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Abstract

The ongoing COVID-19 epidemics poses a particular challenge to low and middle
income countries, making some of them consider the strategy of “vertical confinement”.
In this strategy, contact is reduced only to specific groups (like age groups) that are at
increased risk of severe disease following SARS-CoV-2 infection. We aim to assess the
feasibility of this scenario as an exit strategy for the current lockdown in terms of its
ability to keep the number of cases under the health care system capacity. We
developed a modified SEIR model, including confinement, asymptomatic transmission,
quarantine and hospitalization. The population is subdivided into 9 age groups,
resulting in a system of 72 coupled nonlinear differential equations. The rate of
transmission is dynamic and derived from the observed delayed fatality rate; the
parameters of the epidemics are derived with a Markov chain Monte Carlo algorithm.
We used Brazil as an example of middle income country, but the results are easily
generalizable to other countries considering a similar strategy. We find that starting
from 60% horizontal confinement, an exit strategy on May 1st of confinement of
individuals older than 60 years old and full release of the younger population results in
400 000 hospitalizations, 50 000 ICU cases, and 120 000 deaths in the 50-60 years old age
group alone. The health care system avoids collapse if the 50-60 years old are also
confined, but our model assumes an idealized lockdown where the confined are perfectly
insulated from contamination, so our numbers are a conservative lower bound. Our
results discourage confinement by age as an exit strategy.
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Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has been
ongoing for 5 months now [1]. Since it was first reported in Dec 2019 in China [2], the
virus rapidly made its way to other parts of the world taking pandemic proportions[3].
The number of cases and deaths exponentially increased reaching a total of 1.5 million
confirmed cases and 88 thousand deaths in early April 2020. Recent disease outbreaks
that spilled over from animals such as Ebola [4, 5] or avian influenza [6] have been
described as specific to developing countries. COVID-19 has been breaking this myth as
the virus has been particularly exceptional at breaching in inside developed countries
and challenging their health system. In Europe, Italy has been particularly affected.
With 140 thousand cases, the Italian national health system has been struggling to
effectively respond to the exponentially increasing flow of patients in need of intensive
care [7]. The United States recently surpassed China in total number of cases (420
thousand), becoming a particular hot bed in this phase of the pandemics [8]. By the
time this article is published, there will likely not be a place on Earth where the virus
did not cause any damage. West African countries such as Sierra Leone just reported
their first cases [9] and catastrophic scenario similar to the 2016 Ebola outbreak is
possible.

The threat of COVID-19 on countries that started to count cases prompted us to
develop a model to describe the evolution of the epidemic and its effects on the health
care system. Mathematical models are a powerful tool that proved important in
previous epidemiological disasters such as the Ebola virus [10, 11], smallpox [12], or
influenza [13], contributing to the understanding of the dynamics of disease and
providing useful predictions about the potential transmission of a disease and the
effectiveness of possible control measures, which can provide valuable information for
public health policy makers [14]. SIR-type models, also known as Kermack-McKendrick
model [15], consists of a set of differential equations and has been applied to a variety of
infectious diseases. Although containing simplifying assumptions, SIR models have been
of great help on stopping epidemics in the past by e.g. informing effective vaccination
protocols [16].

Here we develop a SIR type compartmental model for COVID-19 including both
symptomatic and asymptomatic, quarantined, and hospitalized while taking into
consideration differences by age groups. We also analysed the effect of confinement
during a specific period of time. Contrary to similar epidemiological models, the
proposed SIR model is initiated by the first confirmed COVID-19 death. Numerical
simulations of the deterministic models are compared with real numbers of the ongoing
outbreak in different countries. Moreover, the deterministic framework in which we
operate greatly simplifies model analysis and allows a more thorough comparison of the
various intervention strategies.

In this work we focus on the case of Brazil, where the pandemics counts 16 000
confirmed cases and 800 fatalities at the time of writing. The country has 35 682 ICU
beds according to government data of Feb 2020 [17]. The first official SARS-CoV-2 case
in Brazil was confirmed in São Paulo on February 26th and the first official COVID-19
death was reported on March 19th. Shortly after, a lockdown was enacted first in Rio
de Janeiro on March 22nd, then on other regional urban centers. There is no reliable
measument of the percentage of the population that is currently in confinement;
however, the number is estimated to be around 56% according to satellite data 1.

