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ABSTRACT: As the number of people affected by COVID-19 disease caused by the novel coronavirus SARS-CoV-2 ebbs and 
flows in different national and sub-national regions across the world, it is evident that our lifestyle and socio-economic tra-
jectories will have to be adapted and adjusted to the changing scenarios. Novel forecasting tools and frameworks provide an 
arguable advantage to facilitate this adapting and adjusting process, by promoting efficient resource management at indi-
vidual and institutional levels. Based on deterministic compartment models we propose an empirical top-down modeling 
approach to provide epidemic forecasts and risk calculations for (local) outbreaks. We use neural networks to develop lead-
ing indicators based on available data for different regions. These indicators are not only used to assess the risk of a (new) 
outbreak or to determine the effectiveness of a measure at an early stage, but also in parametric models to determine an 
effective forecast, along with the associated uncertainty. Based on initial results, we show the performance of such an ap-
proach and its robustness against inherent disturbances in epidemiological surveillance data. We foresee such a statistical 
framework to drive web-based automatic platforms to democratize the dissemination of prognosis results. 

How can the course of the pandemic be predicted, what 
can be expected in the short term, when can the peak 
number of infections be expected, when can the number of 
new infections decrease to a manageable level? Answers to 
such questions are sought after by one and many. But fore-
casting and predictions during a crisis such as the one we 
are in, is a double-edged sword1,2. As the adage goes, that a 
model is only as good as the assumptions and the data 
used to ‘train’ one; the risk of incorrect predictions or un-
reliably large uncertainty intervals is fatal. This is the rea-
son there is a high level of skepticism over any and every 
forecasting model proposed in recent week(s). Consider 
weather forecasts in our daily lives. These are so ubiqui-
tous that, on the one hand, we often fail to acknowledge 
the strides made in meteorological modeling3. On the oth-
er, we tacitly recognize without frowning that predictions 
can go astray. Unlike weather forecasts, epidemic (or pan-
demic) projections are highly complex and challenging. 
Nevertheless, having reliable estimates for morbidity and 
mortality is critical for decision making at individual and 
institutional levels4. As different parts of the world prepare 
to return to a new normal, in which there is a continued 
risk of rapid spread as soon as physical distancing 
measures are reduced5; there is a need for a new set of 
approaches targeted specifically at sensing and predicting 
the progression of the disease. Through a novel modeling 
approach rooted in multi-modal data, the aim here is to 
characterize the threats and impacts for assessing effects 
of interventions and facilitate decision making.  

Compartmental models such as SIR and SEIR (and their 
variants) are necessary to better understand the mecha-
nisms that come into play through the course of an epi-
demic6. However, the suitability of these models to make 
prognosis remains to be exploited. From a statistical per-
spective, multiple constraints and challenges exist in real-
world applications of epidemiological "bottom-up" models 
to make a meaningful prediction. Predominantly, the avail-
ability of surveillance data on different compartments such 
as susceptible, exposed, infected, or removed (recovered) 
is limited. In view of the large disparity in testing capaci-
ties, and lack of clarity on unreported cases, the models 
derived thereof cannot provide an unequivocal picture of 
the epidemic potential. Adding to these challenges is the 
highly fluctuating nature of daily reported figures. The 
uncertainties associated with each of these factors, snow-
ball to a monumentally large uncertainty value for the out-
come of the built model7. Besides, the predictions derived 
from the models can become unstable because the figures 
are often susceptible to small changes in the input parame-
ters. Estimation procedures are needed to specify the 
model parameters, which in turn rely on the existing, very 
noisy time series data. This not only applies to the simplest 
SIR model, but also models based on individualized as-
sumptions for different subpopulations. In order to use 
such models for forecasting, one needs reasonable as-
sumptions for each individual model parameter. Notwith-
standing the fact that increasing number of model parame-
ters increases the scope of possible errors for the respec-
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tive forecast. As an example, the revision of estimated 
number of deaths due to COVID-19, in subsequent reports, 
by the expert team at Imperial College, London, sparked 
several reactions8. The models initially projected around 
500,000 deaths to occur in the UK, alone. The number was 
updated to under 20,000 deaths. This happened just in one 
to two weeks and demonstrated that any prognoses in an 
ongoing epidemic may fail9,10. One of the scenarios that 
was also reported as a possibility (at the time of publica-
tion) that, half of the population was already infected by 
SARS CoV-2. This sounds extremely unlikely, given the fact 
that about three weeks later, the numbers barely crossed 
100,000 confirmed infected cases. Nevertheless, during 
this initial phase, it was advisable to consider even such 
extreme scenarios due to the very contradictory infor-
mation situation. Similarly, commentaries and responses 
have been spawning in reaction to the (daily) changing 
estimates of the model11 developed by the IHME team at 
University of Washington12. 

