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MANUSCRIPT 24 

Abstract 25 

Objectives  26 

The current form of severe acute respiratory syndrome called coronavirus disease 2019 27 

(COVID-19) caused by a coronavirus (SARS-CoV-2) is a major global health problem. The 28 

aim of our study was to use the official epidemiological data and predict the possible outcomes 29 

of the COVID-19 pandemic using artificial intelligence (AI)-based RNNs (Recurrent Neural 30 

Networks), then compare and validate the predicted and observed data. 31 

Materials and Methods   32 

We used the publicly available datasets of World Health Organization and Johns Hopkins 33 

University to create the training dataset, then have used recurrent neural networks (RNNs) with 34 

gated recurring units (Long Short-Term Memory – LSTM units) to create 2 Prediction Models. 35 

Information collected in the first t time-steps were aggregated with a fully connected (dense) 36 

neural network layer and a consequent regression output layer to determine the next predicted 37 

value. We used root mean squared logarithmic errors (RMSLE) to compare the predicted and 38 

observed data, then recalculated the predictions again. 39 

Results 40 

The result of our study underscores that the COVID-19 pandemic is probably a propagated 41 

source epidemic, therefore repeated peaks on the epidemic curve (rise of the daily number of 42 

the newly diagnosed infections) are to be anticipated. The errors between the predicted and 43 

validated data and trends seems to be low.  44 

Conclusions 45 
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The influence of this pandemic is great worldwide, impact our everyday lifes. Especially 46 

decision makers must be aware, that even if strict public health measures are executed and 47 

sustained, future peaks of infections are possible. The AI-based predictions might be useful 48 

tools for predictions and the models can be recalculated according to the new observed data, 49 

to get more precise forecast of the pandemic. 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 
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 62 

Introduction 63 

Coronavirus 64 

High and low pathogenic species may be distinguished within the coronavirus family, with the 65 

former including 4 viruses that are responsible for 10-30% of mild upper respiratory diseases 66 

(e.g. common cold), and the latter known to cause a more severe form of acute lung injury: 67 

SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome) 68 

CoV (coronavirus).1  69 

SARS-CoV originated in Guangdong Province, China and started to spread in 2002, causing 70 

over 8,000 illnesses in 29 different countries all over the world, with a crude fatality rate of 71 

10%.2,3,4 The disease spread to Hong Kong in 2003 causing an outbreak of severe acute 72 

respiratory syndrome (SARS). A novel coronavirus was isolated and was suggested to be the 73 

primary cause of the infections.5 Few years later, in 2007 Cheng et. al issued a warning that 74 

“the presence of a large reservoir of SARS-CoV-like viruses in horseshoe bats, together with 75 

the culture of eating exotic mammals in southern China, is a time bomb”.4 76 

MERS-CoV began spreading in Saudi Arabia in 2012 and to date has led to a total of 2519 77 

laboratory-confirmed cases in several countries around the world.6,7 Its case-fatality rate 78 

reached 37.1% over the course of the past 8 years.7 79 

COVID-19 80 

The current form of severe acute respiratory syndrome called COVID-19, is caused by a new 81 

variant of formerly known highly pathogenic Coronaviridae. The infection allegedly began to 82 

spread from a market in Wuhan, the capital of Hubei province, China, at the end of 2019. Early 83 

PCR analysis has found that the new virus, called 2019-nCoV by the World Health 84 
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Organization (WHO) and SARS-CoV-2 by the International Committee on Taxonomy of 85 

Viruses, shows a 79.6% homology with SARS-CoV, and has 96% sequence identity with bat 86 

coronavirus suggesting a common origin from SARSr-CoV (severe acute respiratory syndrome 87 

related coronavirus). According to analyzes the suspected host is a bat species, Rhinolophus 88 

affinis (a horseshoe bat), but the virus probably needs an intermediate host.8 89 

Symptoms associated with the disease include fever (83%), cough (82%), shortness of breath 90 

(31%), muscle aches (11%), confusion (9%), headache (8%), sore throat (5%), runny nose, 91 

chest pain, diarrhea, nausea and vomiting.9 According to a meta-analysis that complied data 92 

from more than 50 000 patients, the incidence of fever (0.891, 95% confidence interval (CI): 93 