Given the socio-economic consequences of a lockdown, particularly on a middle
income country, decision-makers are considering a vertical confinement as an exit
strategy to the regular lockdown. Vertical confinement is understood as reducing

1https://bit.ly/2URlQcK
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Fig 1. Schematic flow chart between compartments.

contact to a specific age group that is more at risk of contracting and developing
SARS-CoV-2 [18], as opposed to horizontal (or general) confinement that does not
discriminate between age groups. In the next section we will present the model, followed
by validation. We then apply the model to the specific SARS-CoV-2 scenario in Brazil.
Finally, we test the effect of both general and vertical confinement on the epidemic
curve.

The model

We used a modified version of a SIR-type deterministic compartmental model to trace
COVID-19 epidemic evolution in an isolated population of N individuals2. We assumed
that a population could be subdivided into the following compartments:

• Susceptible (S): COVID-19 naive individuals,

• Confined (C): subset of susceptibles removed from the epidemics (by e.g. social
distancing).

• Exposed (E): Susceptible that have been exposed to infective individuals,

• Asymptomatic (A): Infected and infective but showing mild or no symptoms

• Symptomatic (I): Infected and infective but showing symptoms described in the
literature,

• Quarantined (Q): Symptomatic that are not infective,

• Hospitalized (H) Symptomatic, not infective, who are being treated,

• Removed (R) People removed from the epidemic dynamics by recovering or
passing away.

We split the population in subcategories by age (range, 0-10, 10-20, 20-30, 30-40,
40-50, 50-60, 60-70, 70-80, and 80+ years old) and we consider that some flow rates
between compartments should vary with age [18].

2The software is written in python 3.7, and is made public at https://github.com/wlyra/covid19
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Taking into consideration the 8 compartments and the 9 age groups, the model is
described by a set of 72 coupled non-linear equations:

dSi
dt

= −λ(t)Si − ψi(t)Si + φi(t)Ci, (1)

dCi
dt

= ψi(t)Si − φi(t)Ci, (2)

dEi
dt

= λ(t)Si − σEi, (3)

dAi
dt

= (1− p)σEi − θAi, (4)

dIi
dt

= pσEi − (γ + ξ)Ii + (1− w)θA, (5)

dQi
dt

= γIi − ξQi, (6)

dHi

dt
= qiξIi − ηHi, (7)

dRi
dt

= wθAi + (1− qi)ξIi + ηHi. (8)

For each compartment X the age sub-bins add up to X =
∑
iXi and compartments

are such that S + C + E +A+ I +Q+H +R = N , with N =
∑
iNi being the total

population; Ni is the population in each age bin.
Eqs. (1)–(8) describe a compartmentalization of the population and the flow between

the compartments. Contact with infected individuals removes a fraction of the
susceptible (S) population at a rate given by λ, referred to as infection force, making
them exposed (E) to SARS-CoV-2 . The exposed (E) become infectious at the rate σ; a
fraction p of them becoming symptomatic (I) and a fraction (1− p) becoming
asymptomatic (A). The symptomatic (I) are removed from the infective force and
become quarantined (Q) at a rate γ. The asymptomatic (A) are removed at a rate θ, a
fraction w of them going in remission and a fraction (1− w) becoming symptomatic. A
fraction qi of the quarantined (Q) are hospitalized at a rate ξ. The hospitalized (H) are
removed at a rate η. The average fatality rate is µi.

The timescales corresponding to σ, γ, θ, ξ, and η are the incubation time tσ = σ−1

the infectious interval tγ = γ−1, the remission time tθ = θ−1, the time to hospitalization
tξ = ξ−1, and the average length of hospital stay tη = η−1.