Building over the widely adopted bottom-up approaches 
(based on SIR, SEIR, SIA, and their variants), we propose in 
this work an empirical top-down approach. For such an 
approach, the starting point is not the epidemiological de-
scription of the disease with all its individual aspects (bot-
tom-up), but instead, the resulting data with all its errors 
(top-down). The method does not claim to represent a 
simulation of the reality. Still, it aims to derive underlying 
trends and (suitable) risk indicators from the existing 
noisy time series data for confirmed infected cases and 
deaths. These indicators are derived both from epidemio-
logical principles and pertinent statistical theory, with spe-
cial focus on systematic and random errors. The indicators 
selected by means of neural network analysis not only 
serve as early warning indicators, but also form the basis 
of the statistical models used for the forecast. Hence, these 
indicators have a two-fold role – (a) assist in evaluating the 
‘current’ epidemic potential and (b) enable reliable fore-
casts.  

In the following sections, we outline the adopted meth-
odology, provide preliminary findings at a country level 
(while arguing that going down to a higher level of granu-
larity is important), and relevant implications of the find-
ings. We demonstrate how the approach has been inte-
grated into a web-based portal enabling automatic and 
real-time evaluation of metrics, with quantified uncertain-
ty to provide forecasts for districts and cities of Germany. 
These results can equip decision-makers to enable primary 
containment or mitigation strategies.   

Because the evolution of the pandemic is extremely dy-
namic, classical statistical procedures and methodologies 
for forecasting, in our view, are inadequate for making 
viable projections. Trends are highly non-linear, and ex-
trapolating the case counts, whether linear or exponential, 
does not usually lead to the desired outcome13. Therefore, 
the method adopted here involves fusing mechanistic and 
statistical approaches. Consider time series data for the 
number of daily new confirmed cases, and the number of 

daily deaths reported. Given, for instance, the time-series 
data has fifty time points, thousands of different potential 
indicators can be derived by a statistician familiar with 
time-series analyses. For example, by calculating succes-
sive differences of the first and second order. Additionally, 
averages of consecutive numbers, along with simple rela-
tive change calculations can be made. Furthermore, it 
makes sense to use different data sources in parallel, to 
improve the forecast on this basis. To evaluate which indi-
cators are appropriate and wield a higher prognostic value, 
are usually checked manually using proven methods of 
time series analysis. In order to expedite this very lengthy 
process, one can also make use of artificial intelligence 
(neural network) methods. This is exactly the method we 
use for the forecasting framework of COVID-19. The time-
series data available at a certain point in time form the 
basis for the training of the neural networks. The corre-
sponding short and medium-term forecast values are used 
as the labels for the training. Feature selection is then used 
to extract significant metrics. An appropriate parametric 
model is developed using these metrics as covariates. Such 
a parametric model then allows assigning a quantitative 
context to relevant factors along with its uncertainty. 
Based on the neural networks, we obtain not only one, but 
several promising indicators. These are then fed, into com-
peting parametric models, to not only obtain a forecast 
that is as accurate as possible, but also to get an idea of the 
range of possible outcomes when using different data 
sources and different tools for prognoses.  

