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Abstract  

It is of paramount importance to evaluate the prevalence of both asymptomatic and 

symptomatic cases of SARS-CoV-2 infection and their antibody response profile.  Here, we performed 

a pilot study to assess the levels of anti-SARS-CoV-2 antibodies in samples taken from 491 pre-

epidemic individuals, 51 patients from Hôpital Bichat (Paris), 209 pauci-symptomatic individuals in the 

French Oise region and 200 contemporary Oise blood donors. Two in-house ELISA assays, that 

recognize the full-length nucleoprotein (N) or trimeric Spike (S) ectodomain were implemented. We 

also developed two novel assays: the S-Flow assay, which is based on the recognition of S at the cell 

surface by flow-cytometry, and the LIPS assay that recognizes diverse antigens (including S1 or N C-

terminal domain) by immunoprecipitation. Overall, the results obtained with the four assays were 

similar, with differences in sensitivity that can be attributed to the technique and the antigen in use. 

High antibody titers were associated with neutralisation activity, assessed using infectious SARS-CoV-

2 or lentiviral-S pseudotypes. In hospitalized patients, seroconversion and neutralisation occurred on 

5-14 days post symptom onset, confirming previous studies. Seropositivity was detected in 29% of 

pauci-symptomatic individuals within 15 days post-symptoms and 3 % of blood of healthy donors 

collected in the area of a cluster of COVID cases. Altogether, our assays allow for a broad evaluation 

of SARS-CoV2 seroprevalence and antibody profiling in different population subsets. 
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Introduction 

About four months after the initial description of atypical pneumonia cases in Wuhan in 

December 2019, COVID-19 has become a major pandemic threat.  As of April 14, 2020, about half of 

the human population is under confinement, 2 million infections have been officially diagnosed, with 

121,000 fatalities and 0.5 million recovered cases. COVID-19 is caused by SARS-CoV-2 1 2, a 

betacoronavirus displaying 80% nucleotide homology with Severe Acute Respiratory Syndrome virus 

(now termed  SARS-CoV-1), that was responsible for an outbreak of 8,000 estimated cases in 2003.  

PCR-based tests are widely used for COVID-19 diagnosis and for detection and quantification of 

SARS-CoV2 RNA 3 4 5. These virological assays are instrumental to monitor individuals with active 

infections. The average virus RNA load is 105 copies per nasal or oropharyngeal swab at day 5 post 

symptom onsets and may reach 108 copies 6. A decline occurs after days 10-11, but viral RNA can be 

detected up to day 28 post-onset in recovered patients at a time when antibodies (Abs) are most often 

readily detectable 6 7. Disease severity correlates with viral loads, and elderly patients, who are 

particularly sensitive to infection, display higher viral loads 6 7. 

Serological assays are also being implemented. Anti-Spike (S) and Nucleoprotein (N) humoral 

responses in COVID-19 patients are assessed, because the two proteins are highly immunogenic. The 

viral spike (S) protein allows viral binding and entry into target cells. S binding to a cellular receptor, 

angiotensin-converting enzyme 2 (ACE2) for SARS-CoV-1 and -CoV2, is followed by S cleavage and 

priming by the cellular protease TMPRSS2 or other endosomal proteases 8. S genes from SARS-CoV 

and -CoV2 share 76% amino-acid similarity 2. One noticeable difference between the two viruses is 

the presence of a furin cleavage site in SARS-CoV2, which is suspected to enhance viral infectivity 2. 

The structures of S from SARS-CoV-1 and Co-V-2 in complex with ACE2 have been elucidated 9-11. S 

consists of three S1-S2 dimers, displaying different conformational changes upon virus entry leading 

to fusion 9,10,12. Some anti-S antibodies, including those targeting the receptor binding domain (RBD), 

display a neutralizing activity, but their relative frequency among the generated anti-SARS-CoV-2 

antibodies during infection remains poorly characterized. The nucleoprotein N is highly conserved 

between SARS-CoV1 and -CoV2 (96% amino-acid homology). N plays a crucial role in subgenomic viral 

RNA transcription and viral replication and assembly.  

Serological assays are currently being performed using in-house, pre-commercial versions or 

commercially available ELISA-based diagnostics tests 6,7,13-15. Other techniques, including point-of-care 

and auto-tests are also becoming available. In hospitalized patients, seroconversion is typically 

detected between 5-14 days post symptom onset, with a median time of 5-12 days for anti-S IgM and 

14 days for IgG and IgA 6,7,13-16. The kinetics of anti-N response was described to be similar to that of 

anti-S, although N responses might appear earlier 15-17. Anti-SARS-CoV-2 antibody titers correlate with 
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disease severity, likely reflecting higher viral replication rates and/or immune activation in patients 

with severe outcome. Besides N and S, antibody responses to other viral proteins (mainly ORF9b and 

NSP5) were also identified by antibody microarray 17.  

Neutralisation titers observed in individuals infected with other coronaviruses, such as MERS-

CoV, are considered to be relatively low 6,18. With SARS-CoV-2, neutralizing antibodies (Nabs) have 

been detected in symptomatic individuals 6,8,19,20, and their potency seems to be associated with high 

levels of antibodies. Neutralisation is assessed using plaque neutralisation assays, microneutralisation 

assays, or inhibition of infection with viral pseudotypes carrying the S protein 6,8,19-21. Of note, potent 

monoclonal NAbs that target RBD have been cloned from infected individuals 22. Whether 

asymptomatic infections, which are currently often undocumented 23, and most likely represent the 

majority of SARS-CoV-2 cases lead to protective immunity, and whether this immunity is mediated by  

NAbs, remain outstanding questions. 