The infection force is driven by the infected, both symptomatic (I) and
asymptomatic (A)

λ(t) = β(t)I, (9)

where we use the shorthand notation

I =
∑
i

(Ii +Ai)

Ni
, (10)

and β is the infection rate, related to the reproduction number R(t) via

R(t) =
β(t)

γ
. (11)

Lock-down consists of having a fraction of the susceptible population removed from
the epidemic dynamic by moving them from Si to Ci at a rate ψi. Similarly, lifting the
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lock-down is done by placing Ci into Si at the rate φi. We consider these functions to
be Dirac deltas

ψi = ai δ(t− tlock) (12)

φi = bi δ(t− tlift) (13)

where tlock and tlift are the time (in days) of lock-down and of lifting of the lock-down,
respectively. To allow for partial demographic lock-downs, ai and bi are allowed to vary
by age (e.g., 80% of the 40’s age group population are confined). The flow chart
between compartments is shown in Fig. 1.

Other diagnostic quantities are the numbers Ui of people in need of an intensive care
unit (ICU) bed

Ui = ζiHi (14)

where ζi is the fraction of hospitalized patients that need critical care. Both ζi and the
hospitalization fraction qi are age-stratified.

For integration, we use a standard Runge-Kutta algorithm, with timesteps

∆t =
1

2
[max (β, γ, θ, σ, ξ, η)]

−1
(15)

Model validation

In this section we present details on how we validated the model and how to determine
the characteristic timescales and other parameters.

Model fit to the 2020 COVID-19 epidemic

We consider the susceptible population (S) as the total population of a country since at
the onset of outbreak no one is immune to the virus yet. Model parameters, shown in
Table 1, were based on previous knowledge of Coronaviruses, as well as early reports
and research on COVID-19 [19]. The age-dependent parameters (fatality rate µi,
fraction of infectious that are hospitalized qi, and fraction of hospitalized that need
critical care ζi) are shown in Table 2.

Table 1. Priors of timescales and ratios for the MCMC modeling.

Parameter Symbol Value

Incubation time σ−1 5.2 days
Infectious interval γ−1 2.9 days
Symptomatic fraction p 0.6
Remission time θ−1 14 days
Remission fraction of asymptomatic w 0.8
Time to hospitalization ξ−1 5 days
Time at hospital η−1 10 days

Table notes: Values taken from [18].

Because all these timescales are much smaller than a human lifetime, aging of the
population is ignored and no upward flow between the age sub-compartments
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Fig 2. Fatality rate as a function of median age. The fatality rate by age bins is taken
from [18] and the population pyramids from UN data.
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(i→ i+ 1) is considered. Population pyramids are taken from UN data 3, and split into
the pre-defined age bins.

We derive R(t) from the available statistics since knowledge of the real number of
infected is not clear. The most reliable indicator in this situation is the number of
deaths. Given a fatality rate µ and an average time τ between exposure and death, the
number of dead at a time t+ τ will equal the fatality rate times the number of people
that got exposed at time t. Assuming that confinement dynamics do not play a role
(although it is trivial to include it), the equation is the following:

∆Di(t+ τ) = −µi∆Si(t). (16)

Taking the continuous limit and substituting Eq. (1)

d

dt
Di(tr) = µiλ(t)Si (17)

where we also write tr = t+ τ for the retarded time. Summing over all age bins
D =

∑
iDi we have the cumulative death rate on the LHS, which is an observable

d

dt
D(tr) = λ(t)〈µS〉 (18)

and 〈µS〉 =
∑
i µiSi. We can then substitute Eq. (9) and solve for R(t) as a function of

time

R(t) =
1

γI〈µS〉
d

dt
D(tr). (19)

Since death occurs an average of τ days after infection, we start the integration τ
days before the first reported COVID-19 death, i.e., t = 0 means tr = τ . The initial
conditions are fully specified when the initial number of exposed individuals is defined.
This should be

E0(t0) = µ−1D0(t0 + τ) (20)

where t0 is the time of the first death and µ = N−1
∑
i µini is the age-weighted fatality

rate. According to current knowledge of the epidemics, τ ≈ 14 days [18].
We compared our model predictions with official data on cases and deaths for

multiple countries, as tracked by the Center for Systems Science and Engineering
(CSSE) at Johns Hopkins University 4. We plot in the left panel of Fig. 3 the fatality
rate for a number of countries, which corresponds to the left hand side of Eq. (18). We
apply Eq. (19) to convert this data into R(t), feeding this value into Eq. (1)-Eq. (8) to
start the SEIR evolution. The populations I(t) and S(t) that enter in Eq. (19) are then
calculated to update R(t). The resulting values are plotted in the right-hand-side of
Fig. 3.