As we are currently in the middle of a rapidly progress-
ing pandemic, many forecasts have a short time horizon of 
a few days, weeks, or at best months. The basis of the fore-
casts is usually the number of confirmed infections or the 
number of deaths. However, the quality of the reported 
figures, i.e., in particular, whether the information is cor-
rect, whether there are random and systematic deviations 
and how reliably and quickly they are reported, can be 
subject to strong fluctuations from country to country and 
from region to region. Such wavering data flows also show 
variations over time. For example, the number of con-
firmed infections is not a particularly suitable measure of 
the current spread of the epidemic if there is a lack of ade-
quately coordinated testing strategy in the different re-
gions, i.e., if the selection criteria for the persons to be test-
ed are not the same. It becomes even less favorable if the 
selection criteria change over time or if the criteria for a 
confirmed diagnosis changes over time. The latter hap-
pened both in China and Germany. As a result, an enor-
mous jump in the cases on 12.02.2020 was observed in 
China. Moreover, the number of deaths is not always a par-
ticularly suitable criterion either; if one considers, for ex-
ample, that the beginning of the epidemic in Bavaria, Ger-
many, was marked by many young winter holidaymakers 
in Austria and Italy who were infected but had a very low 
mortality rate. Only weeks later, when the epidemic in-
creasingly reached older cohorts, did the death rates in-
crease. Thus, if the spread of the epidemic had been mod-
eled on the basis of death rates, only a minimal number of 
deaths would have been seen at first, but then the number 
of deaths increased quickly. It would hardly have been 
possible to deduce the actual growth of the epidemic from 
these figures. Even if the epidemic has reached all popula-
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tion groups equally, it is not possible to derive any reliable 
information from the death rates regarding the spread of 
the virus, especially not when the health care systems 
reach the limits of their capacity. However, the death rates 
become relevant when they are considered in combination 
with other parameters, such as infection rates, or daily 
count of infected persons based on the day for the onset of 
symptoms. 

Various countries and regions have different socio-
economic structures, demographic distributions, 
healthcare systems, political will, and culture. Thereby 
leading to variations in what is reported and what is 
known. A typical example in the scope of work presented 
here is the ‘weekend effect’ in reported numbers of con-
firmed cases across Germany. Many regional authorities do 
not report numbers over the weekend; consequently, rela-
tive lower numbers are consistently reported for the 
weekend. In our approach, by utilizing a large set of warn-
ing indicators, such region-specific effects are rationalized 
in the model building process. Therefore, depending on the 
time and situation, a completely different approach to the 
prognosis of the epidemic may be possible. Additionally, it 
is also necessary to learn from the experience of those 
countries that have already survived the first wave of the 
epidemic, and this, in turn, means that we are dealing sim-
ultaneously with very different data and models, each with 
the same objective, namely to recognize when the wave 
rises, when it reaches its peak, when it has dwindled again 
and how many smaller local waves may occur as a result. 

 Our preliminary work is based on data sourced from the 
Center for Systems Science and Engineering (CSSE) at 
Johns Hopkins University14 and other aggregator 
websites15. Until now, we use time-series data for the prov-
inces of China, South Korea, Japan, Germany, Italy, Spain, 
the UK, the US, and Russia, but as the pandemic is pro-
gressing, we are planning to include further data. We iden-
tify several candidates for early warning indicators (EWIs) 
through the neural network approach described above. 
Most of these EWIs describe the dynamics of the process 
or compare the dynamic relationship between deaths and 

confirmed infections.  

EWIs have a 2-fold role – (a) evaluate the reliability of 
the prognostic assessment; in other words, to assess if a 
reliable prognosis is possible or not, (b) utilize the under-
lying trends of such indicators in the parametric modeling 
process. In the following sections, we show the interpreta-
tion of one such EWI candidate, also referred to as EWI 
candidate A as an example for South Korea, Germany and 
the USA.  

Here is an example for an indicator describing the dy-
namics in South Korea. Values for EWI above 0 indicate an 
increase in the number of infected persons (reproduction 
rate R>1), and values for EQI below 0 represent a decrease 
(reproduction rate R<1). The higher the value, the faster 
the rate of growing epidemic due to higher transmissibil-
ity.  

Looking at the course of the indicator for South Korea 
(Fig. 1A), together with the trend of confirmed infections 
(Fig. 1B), 5 phases can be distinguished (see Table 1). The 
trend indicator is suitable on the one hand for defining and 
understanding the different stages in the course of the epi-
demic, but also as an early indicator for a (local) outbreak 
of the epidemic or for the effectiveness of measures to con-
tain it. 

Early indicator for an outbreak gives a signal on the 20th 
of February 2020. From 27th February to 9th March, there 

 

Figure 1: (A) EWI candidate A for South Korea 30.01.2020 
– 12.04.2020. EWI candidate is a measure of whether the 
spread of the epidemic is currently accelerating (>0) or 
slowing down (<0). (B) Daily confirmed cases in South 
Korea (Data source: Johns Hopkins University) 

Table 1: Descriptions for how the early warning indicator, 
candidate A for South Korea. 