Commercial tests are not yet widely distributed. Thus, we have designed anti-N and anti-S ELISA, 

as well as novel assays for anti-SARS-CoV-2 antibody detection and neutralisation. We compared their 

performance and carried out anti-SARS-CoV-2 antibody profiling in different population subsets. 

 

Results 

Description of the serological tests. 

We first designed four tests to assess the levels of anti-SARS-CoV-2 antibodies in human sera. 

Their characteristics are summarized table 1. 

ELISAs. The two in-house ELISAs are classical tests, using as target antigens the full-length N 

protein (ELISA N) or the extracellular domain of S in a trimerized form (ELISA tri-S). The two 

recombinant antigens were produced in E. Coli (N) or in human cells (S).  

The ELISA N assay is a classical indirect test for the detection of total immunoglobulins, using 

plates coated with a purified His-tagged SARS-CoV 2 N protein. Titration curves of sera from 22 COVID-

19 patients and 4 pre-pandemic sera initially led to the determination that a dilution of 1:200 was of 

optimal sensitivity and specificity, and was later used for testing of large cohorts.  

The ELISA tri-S, for trimeric S, allows for the detection of IgG antibodies directed against the 

SARS-CoV-2 Spike. We developed an ELISA using as antigen a purified, recombinant and tagged form 

of the S glycoprotein ectodomain, which was stabilized and trimerized using a foldon motif. Serum IgG 

from pre-epidemic (n=100), pauci-symptomatic (n=209), and hospitalized individuals (n=159) were 

titrated using serum dilutions ranging from 1:100 to 1:1,638,400 (Fig. S1). Receiving-operating 

characteristic analyses using either total area under the curve or single optical density measurements 

indicated that the 1:400 dilution provides the best sensitivity and specificity values and was therefore 
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used in subsequent analyses (Fig. S1). Of note, the tri-S ELISA also permitted the titration of anti-S IgM 

and IgA antibodies in human sera (Fig. S1). 

S-Flow. The third assay, termed S-Flow, is based on the recognition of the S protein expressed 

at the surface of 293T cells (293T-S cells). We reasoned that in-situ expression of S will allow detection 

of antibodies binding to various conformations and domains of the viral glycoprotein. We verified that 

S was functionally active, by mixing 293T-S cells with target cells expressing ACE2. Large and numerous 

syncytia were detected, indicating that S binds to its receptor and performs fusion (not shown).  The 

principle of the S-Flow assay is depicted Fig. S2A. 293T-S cells are incubated with dilutions of sera to 

be tested. Antibody binding is detected by adding a fluorescent secondary antibody (anti-IgG or anti-

IgM). The signal is measured by flow-cytometry using an automated 96-well plate holder. The 

background signal is measured in 293T cells lacking S and subtracted in order to define a specific signal 

and a cut-off for positivity.  

To establish the specificity of the assay, we first analyzed a series of 40 sera collected before 

2019, from the Institut Pasteur biobank (ICAReB). All sera were negative (Fig. S2), strongly suggesting 

that antibodies against other coronaviruses circulating in France were not detected. We then 

measured the sensitivity of the assay, by assessing the reactivity of sera from Covid-19 patients 

hospitalized at Hôpital Bichat (Table S1). An example of binding with two patients’ sera (B1 and B2) is 

depicted Fig. S2B. Serial dilutions allowed for the determination of a titer, which reached a value of 

24,600 and 2,700 for B1 and B2, respectively (Fig. S2B). Of note, the median fluorescence intensity 

(MFI) of the signal decreased with the dilution, indicating that MFI, in addition to the % of positive 

cells, provides a quantitative measurement of the levels of specific antibodies. We thus selected a 

single dilution (1:300) to analyze large numbers of samples. We then analyzed samples from 9 patients 

(B1-B9) (Fig. S2C and Table S1). We observed an increase of the IgG response over time, with positivity 

appearing 6 days after symptoms onset. Serial dilutions indicated that antibody titers raised over time 

(not shown). We observed similar patterns with the IgM and IgG responses (Fig. S2D). The absence of 

an earlier IgM response may be due to the lower sensitivity of the secondary anti-IgM antibodies 

tested or because of a short delay between the two responses, which has been already observed in 

COVID-19 patients. Addressing this question will require the analysis of a higher number of individuals. 

We also tested a secondary anti-whole Ig antibody, but it did not prove more sensitive than the anti-

IgG. We thus tested the different cohorts with the secondary anti-IgG. 

LIPS. The fourth assay, termed LIPS (Luciferase Immunoprecipitation Assay) is based on the use 

of antigens made of viral proteins (or domains) fused to nanoluciferase (nanoluc) (Fig. S3). The 

objective was to develop an assay that is able to test large diverse cohorts and evaluate the range of 

antibody responses against a set of viral proteins or domains. This opens the possibility to select the 
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best antigens for high throughput binding assays. Each antigen is used at the same molar 

concentration, based on a standardisation by luciferase activity of the amount of Ag engaged in each 

reaction. This allows for easy direct comparison of the Ab responses (amplitude and kinetic) against 

each antigen. A panel of 10 different S and N-derived antigens were first evaluated with a set of 34 

pre-epidemic human sera were along with those of with 6 COVID hospitalized patients (Fig. S3). Two 

patients were sampled at 3 different time points. The strongest signals in COVID patients’ sera 

compared to background of pre-epidemic sera were identified with S1, S2 and N (C-term part) antigens 

(Fig. S3). Additional investigations on a limited panel of sera sampled in pauci-symptomatic patients 

showed that S2 responses were, regarding the diagnostic sensitivity and quantitative responses, 

similar to full S responses evaluated by S-Flow (Fig. S3). To avoid redundancy, we focused LIPS analysis 

to N, selecting it for its sensitivity regarding an intracellular viral protein not targeted by NAbs and S1 

as it is described as a target of most NAbs. To establish the specificity of the assay, we first analyzed 

the same series of 40 sera we used for S-Flow and found all of the sera to be negative (Fig. S3). We 

also measured the kinetic of apparition of antibodies in the same longitudinal samples from 5 patients 

(Fig. 2 and Table 2). We observed an increase of response overtime, with positivity appearing 7-10 

days after symptoms onset. Of note, the protein A/G beads used for precipitation of the immune 

complexes do not bind efficiently to IgM or IgA. Protein L, which has a higher affinity binding to IgA, 

has not yet been tested. 