[0.818; 0.945]) and cough (incidence of 0.722, 95% CI: [0.657; 0.782]) were the highest 94 

respectively, followed by muscle soreness and fatigue.10 95 

The incubation period of the COVID-19 disease is estimated between 1-14 days (5 days on 96 

average).11 There is no definite data concerning the transmissibility of the virus. Several 97 

transmission routes have been identified: direct lung, other mucous membranes, direct 98 

bloodstream and possibly fecal-oral transmission.12 It seems probable that those with the 99 

fulminant disease are most infectious, but reports have identified asymptomatic and 100 

presymptomatic virus shedding as well. There is also lack of definite data regarding tertiary and 101 

quaternary spreading among humans, but it seems probable that the person who has been 102 

exposed to the infection has acquired some (at least temporary) immunity. 13 103 

According to WHO data, there were 1 914 916 confirmed cases and 123 010 fatalities globally 104 

as of 15th of April 2020, which corresponds to a case-fatality rate of about 6.42 %.14 105 

R0, the basic reproduction number, denoting the transmissibility of a virus indicates the average 106 

number of new infections induced by an infectious person in a susceptible, infection naïve 107 

population. The transmissibility of the virus was apparently underestimated initially by the 108 
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WHO with R0 suggested to range between 1.4 and 2.5. More recent analyzes have indicated 109 

higher R0 values around 3 (with the mean and median R0 for published estimates being 3.28 110 

and 2.79, respectively).11,15 111 

 The daily number of the newly diagnosed infections - epidemic curves 112 

The initial epidemic curves of the COVID-19 outbreak from Hubei, China showed a mixed 113 

pattern, indicating that early cases were likely from a continuous common source e.g. from 114 

several zoonotic events in Wuhan, followed by secondary and tertiary transmission providing 115 

a propagated source for the later cases.16  116 

The propagated (or progressive source) epidemic curve visualizes the spread of an infectious 117 

agent that may be transmitted from human to human starting from with a single index case, that 118 

continues to infect numerous other individuals. This shows up as a series of peaks on the 119 

epidemic curve, that starts with the index case, followed by successive waves of the infection 120 

set apart with respect to the incubation period of the pathogen. The waves continue to follow 121 

each other, until appropriate mitigation measures, prevention or treatment are implemented, or 122 

the pool of the susceptible population becomes infected. This is a theoretic curve, that is 123 

generally influenced by lots of other factors.16 124 

Several studies investigated the impact of different interventions with respect to minimizing 125 

contact rates in the population to slow the infection spread, minimize COVID-19 mortality rates 126 

and health care utilization or to suppress the epidemic per se. Flattening the curve by reducing 127 

peak incidence may limit overall case fatality rates. Nevertheless, most of the forecasts and 128 

simulations thus far started out from Bell-shaped curves, that fail to account for the progressive 129 

nature of the current outbreak given the known secondary, tertiary even quaternary 130 

transmissibility of the virus. Taking this into account it is suggested that the number of cases 131 

will rise once again, after pandemic control measures are no longer in effect.17  132 
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Prediction 133 

There are different mathematical models that may demonstrate and predict the dynamics of the 134 

different infectious diseases.18 These models, used to simulate the dynamics of infectious 135 

diseases, may be based on statistical, mathematical, empirical or machine learning methods.19  136 

The first attempts to use Artificial Intelligence (AI) in medicine were made in the 1970s. 137 

Initially AI was used to implement programs to help clinical decision making, but to date its 138 

use is gaining more and more widespread acceptance in biomedical sciences.20  139 

One class of AI, a form of artificial neural networks, the Recurrent Neural Networks (RNNs) 140 

with Long short-term memory (LSTM) were previously used to model and forecast the 141 

influenza epidemic, with strong competitiveness and reliable results.21, 22, 23 142 