Date range (2020) Key takeaways 

Feb 1 to Feb 19  Random fluctuations around 0 
(single cases only) 

Feb 20 to Feb 26 Outbreak starting in Daegu 

Feb 27 to Mar 10 The containment measures grad-
ually slowed down the epidemic 

Mar 13 to Mar 22 A break in the trend indicator 
around 13.03.2020 suggests a 
renewed outbreak of the epidem-
ic and a second, albeit much 
smaller wave, which, however, 
soon collapsed again 

Apr 1 to Apr 12 Another decrease of trend indica-
tor since April 1st suggests suc-
cessful containment of the second 
wave 
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is a clear linear downward trend, reflecting that contain-
ment measures were effective and finally reduced the 
number of daily infections; break in the downward trend 
of the indicator around 11.03.2020 and 14.03.2020 sug-
gests the beginning of another (local) outbreak. Another 
decrease of trend indicator since April 1st suggests suc-
cessful containment of the second wave. 

The same indicator for Germany looks different (see Fig. 
2A-B). It appears that Germany has been in a phase of 
slowing down the epidemic for at least five weeks and is 
now experiencing a decline in the number of infections.  

There are no apparent breaks in the overall course; 
however, erratic fluctuations in infection numbers from 
day to day make it challenging to identify such effects. 

At a first glance, the trend for the same EWI for the US 
looks like that for Germany. As in the case of Germany, 
there is a clear decline over the entire period and thus a 
considerable slowdown in the epidemic. The daily fluctua-
tions for US (see Fig. 3A-B) are considerably smaller than 
in Germany and reveal that the course of events by no 
means follows a simple linear trend. Rather, it shows that 
this trend has weakened considerably over the three 
weeks. Since the indicator is currently still fluctuating 
around the value 0, the further decline is not yet very well 
supported from a statistical perspective. 

 

Figure 2: (A) EWI candidate A for Germany 27.02.2020 – 
14.04.2020. EWI candidate is a measure of whether the 
spread of the epidemic is currently accelerating (>0) or 
slowing down (<0). (B) Daily confirmed cases in Germany 
(Data source: Johns Hopkins University) 

 

Figure 3: (A) EWI candidate A for the US 24.03.2020 – 
14.04.2020. EWI candidate is a measure of whether the 
spread of the epidemic is currently accelerating (>0) or 
slowing down (<0). (B) Daily confirmed cases in the US 
according to worldometers.info 

 

Figure 4: Epidemic projections along with its uncertainty 
according to the top-down model developed on 14.04.2020 
for (A) Germany and (B) the USA. The dotted points show 
actual values for daily confirmed cases. 
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Based on the EWIs, coming out of the feature selection 
process, we modeled the underlying trends driving the 
dynamics of the epidemics. Such a model can be used for 
ongoing prediction and for an early sign for the risk of an-
other outbreak. Preliminary results are as follows (see 
Figure 4). 

The first results confirm that the model used so far is ac-
curate at least for a period of 7 to 10 days (Fig. 4A). For a 
longer time span, each prognosis must make assumptions 
e.g., on the underlying containment measures.  Calculations 
show significant differences in the dynamics of the epi-
demics. In South Korea, the outbreak slowed down within 
two weeks, whereas in European countries, everything 
takes much longer. There is also a risk that in other coun-
tries, containment may fail completely. 

 This prognosis is valid only if the same level of contain-
ment measures is enforced in the whole country (Fig. 4B). 
Note that already small changes in containment measures 
may have a considerable impact on the prognosis, especial-
ly concerning the peak (number of infected cases can easily 
be 2-10 times higher). Here our prognosis can only be used 
to demonstrate what is to be expected if conditions of con-
tainment will not change, i.e., a best-case scenario.  

Despite the limited utility of short-term transient trend 
for the number of newly infected cases and new deaths, we 
see merit in these such numbers for a two-fold reason.  

Firstly, such just-in-time forecasts are the need of the 
hour, on which government agencies and institutions rely. 
It serves as a real-time tracking metric, describing what 
the current status is16. Just as the short-term forecast itself, 
decisions and judgments made from interpreting these 
numbers are equally transient.  

Secondly, from a psychological and sociological perspec-
tive, people in the society need to base their daily outlook 
on data-driven evidence. Such prognosis numbers, if prov-
en to be reliable as per our proposed framework, allow 
communities to be prepared and partake in compliance 
activities. Just as one consumes the weather forecast to be 
well equipped when leaving the house, a short-term prog-
nosis with accuracy as good as the weather forecast aims 
to fulfill the same objective.  