Description of the groups. 

 We screened different cohorts to evaluate the performance of the four assays and 

corresponding antigens (Table 2). We first used sera from up to 491 pre-epidemic individuals, collected 

before 2019, to assess the specificity of the tests. We then measured antibody levels in 51 hospitalized 

COVID-19 patients from Hôpital Bichat (Paris), to determine the sensitivity of the tests and analyze the 

kinetics of seroconversion. The clinical and virological characteristics of four of these patients have 

been recently described 24. We next studied the prevalence of SARS-COV-2 positive individuals in a 

cohort of pauci-symptomatic individuals in Crepy-en-Valois, a city of 15,000 inhabitants in Oise. On 24 

February 2020, a staff member from a high school in Crepy-en-Valois was admitted to an hospital in 

Paris with confirmed SARS-CoV-2 infection. On March 3-4, students from the high school, parents of 

the students, teachers and staff were invited to participate to an epidemiological investigation around 

this case. 209 blood samples were collected from individuals reporting mild signs compatible with 

COVID-19 (fever, cough or dyspnea).  Finally, we tested 200 sera from blood donors from the 

Etablissement Français du Sang (EFS) in Lille (France). The blood samples were donated in two cities, 

Clermont (10,000 inhabitants) on March 20 and Noyon (13,000 inhabitants) on March 24, each located 

at about 60 kilometers from Crepy-en-Valois.  
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Comparison of the assays and estimation of the prevalence in different population subsets. 

Results obtained with sera from each category of individuals are presented Fig. 1. The pre-

epidemic samples served as negative controls. With the four assays, signals were consistently negative 

(S-Flow and LIPS S1) or low (ELISAs and LIPS N). This strongly suggested that a prior exposure to human 

seasonal coronaviruses associated to the “common cold” (such as HCoV-OC43, HCoV-229E, HCoV-

HKU-1 or HCoV-NL63) does not induce an obvious cross-reaction with our assays. This was expected, 

since these prevalent viruses are distantly related to SARS-CoV-2 at the protein level. With each assay, 

we established cut-off thresholds. For ELISA N, the cut-off was set at 95% percentile of 491 pre-

epidemic sera. For ELISA tri-S, the cut-off was established as the mean + 2 standard deviations (SD) of 

the 100 pre-epidemic samples analyzed, which corresponds to 95% specificity. For the S-Flow, we 

established a cut-off that corresponded to a signal >20% of cells positive by flow cytometry. For the 

LIPS assays, the cut-off was based on internal controls. S-Flow and LIPS S1 cut-offs eliminated all pre-

epidemic samples analyzed. 

Having established these cut-off levels, we analyzed samples from 51 patients from Hôpital 

Bichat. Some of the patients were analyzed at different time points, representing a total of up to 161 

samples. The percentage of positive samples varied between 65 and 72%, with a mean of 64%. The 

fact that not all patients were seropositive reflected the various sampling times from each individual. 

To study more precisely the kinetics of seroconversion, we selected 5 patients with more than five 

longitudinal samples and known dates of symptom onsets (Fig. 2). In these patients, seroconversion 

was detected between 5-10 days post symptom onsets with ELISA-N, LIPS-N, ELISA tri-S and S-Flow. 

The LIPS S1 assay became positive with a slower kinetic, and one of the patients remained just below 

the cut-off. For some patients, the LIPS N and ELISA N signals appeared before the LIPS S1 and ELISA 

tri-S, which suggest different kinetics of N- and S/S1 responses independently of the sensitivity of the 

test.  

We then tested the 209 sera obtained from pauci-symptomatic individuals in Oise. Positivity 

rates varied from 27% to 36% between the assays, with a mean of 32% (Fig. 1 and Table 3). This range 

of variation was more marked than with hospitalized patients, likely because pauci-symptomatic 

COVID-19 individuals display lower viral loads than those requiring hospitalization and may generate 

lower levels and different patterns of antibodies. To our knowledge, these figures represent one of 

the first evaluations of SARS-CoV-2 prevalence in pauci-symptomatic individuals within a cluster of 

severe cases. The fact that only one third of the individuals were tested positive suggests that some 

of them may not have seroconverted at the time of sampling, and/or that other viruses or 

environmental causes were responsible for the reported symptoms. 
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We next examined SARS-CoV-2 seroprevalence in samples collected from blood donors on 

March 20-24, 2020. Eligibility criteria for blood donation included an absence of recent signs of 

infection or antibiotic treatment. The donors can thus be considered as asymptomatic individuals with 

stringent criteria. The donors were negative with ELISA-N and LIPS assays. With S-Flow, 6 donors were 

positive, including two with a strong signal. These 6 positive and 10 negative donors were then tested 

with ELISA tri-S, and only the two strong responders scored positive. Therefore, the positivity rate in 

this cohort was low (1-3% with the two most sensitive assays). This suggests that the virus had not 

circulated to a large extent in a radius of 60 kilometers around the initial clusters. It is also likely that 

asymptomatic infection induces low and delayed seroconversion. Further studies are warranted to 

evaluate SARS-CoV-2 prevalence in denser population environments. 

