals zero, i.e., the 
corresponding pt-values are less than the acceptable confidence limit of 0.05; therefore, the negative 
correlation of environmental temperature with the exponential rate is statistically significant (accepted with 
confidence 95%). 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.21.20072405doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.21.20072405
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 
 

Table 1. Averaged temperatures and estimated exponential rates of US regions 
Region T [C0] δT [C0] λ [d-1] δλ [d-1] 
MI -1.23 4.2 0.1709 0.0096 
WI -0.7 2.6 0.1704 0.0099 
MA 1.7 3.5 0.1495 0.0183 
CT 2.9 4.0 0.1463 0.0062 
PA 3.1 2.9 0.1349 0.0019 
WA 3.7 3.5 0.1432 0.0162 
NJ 4.5 3.9 0.1523 0.0114 
IN 5.1 5.2 0.1237 0.0064 
OH 5.1 4.2 0.1256 0.0092 
IL 5.2 4.0 0.1482 0.0050 
CO 5.6 4.6 0.1108 0.0200 
NY 5.8 2.8 0.1203 0.0096 
MO 6.5 2.8 0.1322 0.0079 
VA 7.4 2.8 0.0946 0.0015 
TN 8.8 5.2 0.1266 0.0098 
NC 9.7 1.9 0.1398 0.0073 
SC 11.3 2.8 0.1027 0.0044 
GA 13.3 2.8 0.1169 0.0096 
CA 14.2 3.9 0.0908 0.0017 
LA 15.2 4.2 0.1081 0.0122 
TX 15.3 5.7 0.1083 0.0070 
AZ 17.0 2.7 0.0786 0.0087 
FL 19.5 4.6 0.1033 0.0072 

Notes: (1) The exponential growth rate and its uncertainty is the weighted averaging of the rates derived 
from total and new infected cases; (2) the environmental temperature is averaged over the time period, from 
τ~5 days before the appearance of the 1st case, to 1st April; (3) the standard deviation of temperature is given 
by the half difference between highest and lowest values within the examined time period, divided by √2 
(similar to the standard deviation for a sinusoidal function); (4) NY: The temperature refers to the New 
York City, instead of the whole state, which suffers from the vast majority of the state infected cases. 
 

Table 2. Averaged temperatures and estimated exponential rates of Italian regions 
Region T δT λ δλ 

Aosta Valley -4.0 2.8 0.1187 0.0041 
S Tyrol 2.2 2.7 0.0887 0.0080 
Abruzzo 4.8 3.1 0.1055 0.0127 
Piedmont 6.2 3.1 0.0983 0.0068 
Molise 7.5 3.2 0.0667 0.0158 
Basilicata 7.5 3.2 0.0621 0.0141 
Friuli Venezia Giulia 7.5 1.8 0.0816 0.0147 
Veneto 7.6 2.5 0.0674 0.0027 
Liguria 7.7 2.4 0.0693 0.0106 
Tuscany 7.8 3.0 0.0900 0.0127 
Umbria 8.1 3.1 0.0900 0.0127 
Lazio 11.1 2.4 0.0906 0.0065 
Lombardy 8.1 2.9 0.0942 0.0089 
Emilia Romagna 8.3 3.0 0.0695 0.0095 
Marche 10.4 2.0 0.0696 0.0140 
Calabria 10.5 2.5 0.0939 0.0155 
Sicily 11.0 2.3 0.0762 0.0053 
Campania 11.6 2.0 0.0604 0.0076 

Notes: Similar to the notes (1)-(3) of Table 1. 
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Figure 5. Linear fitting of rates with (left) temperatures and (right) inverse temperatures for US regions. 
The fitting is weighted with double uncertainties (on both the temperature and rate values). The analysis is 
first completed for the raw measurements (upper) and then repeated for the binned averages (lower). 
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Figure 6. As in Figure 5, but for Italian regions. 