We have implemented these short-term prognoses in an 
online platform corona.quodata.de (see Figure 5).  As of 
April 16, 2020, such prognoses can be accessed for 401 
different districts and cities across Germany and 23 differ-
ent countries on the portal. More national and sub-national 
entities will be added in the coming days. The table com-
prises miniature plots for (a) cumulative cases in the last 
21 days as a line plot and (b) daily new confirmed cases as 
a bar plot. It reports the average doubling time in days for 
the number of confirmed cases based on a 7-day average 
relative growth rate. As per April 16, 2020, the average 
doubling time for Germany was 28 days. But if individual 
districts and counties are assessed, we see doubling times 

being as low as four days and as high as 70 days. These 
differences reflect the following facts (1) the spread of the 
pandemic varies considerably from region to region and 
(2) the decline in new infections is faster in some regions 
than in others.  

The table also reports “short term trend for confirmed 
cases”. This is essentially an interim prognosis obtained 
from the empirical top-down approach, which is the esti-
mated percent change in the absolute daily number of cas-
es for the next one to three days. The corresponding 80% 
uncertainty intervals are provided in the adjacent column. 
Lastly, the expected new cases are reported in the last col-
umn, calculated using the short-term trend. A key to tack-
ling the epidemic growth or avoiding a resurgence is ease 
lockdown measures in cities and counties having low risks 
of a (renewed) outbreak, by monitoring the short-term 
prognosis, where business can resume partially with re-
laxed lockdown measures. And at the other end, keep strict 
guidelines and rules in place for cities and counties dou-
bling their cases at a faster rate. It can be argued that such 
a coordinated shutdown-resume cycle for small geograph-
ical entities can limit the long-term socio-economic dam-
age caused by a nationwide permanent lockdown. 

We believe that the availability of such a web-based tool 
during such a challenging public health crisis not only 
keeps misinformation at bay (stemming out of daily 
change in case numbers) but provides a facile interpreta-
tion of the pace epidemic progression. To the best of our 
knowledge, we have not come across an implementation of 
an automatic short-term epidemic forecast system, which 
utilizes early warning indicators to provide quantitative 
insights into the underlying trend.  

Although the built models have undergone several itera-
tions of critical appraisals, in all likelihood, due to changing 
‘ground situations’ in the coming days, the prediction of 
new cases can be incorrect for some national or sub-
national regions. The reader is advised to use the web-
based portal and epidemic projections herein for guidance 
only, whilst being aware of radical new scenarios which 
may arise, throwing off the model in the current form. 

In summary, the results for EWIs show a remarkable 
correlation between case numbers and real-time change in 
the effective reproduction number. EWI for South Korea 
unequivocally describes the (a) peak of epidemic, days in 
advance, (b) predicts local outbreaks seen in the existence 
of multiple waves, and (c) pronounced effect of quick and 
decisive actions of the government. For Germany, EWI re-
flects a gradual decrease in epidemic potential in the ensu-
ing days. Lastly, for the US, EWI presents a picture of a 
creeping decrease in epidemic potential, with fewer fluctu-
ations compared to Germany.  

Thus, EWIs reveal the course for different countries and 
reflect the effect of actions taken by the regions’ respective 
governments. We see potential in such EWIs, which we 
would like to exploit further. It should be noted that the 
EWI discussed here is one of the many indicators which 
show potential in modeling a realistic epidemic scenario. 
In our additional studies, we will rely heavily on neural 
networks to parse more and more region-specific EWIs.  
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We hope to integrate such an intelligent system in the 
online platform to evaluate data quality, uncertainties as-
sociated with estimated parameters, uncertainties associ-
ated with the model, track changes for a battery of EWIs, 
all in real-time. Such a dynamic, top-down modeling ap-
proach iteratively updates the prior distributions of pa-
rameterizations and initializations and tunes the prognosis 
and its uncertainty. Altogether, all efforts focused to better 
equip individuals and institutions, to make informed deci-
sions and get insights into installed control policies. 

Additional content can be found on 
https://corona.quodata.de  
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Figure 5: Screenshot for web-based portal on corona.quodata.de, with the short-term prognosis implemented for different 
cities and districts for Germany. 
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