The aim of the current study was to use the available official data as a training dataset, followed 143 

by predicting the possible outcomes of the COVID-19 pandemic using AI-based RNNs, then 144 

compare the predictions with the observed data.  145 

 146 

Materials and Methods 147 

Data 148 

 149 

We used the publicly available datasets of WHO and Johns Hopkins University from the 150 

following countries to create the training dataset: Austria, Belgium, Hubei (China), Czechia, 151 

France, Germany, Hungary, Iran, Italy, Netherlands, Norway, Portugal, Slovenia, Spain, 152 

Switzerland, United Kingdom, United States of America.13,24 Given that most infected people 153 

in China were from Hubei province, only data from that province was included. For each 154 

country, the date of the first infection was set as day 1 for the disease time scale. (Fig 1) 155 
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 156 

Fig 1. The historical datasets from different countries 157 

When determining the date of the first illness, point source outbreaks were omitted (e.g. those 158 

cases where single verified cases were isolated, and no further transmission has occurred). This 159 

was important to avoid distortion of the propagated epidemic curves. In Belgium, for example, 160 

the first illness occurred on 04/02/2020 and there was no further case reported for up to 26 days. 161 

The next illness occurred on 01/03/2020. Inclusion of the early case from February would 162 

contribute to a false learning rule for the AI, hence corrupting the results. As for Hubei Province, 163 

the first officially available data is of 22/01/2020. This cannot be considered as the first day of 164 

the illness, thus the first infection was arbitrarily defined to occur on 01/01/2020. To account 165 

for the extreme variability of daily incident cases probably reflecting delays in reporting, a 166 

moving average was used (covering 3 days) for Hubei dataset.  167 

Accordingly, an epidemic curve was obtained for each country with a time series where the first 168 

day denotes the day of the first confirmed case, and each successive day indicating the number 169 

of newly confirmed cases that day. To account for the country-specific differences in the size 170 

of population, the number of daily new cases was normalized for 100 000 inhabitants in each 171 

0

5

10

15

20

25

30

35

40

45

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

D
ai

ly
 n

ew
 in

fe
ct

io
n

s
p

er
 1

00
.0

00
 in

h
ab

it
an

ts

Days of the epidemic in the given country

Observed data

Italy France Germany Hungary Hubei Spain United Kingdom US

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 22, 2020. ; https://doi.org/10.1101/2020.04.17.20069666doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.17.20069666


9 
 

country. The observation period varies for each country, given the difference of time elapsed 172 

since the disease initiation in that country. Accordingly, the longest time series covers the 173 

observation period of 90 days. e.g. in Hubei, with the first 22 days lacking valid data and the 174 

next 68 days having data. The shortest observation period was in Slovenia with only 30 days.  175 

The training data set was obtained by averaging the daily incidence rates per 100 000 176 

inhabitants across the 17 countries included, for each day in the time series. When calculating 177 

the average, missing data was left blank, i.e. NULL, e.g. countries that did not contain a data 178 

for a specific day, were excluded from calculation of average. The resulting training data set is 179 

shown in Figure 1. It should be noted that the first part of the data set (up to the initial 30 days 180 

since Day 1 of the epidemic) contains data for almost all the countries listed, whereas the end 181 

of the data set contains only data from Hubei. (Fig 2) 182 

 183 

Fig 2. The training dataset. Average daily new infections per 100.000 inhabitants (blue 184 

coloured line ) and the Number of datasets (green colour line  ) 185 
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RNN-based model for prediction 186 

The state-of-the-art for time series analysis is artificial intelligence-based analytic tools, which 187 

have the best prediction performance. Recurrent Neural Networks (RNNs) are specifically 188 

designed to cope with sequential input, characteristic of textual or temporal data.22 This 189 

architecture is a neural network-based architecture, that contains hidden layers chained 190 

according to the time step, with a possibility to predict the next sequence element(s). A time 191 

series has a special temporal form, where the input to the i-th hidden layer is at the i-th time-192 

step that has a corresponding x(i) observation. In its original form a simple RNN tries to predict 193 

the next sequence element, however, for the purposes of the current analysis, an encoder-194 

decoder variant is a more natural choice, similarly to machine translation.25 For our specific 195 

scenario this means that the during the encoder phase including time steps 1,…,t the RNN is 196 

fed with the already known time series data (the average of the number of new cases normalized 197 

to 100 000 inhabitants for day 1…t, respectively), followed by prediction in the decoder phase 198 

for the future time steps t+1,…,T. In our analysis T=t+1=90 days is the longest known (Hubei) 199 

time interval. Since this covers quite a long data sequence, we have used gated recurring units 200 