 

Correlations between assays. 

We performed a side-by-side comparison of the assays using the three cohorts. For a given 

assay, we first scored the number of positive samples measured with the other assays (Fig. 3). With 

hospitalized patients, roughly similar numbers of positive cases were obtained with the four assays, 

with the exception of LIPS S1, confirming that this assay is less sensitive, probably because it does not 

catch antibodies targeting other S domains. However, combining the LIPS S1 and N results gave similar 

detection rates than any of the three other tests. With the cohort of pauci-symptomatic individuals, 

the S-Flow and ELISA tri-S yielded very close results and higher detection rates than the other tests.  

In blood donors, positive cases were only detected with these two tests. 

We then mixed results obtained with the three cohorts and calculated correlation rates 

between each assay (Fig. 4). The dot plots indicate that sera with high antibody levels are generally 

caught by the four assays. Important differences are however observed with samples with a low 

antibody concentration, reflecting both the choice of the antigens and the intrinsic different 

sensitivities of the assays.  

 

Virus neutralisation assays: Microneutralisation (MNT) and Pseudovirus neutralisation. 

We then thought to evaluate the presence of NAbs in the sera of infected individuals. Various 

tests have already been established 6,8,19,21. We focused on two tests. The first is a microneutralisation 

(MNT) assay using infectious SARS-CoV-2. This reference method is based on virus incubation with 

serial dilutions of the sera, and evaluation of titers on Vero-E6 cells. We also developed a lentiviral-

based pseudotype assay, as outlined Fig. S4A. Lentiviral particles coated with S and encoding for a 

reporter gene (GFP) are pre-treated with dilutions of the sera to be tested, incubated with target cells 

(293 T cells transiently expressing ACE2 and the TMPRSS2 protease) and the signal is measured after 
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48h. A pilot experiment with sera from hospitalized patients demonstrated a strong neutralizing 

activity with some of the samples (Fig. S4B, C). As a control, we used lentiviral particles coated with 

an irrelevant viral protein (VSV-G), and they were insensitive to the same sera (Fig. S4C). We also 

tested as a proof of concept the neutralisation activity of the first 12 sera of the cohort of pauci-

symptomatic individuals (Fig. S4D). A strong correlation was observed between MNT and 

neutralisation of pseudoviruses (Fig. S4E). Of note, with the pseudovirus assay, similar neutralisation 

results were obtained when target cells transiently transfected with ACE2 and TMPRSS2 were replaced 

by stable 293T-ACE2 cells, or when luciferase was used as a readout instead of GFP. 

The reference MNT assay is labour-intensive and requires access to a BSL3 facility. We thus 

performed a pilot correlative analysis between the four serological tests and the pseudovirus assay 

(Fig. 5A). This analysis was performed with samples from 9 hospitalized patients and 12 pauci-

symptomatic individuals. A strong correlation was observed with the ELISA N,  ELISA tri-S, S-Flow and 

LIPS-N, with a similar but less marked trend with the LIPS-S1 assay. We also determined by linear 

regression the association between the intensity of antibody binding and pseudovirus neutralisation. 

A neutralisation activity >80% was associated with the following signals:  ELISA N (>2.37), ELISA tri-S 

(>2.9) S-Flow (>60% of positive cells) and LIPS-N (>0.049). With this level of neutralisation, LIPS S1 

mainly gave positive responses and a few responses below the cut-off. In 9 hospitalized patients, the 

neutralisation activity increased over time, being detectable at day five and reaching 50% and 80-

100% at days 7-14 and 14-21, respectively (Fig. 5B). These pilot experiments were so far performed 

with a limited number of samples originating from individuals with mild, severe or critical symptoms. 

It will be important to increase the number of pauci-symptomatic individuals tested, and to evaluate 

whether asymptomatic seropositive individuals exhibit a neutralisation activity.  

 

Discussion  

We have designed four serological assays to detect anti-SARS-CoV2 antibodies. The first two 

assays are ELISA detecting anti-N and anti-S responses. The S-Flow assay allows to identify and score 

the levels of antibodies binding to all domains and conformations of S expressed at the cell surface. 

The LIPS assays target different domains of S and N, and allow for the detailed profiling of the humoral 

responses. We have evaluated their performance and compared their results with two neutralisation 

assays, a reference MNT assay and a pseudovirus neutralisation assay. 

Each assay presents advantages and drawbacks. ELISAs are widely used, either as in-house or 

commercial tests, and can be easily performed in routine diagnostic laboratories in large quantities. 

They can be performed at a high scale. The S-Flow assay captures all anti-S antibodies and provides 

excellent sensitivity but requires access to a cell culture system and flow cytometry equipment. Thus, 
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It would be less adapted to high-throughput screenings. The LIPS assay allows the testing of different 

target antigens in a liquid phase assay, also preserving as much as possible conformational epitopes 

and it appears to be as sensitive as ELISA and S-Flow for some of the antigens tested. It requires access 

to a bioluminescence detection instrument. The two neutralisation assays require cell culture systems, 

with MNT using infectious virus and necessitating access to a BSL3 facility, whereas pseudovirus 

neutralisation is adaptable to high-throughput screenings. 

Serological diagnostic tests are complementary to viral detection by RT-PCR for diagnostic 

purposes in patients. Results from our study and others indicate that in severe and critical cases 

(hospitalized patients), seroconversion is detectable as soon as 5-14 days post symptom onset 6,7,13-15. 