The timescales σ, γ, θ, and ξ, as well as the fractions p and w, are found by Markov
chain Monte Carlo (MCMC) fitting, with the priors given in Table 1 and explained in
the Supporting Information (Markov Chain Monte Carlo).

Finally, we compare the cumulative number of hospitalizations calculated from our
model with the number of confirmed COVID-19 cases. For a country that is not doing
massive testing and only reporting COVID-19 as acute cases reach the hospital, these
curves should match reasonably well.

3https://www.populationpyramid.net
4https://systems.jhu.edu/research/public-health/ncov/
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a

b

c

Fig 4. a) Evolution of the compartments of exposed (E), asymptomatic (A),
symptomatic (I) and hospitalized (H). b) The same curve of H, and the fraction of
hospitalizations needing ICU (U). The green dashed curve shows the total number of
ICU beds in the country. At the current rate, the epidemics should peak in mid-May
and collapse of the health care system should happen around May 1st. c) Cumulative
number of reported cases and fatalities as orange and black dots, respectively. The
number of hospitalizations closely matches the number of confirmed cases.
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Table 2. Age-dependent parameters.

Age bins µi (×100) qi (×100) ζi (×100)
0-10 0.002 0.1 5

10-20 0.006 0.3 5
20-30 0.03 1.2 5
30-40 0.08 3.2 5
40-50 0.15 4.9 6.3
50-60 0.60 10.2 12.2
60-70 2.2 16.6 27.4
70-80 5.1 24.3 43.2

80+ 9.3 27.3 70.9

Table notes: Values taken from [18].

a b c

Fig 6. a) Number of hospitalizations. b) ICU cases. c) Fatalities. The three curves are shown as function of the degree of
horizontal confinement. To not overwhelm the health care system capacity (≈ 3× 104) ICU beds, the level of social distancing
should be over 70%. Brazil is managing 56%.

Results and Discussion

Brazil epidemic scenario

Fig. 4 represents the modeled epidemic scenario in Brazil up to mid-June. Parameters
determined by the MCMC modeling are shown in Fig. 5, being p = 0.62+0.11

−0.13,
w = 0.670.11−0.14, Tinc = 5.421.951.85, Tinf = 4.692.742.32, Tremission = 13.874.19−5.66, and
Thosp = 8.262.68−3.02. R(t) at present is hovering around 2.

Fig. 4a shows the evolution of the compartments of exposed (E), asymptomatic (A),
symptomatic (I), and hospitalized (H), in linear scale. Fig. 4b shows the same curve of
H but also the fraction of hospitalizations needing ICU (U), in log scale. The epidemic
is starting at March 1st and the number of symptomatic is predicted to end at July 1st.
The peak of symptomatics is predicted for May 17th with 20 million symptomatics.
Consequently, there is a predicted rise in the number of hospitalized, reaching
saturation on May 3rd and peaking on May 22nd with 106 hospitalized. ICU beds will
reach saturation on May 3rd, when the ≈ 35 thousand ICU beds in Brazil are occupied
(since the estimate assumes that all ICU beds should be occupied with coronavirus
patients, which is not realistic, the collapse should in fact happen sooner). Demand for
ICU will get higher until reaching a peak on May 22nd with 300 000 patients. The
cumulative number of deaths on June 1st is 106.

Fig. 4 contrasts the predicted cumulative numbers of infected persons (orange line),
hospitalized persons (blue line), and deaths (black line). The figure also shows the
cumulative number of confirmed cases (yellow dots) and actual deaths (black dots). The
cumulative number of hospitalized is very close to the actual confirmed cases. This is
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Fig 7. Upper: Number of hospitalizations in horizontal confinement with different proportions of the population, broken
down by age. 2nd row: 60% of the population under 40 is confined, the population older than 40 is confined to a higher
degree, at 90% (solid blue line) and 99% (dashed blue line). The 3rd, 4th, and 5th rows of plots show the same analysis but
confining 60% of the population up to 50, 60, and 70 years old, respectively.

expected as Brazil is not doing testing on a massive scale.