 
Table 3. Fitting parameters of temperature – rate values for US and Italian regions 

US/ Model λ0 [d-1] δλ0 [d-1] p2 * δp2 TC [C0] δTC [C0] χ2
red p-value pt-value 

x=T, p1=λ0, p2=-λ0TC
-1 0.1688 0.0125 -0.00554 0.00133 30.4 5.4 0.85 0.34 2.2×10-4 

x=T-1, p1=-λ0, p2=λ0TC 1.455 0.288 444 107 32.0 4.8 0.84 0.32 2.3×10-4 
Italy/ Model λ0 [d-1] δλ0 [d-1] p2 δp2 TC [C0] δTC [C0] χ2

red p-value pt-value 
x=T, p1=λ0, p2=-λ0TC

-1 0.1173 0.0169 -0.00465 0.00206 25.3 7.8 0.95 0.49 0.019 
x=T-1, p1=-λ0, p2=λ0TC 1.20 0.47 361 166 26.7 7.5 0.90 0.43 0.022 

* Units of the slope p2 are [d-1K-1] when x=T, and [d-1K] x=T-1. 
 

Table 4. Fitting parameters of binned temperature – rate values for US and Italian regions 
US/ Model λ0 [d-1] δλ0 [d-1] p2 * δp2 TC [C0] δTC [C0] χ2

red p-value pt-value 
x=T, p1=λ0, p2=-λ0TC

-1 0.1645 0.0089 -0.00488 0.00096 33.7 5.1 0.41 0.16 1.9×10-3 
x=T-1, p1=-λ0, p2=λ0TC 1.331 0.2417 409 81 34.4 4.9 0.41 0.16 0.021 

Italy/ Model λ0 [d-1] δλ0 [d-1] p2 δp2 TC [C0] δTC [C0] χ2
red p-value pt-value 

x=T, p1=λ0, p2=-λ0TC
-1 0.1086 0.0127 -0.00420 0.00154 25.9 6.8 1.34 0.24 2.0×10-3 

x=T-1, p1=-λ0, p2=λ0TC 1.0374 0.2889 313 115 28.3 5.8 1.28 0.27 0.021 
* Same units as in Table 3. 
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In order to improve the statistics of the estimated critical temperature, we combine the sample points 
(Ti±δTi, λi±δλi) of US and Italian regions. First, we perform the Student’s t-test to compare the slopes 
corresponding to US and Italian regions; we find high pt-values (>0.05) for both fits of x=T and x=T-1, thus, 
the two populations are likely characterized by the same slope. Tthe respective intercept λ0 does not pass 
the same test, i.e., the intercepts corresponding to US and Italian regions are likely different. A universality 

may characterize the slopes of fits x=T or x=T-1, i.e.,   NTP

2 λ/p T    or 2 B/ ( )ap E k , respectively. 

Next, we perform the linear fits of the sample points (Ti±δTi, λi±δλi) and (Ti
-1±δTi

-1, λi±δλi) for the mixed 
set of US and Italian data, once the rates of the Italian regions are shifted by Δλ; the optimal fitting is 
obtained for that shift Δλ, for which the reduced chi-square is ~1, the p-value of the extremes is ~0.5, and 
the combined measure ~0 (see previous section). Figure 7 shows how the combined datasets of temperature-
rates from US and Italian regions lead to the optimal fitting. (Note that the optimization is not performed 
for the binned datasets, since they are characterized by smaller p-values – see, Figs. 5 and 6). The results 
are shown in Table 5; we observe that the optimization is reached for two values of the shift Δλ; we estimate 
the weighted average of the results corresponding toe the two shifts. The weighted mean is performed 
separately for the fitting cases of x=T and x=T-1; however, the weighted mean of the critical temperature is 
performed for all four results. 
 

 
Figure 7. Fitting of datasets combined for US and Italian regions, with the latter’s rates shifted by Δλ. The 
optimal fitting corresponds to shifts Δλ~ 0.031 and ~0.058, for which the reduced chi-square is ~1, the p-
value of the extremes is ~0.5, and the combined measure ~0. 
 