In such cases, antibody titers can reach high levels, and the different assays gave similar results. 

Detection of anti-N and anti-full S responses demonstrated similar rates of seroconversion, whereas 

the S1 response was delayed. The anti-N response appeared slightly more rapidly than S/S1 responses 

for a given type of test, which could be of interest to develop routine diagnostics tests, if confirmed.  

At the population level, serological tests are used in surveys to identify persons who have been 

infected. Regarding the identification of pauci-symptomatic or asymptomatic individuals, we 

consistently observed similar levels of seroprevalence, again with different sensitivities depending on 

the assay. ELISA tri-S, S-Flow and the combined LIPS S1+N gave slightly higher detection rates than 

ELISA-N. Combining ELISA N and S assays may also increase the sensitivity of detection. In our cohort 

of 209 pauci-symptomatic individuals, only a minor fraction of individuals was tested by RT-PCR (not 

shown). It will be useful to perform a similar analysis on individuals that have been fully characterized 

virologically, to further assess the serological parameters of patients with diagnosed SARS-CoV2 

infection.  

It has been reported that in 175 convalescent patients with mild symptoms, NAbs  are detected 

from day 10-15 after disease onset in a large fraction of patients 20. The titers of NAb correlated with 

the titers of anti-S antibodies (targeting S, RBD, and S2 regions) 20.  A critical question is the detection 

of antibodies, their neutralisation potential in asymptomatic individuals, and, more generally, the 

correlates of protection. In our pilot study with 200 healthy blood donors, the ELISA N and LIP S1+N 

assays were negative, whereas six individuals scored positive with S-Flow. When reanalyzed with the 

ELISA tri-S, two of the six individuals were positive. These results indicate that the most sensitive 

assays are required for identification of asymptomatic SARS-CoV-2 infected individuals, who will likely 

mount a weaker response than patients experiencing a mild or severe infection. Indeed, this should 

not be at the expense of specificity, as this could considerably impact the predictive value of positive 

results in low prevalence areas.  We are currently exploring the levels of antibody responses in other 

contemporary cohorts to address this question. 
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Beyond the simple detection of individuals that have been in contact with the virus, the 

knowledge of immune protection (or on the contrary facilitation in case of re-infection in individuals 

with low antibody responses) detected with sensitive tests is key to avoid misuse of serological tests. 

Neutralizing antibodies have a major role in preventing reinfections for many viral diseases.  A major 

point is the relationship between in vivo protection and the levels of antibody binding to the virus or 

neutralizing it. We compared our serological assays to MNT and pseudovirus neutralisation assay, in 

a limited number of individuals. We observed a strong correlation between the extent of anti-full S 

and even anti-N response and the neutralisation capacity of the sera. We are currently examining 

whether antibody levels and which viral protein best correlate with neutralisation in pauci-

symptomatic or asymptomatic seropositive individuals. Answering this question will help determining 

whether a serological high throughput assay may serve as a surrogate to estimate the level of 

protection at the individual or population level. This is an important parameter to understand and 

model the dynamics and evolution of the epidemics and define serological tools for population 

control. 

Non-neutralizing antibodies, or neutralizing antibodies at sub-optimal doses can also lead to 

Antibody-Dependent Enhancement of infection (ADE). ADE exacerbates diseases caused by feline 

coronavirus, MERS-CoV and SARS-CoV-1 25-28. ADE might thus also play a deleterious role in COVID-19.  

The various techniques described here are instrumental to determine the serological status of 

individuals or populations and establish potential correlates of disease facilitation or protection. 

 

Methods 

Cohorts. Pre-epidemic sera originated from 2 pre-epidemic healthy donors’ sources: 200 sera from 

the Diagmicoll cohort collection of ICAReB platform29 approved by CPP Ile-de-France I, sampled before 

november 2019. 200 anonymized samples from blood donors recruited in March 2017 at the Val 

d’Oise sites of Etablissement Français du Sang (EFS, the French blood agency). The ICAReB platform 

(BRIF code n°BB-0033-00062) of Institut Pasteur collects and manages bioresources following ISO 9001 

and NF S 96-900 quality standards 29. 

COVID-19 cases were from included at Hôpital Bichat–Claude-Bernard in the French COVID-19 

cohort. Some of the patients have been previously described 24. Each participant provided written 

consent to participate to the study, which was approved by the regional investigational review board 

(IRB; Comité de Protection des Personnes Ile-de-France VII, Paris, France) and performed according to 

the European guidelines and the Declaration of Helsinki. 

Pauci-symptomatic individuals:  On Feb 24, 2020, a patient from Crepy-en-Valois (Oise region, 

northern France) was admitted to a hospital in Paris with confirmed SARS-CoV-2 infection. As part of 
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an epidemiological investigation around this case, a cluster of COVID-19 cases, based around a high 

school with an enrolment of 1200 pupils, was identified. On March 3-4, students at the high school, 

their parents, teachers and staff (administrative staff, cleaners, catering staff) were invited to 

participate to the investigation.  A 5 mL blood sample was taken from 209 individuals who reported 

fever or mild respiratory symptoms (cough or dyspnea) since mid-January 2020. The median age was 

18 years (interquartile range: 17-45), and 65 % were female. This study was registered with 

ClinicalTrials.gov (NCT04325646) and received ethical approval by the Comité de Protection des 

Personnes Ile de France III. Informed consent was obtained from all participants.   

Samples from blood donors were collected in accordance with local ethical guidelines by 

Etablissement Français du Sang (EFS, Lille, France) in Clermont (Oise) on March 20 and Noyon (Oise) 

on March 24, both cities are located at 60 kilometers from Crepy-en-Valois.  