(namely Long Short-Term Memory – LSTM units) in compliance with the general 201 

recommendations.23 Figure 3 depicts our RNN architecture showing how unknown time series 202 

elements are predicted. Figure 3 also shows how the information collected in the first t time-203 

steps are aggregated with a fully connected (dense) neural network layer and a consequent 204 

regression output layer to determine a predicted number of new patients as x(t+1). (Fig 3) 205 
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 206 

Fig 3. The Recurrent Neural Network architecture used for prediction. 207 

The training data was described in previous sections. To assess possible specificities regarding 208 

the countries two approaches were used for prediction:  209 

• Prediction 1: An algorithm to update training step and subsequent prediction was 210 

formulated. This update step is based on the general recommendations of transfer learning 211 

that considers the already known time interval for the given country and re-training is done 212 

in small increments of the RNN network accordingly.26 Thus we start predicting the first 213 

unknown element x(t+1) from the last 5% of the known data, and the same principle is 214 

applied to each subsequent element. Moreover, after each prediction step our RNN 215 

architecture is re-trained and the subsequent elements are predicted with this updated RNN. 216 

• Prediction 2:  We start predicting the first unknown element x(t+1) from the last known 217 

x(t), and all the subsequent elements are predicted only from the preceding ones. Here the 218 

rules depicted from the training data set are used, not retraining occurs. 219 

 220 

The intuitive interpretations of the difference between Prediction 1 and Prediction 2 are as 221 

follows. Prediction 2 makes its predictions utilizes the information derived from the training 222 
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data set, reflective of the trends in the average time series. It follows that predictions will 223 

comply primarily with the Hubei time series, especially in the far future. Therefore Prediction 224 

2 shows highest fidelity to the country-specific future scenario if the approach to mitigate the 225 

epidemic is similar to that in Hubei. Accordingly, this scenario is also reflective of a country-226 

specific future state given the practices of Hubei were followed in said country. On the other 227 

hand, Prediction 1 is yielded after the neural network is retrained after any prediction, providing 228 

more valid insight into what is expected if the country goes on with the mitigation practices 229 

seen during the observation period. 230 

The architecture was trained in 250 epochs with a total number of 100 hidden LSTM layers, to 231 

prepare a bit for prediction also after T=90 days. Naturally, the length of the RNN can be freely 232 

increased later on. 233 

Validation 234 

To validate the predictions, we first made the above mentioned two predictions based on data 235 

available up to 30/03/2020. The resulting daily new morbidity data are labeled “Old Prediction 236 

1” and “Old Prediction 2” on each graph. We then expanded our factual data set with new daily 237 

data available until 10/04/2020. These new factual data are labeled “Observed next days” on 238 

the graphs. Thus, except for Hungary, we have 11 new daily factual data elements for all 239 

countries examined. In the case of Hungary, the data of 10/04/2020 were already available, so 240 

in this case 12 new factual data elements are included. Using these data, we validated the two 241 

predictions of our model. 242 

The amount of root mean squared logarithmic errors (RMSLE) was used for validation. 243 

In our analysis the possible bias regarding the difference ratios between the observed and 244 

predicted values are interpreted using root mean squared logarithmic errors (RMSLE). 245 
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Let 𝑛 be the number of days you for validation. Let 𝑝1𝑖 and 𝑝2𝑖 be the number of new cases per 246 

day obtained using the two prediction methods in the examined time interval and let 𝑎𝑖 be the 247 

actual data for the given days. Err1 and Err2 be mean squared logarithmic errors (RMSLE) for 248 