Table 5. Fitting parameters of combined US and optimally shifted Italian regions 
Δλ [d-1], x=T λ0 [d-1] δλ0 [d-1] p2 [d-1K-1] δp2 [d-1K-1] TC [C0] δTC [C0] TC [F0] δTC [F0] 

0.03098 0.1631 0.0116 0.005717 0.00136 28.538 4.97058 83.3684 8.947044 
0.05766 0.1781 0.0113 0.005853 0.00126 30.429 4.85595 86.7722 8.74071 

Weighted Mean 0.1708 0.0110 0.00579 0.00093 - - - - 
Δλ [d-1], x=T-1 λ0 [d-1] δλ0 [d-1] p2 [d-1K] δp2 [d-1K] TC [C0] δTC [C0] TC [F0] δTC [F0] 

0.02926 1.531 0.303 463 113 29.4 4.3 84.9 7.8 
0.05899 1.575 0.282 480 107 31.5 4.2 88.8 7.6 

Weighted Mean 1.555 0.208 472 78 30.1* 2.4 86.1 4.3 
* The weighted mean of TC in [C0] or [F0] takes into account all four estimated values. 
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Table 5 includes the weighted means of slopes for the fits x=T or x=T-1, 
NTP

2 λ/p T     and 

2 B/ ( )ap E k . The latter can be used for deriving the activation energy, where τ = 5.2±1.1 s (Chen, 

2020), where we find 0.212 0.057 eVaE   . The value of the critical temperature is TC=303.2±2.4 K 

(86.1±4.3 F0 or 30.1±2.4 C0). In addition, using Eqs.(7b,19b) we derive the reproduction number R0, i.e., 

  NTP NTP 01
0 0 2ln( ) λ / [C ]x T x TR p T

     ,  1 11NTP NTP1
0 2 0ln( ) / [K] λx T x TR p T

      , or   (12a) 

 NTP NTP 11
0 0 Cln( ) λ (1 )x TR T T

      , 
1NTP NTP1

0 0 Cln( ) λ ( / 1)x TR T T

    .   (12b) 

The two formulae in Eq.(12b) provide the value of NTP1
0ln( )R  as 0.0572±0.0098 and 0.0534±0.0146, 

respectively, with weighted mean 0.0560±0.0084; then, we find NTP
0 1.34 0.10R   , that is, the 

reproduction number for T=20 C0. The corresponding number at T=0 C0 is 0
0 (0C ) 2.47 0.45R   , while 

by substituting the estimated parameters in Eq.(8), we derive the general relationship for any temperature 
(expressed in K), also plotted in Fig.8: 

 0 1 1
0 ( [C ]) (1.334 0.10) exp (2450 660)( 293.15 )R T T          .   (13) 

 

 
Figure 8. Relationship of the reproduction number R0 and its uncertainty with environmental temperature 
T. According to this, new affected cases cease (R0=1) when temperature climbs to TC~30 C0 or (~86 F0). 
 
6. DISCUSSION AND CONCLUSIONS 

Up-to-date there is no systematic statistical analysis of the effect of the environmental temperature T 
(and possibly other weather parameters) on the exponential growth rate of the cases infected by COVID-
19, while a statistically confident relationship between temperature and growth rate (either with positive or 
negative correlation) is still unknown. 

The presented analysis led to a statistically confident relationship of negative correlation between the 
exponential growth rate and the average environmental temperature, derived for US and Italian regions. In 
particular, we analyzed datasets of regional infected cases in US and Italy, derived the exponential growth 
rates for each of these regions and plotted them against environmental temperatures averaged within the 
same regions, derived the relationship of temperature - growth rate, and evaluated its statistical confidence. 
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The performed statistical analysis involved fitting of linear statistical models with the datasets of 
environmental temperature (or its inverse) and exponential growth rate, finding their relationship, and 
evaluating its statistical confidence. The two linear models developed and used for the statistical analysis 

are (a) 1
0 Cλ( ) λ (1 )T T T    , and (b) 1 1

0 Cλ( ) λ ( 1 )T T T      . The statistical confidence of fitting was 

evaluated using the reduced chi-square values, the p-value of extremes, and a testing measure that combines 
both of these values. Also, the statistical confidence was also evaluated using the Student’s t-test, where 
the derived slopes compared to a hypothetical zero slope. 