All sera were heat-inactivated 30-60 min at 56°C, aliquoted and conserved at 4°C for short term 

use or frozen. 

ELISA-N. A codon-optimized nucleotide fragment encoding full length nucleoprotein was synthetized 

and cloned into pETM11 expression vector (EMBL). The His-tagged SARS-CoV-2 N protein was 

bacterially expressed in E. coli BL21 (DE3) and purified as a soluble dimeric protein by affinity 

purification using a Ni-NTA Protino column (Macherey Nagel) and gel filtration using a Hiload 16/60 

superdex 200 pg column (HE Healthcare). 96-well ELISA plates were coated overnight with N in PBS 

(50 ng/well in 50 μl). After washing 4 times with PBS–0.1% Tween 20 (PBST), 100 µl of diluted sera 

(1:200) in PBST–3% milk were added and incubated 1 h at 37°C. After washing 3 times with PBST, 

plates were incubated with 8,000-fold diluted peroxydase-conjugated goat anti-human IgG (Southern 

Biotech) for 1 h. Plates were revealed by adding 100 μl of HRP chromogenic substrate (TMB, Eurobio 

Scientific) after 3 washing steps in PBST. After 30 min incubation, optical densities were measured at 

405 nm (OD 405). OD measured at 620 nm was subtracted from values at 405 nm for each sample.  

ELISA tri-S. A codon-optimized nucleotide fragment encoding a stabilized version of the SARS-CoV-2 S 

ectodomain (amino acid 1 to 1208) followed by a foldon trimerization motif and tags (8xHisTag, 

StrepTag, and AviTag) was synthetized and cloned into pcDNA™3.1/Zeo(+) expression vector (Thermo 

Fisher Scientific). Trimeric S (tri-S) glycoproteins were produced by transient co-transfection of 

exponentially growing Freestyle™ 293-F suspension cells (Thermo Fisher Scientific, Waltham, MA) 

using polyethylenimine (PEI)-precipitation method as previously described 30. Recombinant tri-S 

proteins were purified by affinity chromatography using the Ni Sepharose® Excel Resin according to 

manufacturer’s instructions (ThermoFisher Scientific). Protein purity was evaluated by in-gel protein 

silver-staining using Pierce® Silver Stain kit (ThermoFisher Scientific) following SDS-PAGE in reducing 

and non-reducing conditions using NuPAGE™ 3-8% Tris-Acetate gels (Life Technologies). High-binding 
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96-well ELISA plates (Costar, Corning) were coated overnight with 125 ng/well of purified tri-S proteins 

in PBS. After washings with PBS–0.1% Tween 20 (PBST), plate wells were blocked with PBS–1% Tween 

20–5% sucrose–3% milk powder for 2 h. After PBST washings, 1:100-diluted sera in PBST–1% BSA and 

7 consecutive 1:4 dilutions were added and incubated 2 h. After PBST washings, plates were incubated 

with 1,000-fold diluted peroxydase-conjugated goat anti-human IgG/IgM/IgA (Immunology Jackson 

ImmunoReseach, 0.8 µg/ml final) for 1 h. Plates were revealed by adding 100 µl of HRP chromogenic 

substrate (ABTS solution, Euromedex) after PBST washings. Optical densities were measured at 405nm 

(OD405nm) following a 30 min incubation. Experiments were performed in duplicate at room 

temperature and using HydroSpeed™ microplate washer and Sunrise™ microplate absorbance reader 

(Tecan Männedorf, Switzerland). Area under the curve (AUC) values were determined by plotting the 

log10 of the dilution factor values (x axis) required to obtain OD405nm values (y axis). AUC calculation 

and Receiving Operating Characteristics (ROC) analyses were performed using GraphPad Prism 

software (v8.4.1, GraphPad Prism Inc.). 

S-Flow Assay. HEK293T (referred as 293T) cells were from ATCC (ATCC® CRL-3216™) and tested 

negative for mycoplasma. Cells were split every 2-3 days using DMEM medium supplemented with 

10% fetal calf serum and 1% Penicillin streptomycin (complete medium). A codon optimized version 

of the SARS-Cov-2 S gene (GenBank: QHD43416.1) 1, was transferred into the phCMV backbone 

(GenBank: AJ318514), by replacing the VSV-G gene.  293T Cells were transfected with S or a control 

plasmid using Lipofectamine 2000 (Life technologies). One day after, transfected cells were detached 

using PBS-EDTA and transferred into U-bottom 96-well plates (50,000 cell/well). Cell were incubated 

at 4°C for 30 min with sera (1:300 dilution, unless otherwise specified) in PBS containing 0.5% BSA and 

2 mM EDTA, washed with PBS, and stained using either anti-IgG AF647 (ThermoFisher) or Anti-IgM  

(PE by Jackson ImmunoResearch or AF488 by ThermoFisher). Cells were washed with PBS and fixed 

10 min using 4% PFA. Data were acquired on an Attune Nxt instrument (Life Technologies). In less than 

0.5% of the samples tested, we detected a signal in control 293T cells, likely corresponding to 

antibodies binding to other human surface antigens. Specific binding was calculated with the formula: 

100 x (% binding on 293T-S – binding on control cells)/(100 - binding on control cells). We generated 

stably-expressing 293T S cells during completion of this study, which yielded similar results. 