Prediction 1 and Prediction 2, respectively, where: 249 

𝐸𝑟𝑟1 = √
1

𝑛
∑(log(𝑝1𝑖 + 1) − log(𝑎𝑖 + 1))2
𝑛

𝑖=1

 250 

𝐸𝑟𝑟2 = √
1

𝑛
∑(log(𝑝2𝑖 + 1) − log(𝑎𝑖 + 1))2
𝑛

𝑖=1

 251 

 252 

For each graph, the small graph in the upper right corner contains the daily error values 253 

calculated for the predictions. The more accurate the prediction, the smaller the RMSLE error. 254 

It should be noted that if the error function is parallel to the x-axis, it means that the trend of 255 

the prediction is the same as the real trend, only at a lower or higher scale. 256 

As the next step, using the next 11 new observation data elements after the first prediction and 257 

12 in the case of Hungary, we modified the predictions using both methods. These modified 258 

prediction data are labeled New Prediction 1 and New Prediction 2, respectively. 259 

Results 260 

The following section shows the outcomes for Prediction 1 and Prediction 2 for the individual 261 

country level data (Figs 4-10). 262 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 22, 2020. ; https://doi.org/10.1101/2020.04.17.20069666doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.17.20069666


14 
 

263 

Fig 4. Observation and predictions for Italy. The small graph in the upper right corner 264 

shows the daily error values calculated for the predictions. 265 

 266 

267 

Fig 5. Observation and predictions for Spain. The small graph in the upper right corner 268 

shows the daily error values calculated for the predictions. 269 
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270 

Fig 6. Observation and predictions for the United Kingdom (UK). The small graph in the 271 

upper right corner shows the daily error values calculated for the predictions. 272 

273 

Fig 7. Observation and predictions for the United States of America (USA). The small 274 

graph in the upper right corner shows the daily error values calculated for the predictions 275 
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276 

Fig 8. Observation and predictions for France. The small graph in the upper right corner 277 

shows the daily error values calculated for the predictions. 278 

279 

Fig 9. Observation and predictions for Germany. The small graph in the upper right corner 280 

shows the daily error values calculated for the predictions. 281 
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282 

Fig 10. Observation and predictions for Hungary. The small graph in the upper right 283 

corner shows the daily error values calculated for the predictions. 284 

The total errors for the entire investigated period, the summarized mean of the predictions 285 

(RMSLE) by country shown in Table 1. 286 

Table 1. Total RMSLE error for the entire investigated period 287 

Countries 

Summarized mean 

of 

old prediction 1 

(RMSLE) 

Summarized mean 

of 

old prediction 2 

(RMSLE) 

Hungary 0.261 0.316 

United Kingdom 0.405 0.533 

Italy 0.392 0.291 

Spain 0.348 0.221 

Germany 0.321 0.319 

France 0.443 0.517 

USA 0.414 0.552 
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Discussion 289 

The result of our study underscores that the COVID-19 pandemic is probably a propagated 290 

source outbreak, therefore repeated peaks on the epidemic curve (rise of the daily number of 291 

newly diagnosed infections) are to be anticipated. Predictions made using AI-based recurrent 292 

neural networks, further implicate that albeit majority of investigated countries are near or over 293 

the peak of the curve, they should prepare for a series of successively high peaks in the near 294 

future, until all susceptible people will be infected by the coronavirus, or effective preventive 295 

(eg. vaccination) or treatment options will become available. These scenarios are similar to 296 

other known propagated source epidemics, e.g. SARS-CoV and measles.27 The validation of 297 

our first predictions shows a strong correlation with the progression of the newly diagnosed 298 

daily cases, the trends of our predictions are similar to the observed data, with relatively small 299 

calculated root mean squared logarithmic errors. Our recalculated predictions might be more 300 

precise, but the trends are very similar to the previous predictions and observed data.  301 

Albeit suppression and mitigation measures can reduce the incidence of infection, COVID-19 302 

disease, given its relatively high transmissibility reflected by average R0 values of 3.28, will 303 

continue to spread, most likely.14 Accordingly, public health measures must be implemented as 304 

the incubation period of the virus may be long (1-14 days, but there are some opinions, that this 305 

can be 21 days), during which time asymptomatic or presymptomatic spreading may ensue. 306 