Horizontal Lockdown

In Fig. 6 we check the effect of horizontal confinement, defined as equal percentage of
the population confined at any age bin. There is a change in the epidemic dynamic
when horizontal confinement is applied in different rates. The plots show (a) the
number of hospitalizations, (b) the number of ICU cases, and (c) the number of
fatalities, as a function of the degree of social distancing. Confinement was implemented
at time t = 0 corresponding to March 22 when the first measurement of social
distancing was implemented. To not overwhelm the health care system capacity
(≈ 4× 104) ICU beds, the level of social distancing should be over 70%. As mentioned
in the introduction, estimates are that Brazil is maintaining 56% (with state-by-state
variation from a maximum of 64.7% to a minimum of 53.7%). At this low level of
distancing, capacity should be reached in less than 50 days, which is in agreement with
the dynamical R(t) model in Fig. 4.

Vertical Lockdown

We vary now the degree of confinement by age bin, characterizing the vertical
confinement. Fig. 7 shows the number of hospitalizations in a model where confinement
was implemented, broken down by age bins. The upper plots show horizontal
confinement with different proportions of the population (same as Fig. 6 but broken
down by age and in logarithmic scale). Confinement was implemented at the same time
as in Fig. 6. The other rows explore vertical confinement. In the second column 60% of
the population under 40 is confined, but the population older than 40 is confined to a
higher degree, at 90% (solid blue line) and 99% (dashed blue line). The cyan line marks
the same model as the upper plots, where 60% of the population is confined,
irrespective of age. The 3rd, 4th, and 5th rows of plots show the same analysis but

April 15, 2020 11/17

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.09.20060053doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.09.20060053
http://creativecommons.org/licenses/by-nc-nd/4.0/


100

103

U

Horizontal
Confinement

0-10 yrs
0%
20%
40%
60%
80%

10-20 yrs 20-30 yrs 30-40 yrs 40-50 yrs 50-60 yrs 60-70 yrs 70-80 yrs 80+ yrs

5000
10000
15000

U

60%
90% >40 yrs
99% >40 yrs

5000
10000
15000

U

Ve
rti

ca
l C

on
fin

em
en

t

60%
90% >50 yrs
99% >50 yrs

5000
10000
15000

U

60%
90% >60 yrs
99% >60 yrs

0 200 400
days

5000
10000
15000

U

60%
90% >70 yrs
99% >70 yrs

0 200 400
days

0 200 400
days

0 200 400
days

0 200 400
days

0 200 400
days

0 200 400
days

0 200 400
days

0 200 400
days

Fig 8. Middle: Same as Fig. 7, but for fraction of hospitalized that need ICU.
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Fig 10. Vertical confinement as exit strategy after a horizontal lockdown of 60% was held, from March 22nd to May 1st.
Upper plots: S and C compartments, normalized by the number of individuals in the respective age bin. 2nd row: number of
hospitalizations, 3rd row: number of ICU cases, lower plots: cumulative number of fatalities. The figure shows full release for
the population under 50 (dashed line) and under 60 (solid line). The population past this age is kept at 90% confinement.

confining 60% of the population up 50, 60, and 70 years old, respectively. As seen in the
cyan line, the number of hospitalized rises from 30 to 60 years old and falls for 70 years
old onwards. That is because even though 70+ are more likely to be hospitalized, the
number of 30-60 is much higher in the population.

Fig. 8 shows the same results for the fraction of hospitalized that needs ICU. Fig. 9
shows results from the same suite of models but for the number of fatalities. For the
number of ICU cases, there is no significant difference past age 60, with only a minor
uptick at the 70-80 age range. Collapse of the health care system can be avoided if
vertical confinement is instored on people who are 60 or older, but at the expense of a
significant number of extra ICU cases for the 50-60 age bin. At 60% confinement,
hundreds of thousands of deaths are seen in the 60-70, 70-80, and 80+ age bins. The
number drops to 50 000 in the 90% confinement. As noted before, vertical confinement
for 60 years old and older leads to a significant number of deaths for the 50-60 age bin
(over 50 000). Vertical confinement at 50 years old leads to a much lower death rate for
this age segment.