LIPS Assay. Ten recombinant antigens were designed based on the viral genome sequence of the 

SARS-CoV-2 strain France/IDF0372/2020 (accession no EPI_ISL_406596) obtained from GISAID 

database 31. Five targeted different domains of S: Full S1 sub-unit (residues 1-698), N-terminal domain 

of S1 (S1-NTD, residues 1-305), domain connecting the S1-NTD to the RBD (S1-CD, residues 307-330 

and 529-700 connected by a GGGSGG linker), Full S2 sub-unit (residues 686-1208), and S441-685. For 

constructs that did not contain an endogenous signal peptide (residues 1-14) i.e. S1-CD and S2 
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constructs, an exogenous signal peptide coming from a human kappa light chain 

(METDTLLLWVLLLWVPGSTG) was added to ensure efficient protein secretion into the media. Five 

additional recombinant antigens, targeting overlapping domains of N, were designed: Full N (residues 

1-419), N-terminal domain (residues 1-209), C-terminal domain (residues 233-419), N120-419 and 

N111-419. The LIPS assay was designed as described 32 with minor modifications. Expression vectors 

were synthesized by GenScript Company, using as backbone the pcDNA3.1(+) plasmid, with codon 

usage optimized for human cells. HEK-293F cells were grown in suspension and transfected with 

PolyEthylenImine (PEI-25 kDa, Polyscience Inc., USA). Valproic acid (2.2 mM) was added at day 1 to 

boost expression. Recombinant proteins were harvested at day 3 in supernatants or crude cell lysates. 

Luciferase activity was quantified with a Centro XS3 LB 960 luminometer (Berthold Technologies, 

France).  108 LU of antigens were engaged per reaction. S1 and C-terminal domain (residues 233-419) 

were selected for analysing the cohorts. To increase sensitivity, the cohorts were tested at a final 

dilution of 1:10 of sera. 

Microneutralisation Assay. Vero-E6 cells were seeded in 96 well plate at 2.104 cells/well. The day 

after, 100 TCID50 of virus (strain BetaCoV/France/IDF0372/2020) were incubated with serial 2-fold 

dilutions of sera, starting from 1:10, in 100 µl of DMEM + TPCK 1µg/ml for 1 hour at 37°C. Mixes were 

then added to cells and incubated for 2 hours at 37°C. Virus/sera mixes were removed, 100µl of DMEM 

+1µg/ml TPCK were added, and cells incubated for 72 hours at 37°C. Virus inoculum was back titrated 

in each experiment. CPE reading was performed by direct observation under the microscope, and after 

cell coloration with crystal violet. Microneutralisation titers are expressed as the serum dilution for 

which 50% neutralisation is observed.  

Preparation of lentiviral pseudotypes. Pseudotyped viruses were produced by transfection of 293T 

cells as previously described 33. Briefly, cells were co-transfected with plasmids encoding for lentiviral 

proteins, a GFP reporter (or a luciferase reporter when specified) and the SARS-CoV-2 S plasmid, or 

the VSV-G plasmid as a control. Pseudotyped virions were harvested at days 2-3 post-transfection. 

Production efficacy was assessed by measuring infectivity or p24 concentration. 

S-Pseudotype neutralisation assay. 293T Cells were transiently transfected with ACE2 and TMPRSS2 

expression plasmids using Lipofectamine 2000 (Life technologies) as described above. 24h after 

transfection cells were detached with PBS-EDTA and seeded in Flat-bottom 96-well plates. S-

pseudotypes were incubated with the sera to be tested (at 1:100 dilution, unless otherwise specified) 

in culture medium, incubated 10 min at RT and added on transfected cells. After 48 hours cells were 

detached using PBS-EDTA, fixed with 4% PFA and analyzed on an Attune Nxt flow cytometer. The 

frequency of GFP+ cells in each condition was determined using FlowJo v10 software and 
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neutralisation was calculated using the formula: 100 x ((mean of replicates - mean of negative 

controls)/(mean positive controls - mean of negative controls)). S-pseudotypes incubated without 

serum and medium alone were used as positive and negative controls, respectively. 293T-cells stably 

expressing ACE2 were also used in this assay and yielded similar results. For luciferase-expressing 

pseudotypes, samples were analyzed with the EnSpire instrument (PerkinElmer). 

Data processing and analysis. Flow cytometry data were analyzed with FlowJo v10 software (TriStar). 

Calculations were performed using Excel 365 (Microsoft). Figures were drawn on Prism 8 (GraphPad 

Software). Statistical analysis were calculated using Prism 8. 
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Fig. 1: Serological survey of SARS-Cov-2 antibodies. Sera from pre-epidemic individuals sampled 
between 2017 and 2019 (first row), hospitalized cases with confirmed COVID-19 (second row), pauci-
symptomatics individual from the Crépy-en-Vallois epidemic cluster (third row) and healthy blood 
donors (last row) were surveyed for anti-SARS-Cov-2 antibodies using four serological assays. ELISA N 
and ELISA tri-S are conventional ELISA, using either N or the trimeric ectodomain of S protein as 
antigens. S-Flow is an assay detecting antibodies bound to cells expressing S by flow cytometry. LIPS 
S1 and N detect either S1 or N fused to luciferase by immunoprecipitation. Pre-epidemic samples were 
used to determine the cut-off of each assay, which is indicated by a dashed line and a green area. 
ELISAs were set to 95% specificity. The number of positive samples is indicated. Each dot represents a 
sample. 

Fig. 2. Antibody detection in 5 hospitalized patients. Kinetics of seroconversion in 5 hospitalized 
patients with at least 5 longitudinal samples. All patients were admitted in intensive care unit. Each 
line represents a participant. Dashed lines and green areas indicate assays cut-off of positivity. 

Fig. 3. Comparison of the number of positive samples. Number of positive samples per assay and 
cohort is indicated, with correspondence with other tests. Each line indicates, for a given assay, the 
number of positive samples in common with the other assays. Bold numbers indicate the number of 
positive samples for a given assay. Values are color-coded, white corresponding to lower values and 
green the higher values. 