The sample points of temperature (or inverse temperature) and exponential growth rate were also tested 
for statistically significant concentrations or rarefactions; namely, for possible heterogeneities within the 
distribution of sample points that could have significant role in the results. The statistical analysis of the 
homogenized temperature-rate data points concluded that the negative correlation between temperature and 
exponential rate is stable, having no statistically significant variability due to concentrations or rarefactions, 
and it is characterized by a high statistical confidence. 

We also performed a Student’s t-test and ensured that the difference between two sample means of US 
and Italian regions is not statistically significant. A possible universality may characterize the slope of the 
temperature-rate relationship. This verifies the modeling developed and used by this analysis, where the 
exponential rate λ, or the reproduction number R0, are subjects to a component influenced by the culture in 
social activities (intercept λ0) and a component influenced by the temperature (slope p2). In this way, the 
slope may indicate to a universal quantity involved, such as, the (negative) activation energy. 

Since the derived slopes for US and Italian regions are characterized by no statistically confident 
difference, we improved the statistics of the estimated fitting parameters by combined the sample points of 
US and Italian regions. From the derived relationship, among others, we were able to derive the values of 
the (negative) activation energy Ea, and the reproduction number R0 at normal conditions and how this 
depends on temperature. 

Therefore, the results clearly showed that there is indeed statistically significant negative correlation of 
temperature on the exponential growth rate of the cases infected by COVID-19. Figure 9 shows the anti-
correlation between the mapped exponential rates and average environmental temperature of the USA 
regions examined by this analysis, which they are characterized by readable exponential growth phase in 
their evolution spread curve. 

 
Figure 9. Anti-correlation between the spatial distributions of the exponential growth rates of the infected 
cases (left) and the average environmental temperature (right). 
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Given the negative correlation of the environmental temperature with the exponential growth rate, it was 
reasonable to ask for the critical temperature that eliminates the exponential rate, and thus the number of 
daily new cases in infected regions. This was found to be TC~86.1 ± 4.3 F0 for US regions. It is 
straightforward to ask when the environmental temperature will climb above this critical value. As an 
example, Figure 10 plots the daily average temperatures in San Antonio, Texas, shown that will be clearly 
above the estimated TC threshold in the second half of May. 
 

 
Figure 10. According to the statistically confident relationship between exponential growth rate of infected 
cases shown in Fig.8, the critical temperature, which eliminates the exponential growth, and thus the 
COVID-19 spread, is TC = 86.1 ± 4.3 F0. The plot shows also the May-June daily, nightly, and 24h-averaged 
environmental temperatures in San Antonio, Texas, averaged over the last three years. The daily average 
temperatures will be clearly above the estimated TC threshold in the second half of May; thus, the plot 
suggests a possible date for loosening the strict measures in San Antonio, that is, May 24. 
 

The resulted high statistical confidence of the negative correlation of the environmental temperature on 
the exponential growth rate of the cases infected by COVID-19 is certainly encouraging for loosening 
super-strict social-distancing measures, at least, during the summery high temperatures. However, we are, 
by no-means, recommending a return-to-work date based only on this study. But we do think that this 
should be part of the decision, as well as an inspiration for repeating the same analysis in other heavily 
infected regions. The steps of these analyses may be followed as: 

(i) Identify different outbreaks in regions with the same culture in social activities and different 
environmental temperature; 
(ii) Estimate the exponential growth rates for these regions from the time series of infected cases; 
(iii) Plot the derived rates against the environmental temperature averaged for these regions, and repeat 
the analysis of this study to determine the temperature-rate relationship and its statistical confidence. 
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