Moreover currently it is uncertain, whether those, who were diagnosed with COVID-19 307 

infection, will acquire immunity or not.11 Finally, data from countries with warm climate 308 

suggest that summer is unlikely to stop the pandemic, as the virus already spreading in Australia 309 

and South Africa as well.13, 17 This is why the recurrence of another peaks is very likely, and 310 

the end of the pandemic cannot be accurately predicted at this time.  311 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 22, 2020. ; https://doi.org/10.1101/2020.04.17.20069666doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.17.20069666


19 
 

Nevertheless, recent publications showed, that the earlier mitigation attempts are in place (eg. 312 

border closure, closing schools, lockdown of the country, curfew), the more effective is the 313 

reduction of spread of the epidemic.17 In fact analyzing the effects of a suppression strategy 314 

with respect to COVID-19, it was shown that early implementation of suppression at 0.2 deaths 315 

per 100 000 population per week could save 30.7 million lives compared to late implementation 316 

of these measures at 1.6 deaths per 100 000 population per week.28 This seems to be the case in 317 

the countries, which had prior knowledge regarding coronavirus infections (eg. China, 318 

Singapore, Hong Kong), as they were more prepared to implement public health measures, had 319 

more equipment and health care personnel in place to mitigate the spread of the infections. 320 

Those countries, that failed to implement efficient and strict mitigation policies in a timely 321 

manner, are facing difficulty with controlling the disease, as is the case in Italy, the United 322 

Kingdom and the United States.14  323 

To the best of our knowledge this is the first study to model the predicted evolution of the newly 324 

diagnosed infections using data from official databases with the help of the artificial 325 

intelligence-based recurrent neural networks trained on the currently available data, which were 326 

validated by  root mean squared logarithmic errors calculation. Most studies to date expect a 327 

single peak of the epidemic curve, but some fear the emergence of future peaks when 328 

mitigation-suppression measures will be discontinued. According to our model, this can even 329 

happen, if the strict measures are sustained.  330 

Limitations of our study: As the nature of COVID-19 virus is relatively unknown, and it is 331 

prone to mutations, the prediction of the spread of the pandemic is not easy. Factors influencing 332 

known new cases per day, for example efficiency of reporting, the different quality and timing 333 

of public health measures, the country-specific age-pyramid, chronic disease burden of the 334 

population were not included in the training data set, due to lack of reliable data.  We did not 335 

investigate the number of the deaths and recoveries, as we found no reliable data. Similarly, the 336 
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data regarding diagnostic tests performed per country, or death rates were omitted, given they 337 

are highly influenced by the countries’ economic wellbeing, health care systems, facilities and 338 

capacities and other factors. 29, 30  There are lots of unforeseen uncertainties and coincidences, 339 

which could not be implemented in our model, for example there were days, when a large 340 

number of people were diagnosed with COVID-19 one day (for example in care homes in 341 

France or in Hungary) that caused a large increase in the number of the daily new cases.14  342 

Summarizing, the COVID-19 disease is a global health challenge, which caused the WHO to 343 

declare a “public health emergency of international concern on 30/01/2020”.16 The influence of 344 

this global epidemic has dug deep into the day-to-day conduct of everyone, with unforeseen 345 

challenges still pending for governments and policymakers. Starting from this, everyone, 346 

especially decision makers must be aware, that the current situation might be just the beginning, 347 

and even if strict public health measures are executed and sustained, future peaks of infections 348 

are possible.  349 

Conclusions 350 

     The results of our study underscore that the COVID-19 pandemic is probably a propagated 351 

source epidemic, therefore repeated peaks of the rise of the daily number of newly diagnosed 352 

infections are to be anticipated. 353 

To the best of our knowledge this is the first study to model the predicted evolution of the 354 

pandemic using data from official databases with the help of the AI-based RNNs trained on the 355 

currently available data regarding the spread of the disease and validated with comparison of 356 

the predicted and observed data. Most studies to date expect a single peak on the epidemic 357 

curve, but some fear the emergence of future peaks when mitigation-suppression measures will 358 

be discontinued. According to our models, this can even happen, if the strict measures are 359 
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sustained. The AI-based predictions might be useful tools and can be recalculated according to 360 

the new observed data to get more precise forecast of the pandemic. 361 
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