Fig. 4. Correlations between assays. Data from pauci-symptomatic individuals and hospitalized 
patients (n=329) were pooled to compare assays. A. Data obtained with an assay were correlated to 
all other tests. Dashed lines indicate assays cut-offs for positivity. Values in light green areas are 
positive in one assay and values in dark green areas are positive in the two assays. Each dot represents 
a participant. B. Pearson correlation coefficient (R2) of each comparison. Values are color-coded, white 
corresponding to the lower value and red the highest. All correlations are significant (p>0.0001). 

Fig. 5. Neutralizing activity of the sera. A. Neutralizing activity (dilution 1:100) of 12 sera from the 
pauci-symptomatic cohort (C1-12) and 9 sera from hospitalized patients (B1-B9) was determined by 
the pseudovirus neutralisation assay and compared to serology data obtain with the 4 assays. 
Numbers indicate the coefficient of correlation (spearman r). All correlations are significant 
(p>0.0001). B. Neutralisation data from hospitalized patients were plotted against the day post-
symptom onset. The red line corresponds to a non-linear fit of the data. 

Fig. S1. SARS-CoV-2 tri-S ELISA seroreactivity. A. ELISA graphs showing the IgG reactivity of sera from 
pre-epidemic, pauci-symptomatic (Pauci-Sympt.), and hospitalized individuals against purified tri-S 
proteins. The x axis shows the serum dilution required to obtain the values of optical density at 405 
nm (OD405nm) indicated on the y axis. Mean values ± SD from intra-assay duplicates are presented. (B) 
Table comparing the % of seroreactivity between groups according to AUC value categories (see 
Methods). (C) ROC graphs comparing tri-S ELISA IgG seroreactivity between SARS-CoV-2-exposed or 
infected individuals and pre-epidemic controls. Table on the right indicates for each ROC analysis the 
sensitivity and specificity values. (D) Representative ELISA graphs showing the IgG, IgM and IgA 
reactivity against purified tri-S proteins of selected sera from SARS-CoV-2-infected subjects. Mean 
values ± SD from intra-assay duplicates are presented. SD, serum dilution. 

Fig. S2. S-Flow assay. A. Schematic representation of the S-Flow assay. B. representative examples of 
S-Flow data. Anti-S IgG levels in the serum of two hospitalized patients (B1 and B2) were measured. 
Cells transfected with a control plasmid indicate background levels (green) and cells transfected with 
a S-expressing plasmid (blue) identify the specific signal. C. Antibody titers determined by serial 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.21.20068858doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.21.20068858
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

dilution for 2 patients (B1 and B2). Dashed lines indicated background levels and plain line specific 
signal. Levels of anti-S IgG and IgM antibodies in nine hospitalized patients (B1-B9). 

Fig. S3. SARS-CoV-2 LIPS assays. A. Schematic representation of LIPS principle: recombinant antigens 
are incubated with patients’ sera and immune complexes are then precipitated onto a filter plate by 
protein A/G-coated beads. The measure of luminescence is proportional to the initial Ab titer. B-C. 
Evaluation of the reactivity of S-based (B) or N-based (C) antigens on 34 pre-epidemic (star) and 6 
epidemic (square) patients. D. LIPS S2 seroreactivity evaluated on 55 sera of asymptomatic individuals 
from the Crépy-en-Valois cluster. Left panel: relation between S2 and S1 antibody responses using an 
identical molar concentration. Right panel: relation between S2 antibody responses and anti-S 
antibody binding measured by S-Flow. Dotted lines correspond to cut-off values of each assay.  

Fig. S4. Pseudovirus neutralisation assay. A. Schematic representation of the assay. B. Representative 
examples of neutralisation using GFP-expressing S lentiviral pseudotypes (serum dilution 1:300). VSV-
G pseudotypes were used as a control. C. and D. Nine hospitalized patients (B1-B9) and twelve pauci-
symptomatic individuals (C1-12) were analyzed. E. Comparison of microneutralisation and 
pseudoneutralisation assays. Correlations were calculated using Spearman test. 
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Table  1. Serological assays used in the study

Table 2. Characteristics of the cohorts

Assay Antigen Serum dilution Read-out

ELISA N N 1:200 Optical Density

ELISA tri-S Trimeric S 1:400 Optical Density

S-Flow S at the cell surface 1:300 Flow cytometry

LIPS S1 and N 1:10 Bioluminescence
(luciferase)

Cohorts n Samples Date Area COVID-19
pre-epidemic 
individuals 491 491 2017-2019 France Naïve

hospitalized 
patients 51 161 Jan-March, 2020 Paris

France Confirmed

pauci-
symptomatic 
individuals 209 209 March 3-4, 2020 Crépy-en-Vallois, 

France Suspected

blood donors 200 200 March 20-24, 2020 Lille, France Unknown
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Fig. 1. Serological survey of SARS-Cov-2 antibodies
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Table 3: SARS-Cov-2 antibody detection

Cohort ELISA N ELISA tri-S S-Flow LIPS 
S1+ N

Antibody
prevalence

Pre-epidemic 
individuals

23/491
(5%)

5/100
(5%)

0/240
(0%)

3/280
(1%)

Hospitalized
patients

33/51 
(65%)

35/51 
(69%)

21/29 
(72%)

35/51 
(69%)

69% 
(65-72%)

Pauci-
symptomatic 
individuals

56/209 
(27%)

75/209 
(36%)

73/209 
(35%)

68/209 
(32%)

32% 
(27-36%)

Blood 
donors

0/200 
(0%)

2/16 6/200 
(3%)

0/200 
(0%)

3 % 
(0-3%)
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