Finally, we look at vertical confinement as an exit strategy. In Fig. 10 we model a
release from lockdown on May 1st, according to two scenarios: full release for the
population under 50 (dashed line) and full release for the population under 60 (solid
line). The population past this age is kept at 90% confinement. The upper plots show
the susceptible (S) and confined compartments (C), normalized by the number of
individuals in the respective age bin. The second row from top to bottom shows the
number of hospitalizations, the third row the number of ICU cases, and the last row the
cumulative number of fatalities. As the population is released from the general
confinement, the number of H/U/D peaks at 400 000/50 000/120 000 in the 50-60 age
bin alone, that bears the lion’s share of morbidity. Keeping the 50-60 age population in
90% confinement lowers the statistics significantly, with the health care system at
capacity, and the number of deaths per age bin about 25 000, with 60+ years olds
having the same fatalities as the 40-50 age group.

Limitations

As in any setting, the outbreak response strategy plays a crucial role on the quality of
the outputs the models can give. Since the identification of the first case, the response
strategy in Brazil has been changing over time. At first, only international travelers
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admitted to hospitals had access to SARS-CoV-2 testing. Now there are diagnostic
clinics and universities involved in COVID-19 testing, but there is no national massive
testing strategy in place. Besides, each Brazilian state has the authority to put in place
their own strategy to address the epidemic. The states of São Paulo and Rio de Janeiro,
containing the largest metropoles in the country, adopted larger strategies of isolation
with schools and stores closed early on while similar strategies had not yet been adopted
in other states. Bottom line, the resulting morbidity and mortality rates can change
significantly, resulting in dramatically different output numbers as the number of
infected people or the number of hospital beds needed. It is necessary to have massive
testing strategy in place to have better prediction accuracy of the models.

Our model estimate hundreds of thousands of infected people in Brazil on April 1st.
This is more than the number of expected cases in the country while we write this
article, considering the estimated sub-notification of cases [20] and inaction on
controlling the infection. It is possible that the actual number is lower, although it is
also important to notice that Brazil has not done a real lockdown so far.

The model also ignores mobility, in the sense that it does not consider travel to and
from the country. Given that right now we are at the stage of community transmission,
this limitation should not be of significance to the results.

Conversely, and more importantly, the model assumes that the confined population
is completely safe from infection, whereas in reality a vertical lockdown may not be
feasible to implement as the elderly are not adequately distanced from the younger in
their family and/or social circle, and infection cannot be avoided if the younger are
exposed to COVID-19 .

Finally, the analysis assumes that the data on fatalities is accurate. Underreported
deaths should lead to an unknown source of error in the present study. Also, the
MCMC produces error bars in the parameters that we did not take into account in the
forward modeling.

Conclusion

In this study we examine the strategy of vertical confinement as currently debated in
Brazil. Since the fatality rate of COVID-19 appears to be higher among the elderly
population, we studied how confinement by age groups (particularly 60 years old and
beyond) affects the demand for hospital beds and intensive care beds.

Our model suggests that at the current rate of advance of the pandemics, Brazil
should face collapse of the health care system by May 15th, with 300 000 ICU beds
needed (10 times more than the current capacity), and 106 fatalities. A decrease in the
rate of confirmed cases is seen with respect to the rate of fatalities, which is indicative
of the effect of the lockdown. A 60% lockdown reduces the number of deaths to 400 000
due to COVID-19, still not avoiding overload of the health care system. An increase in
lockdown to 70% is needed to avoid the number of cases from overcoming the number of
available critical care beds.

An exit strategy of confinement of individuals older than 60 years old by May 1st
would see a second wave disproportionally affect the 50-60 age bin. The ICU cases in
this age range alone would bring the health care system to collapse and result in over
100 000 deaths. Confinement by age group should consider the population over 50 years
old as well. However, the age range 50-60 is also a part of the workforce, and thus
defeats the purpose of a confinement by age. Moreover, we emphasize that our model
assumes an idealized lockdown where the confined are perfectly insulated from
contamination, while in reality there would be several practical barriers to it as the
confined elderly would depend on the young for most essential activities, and a perfect
lockdown would not be achieved in a multi-generational household, especially in close

April 15, 2020 14/17

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.09.20060053doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.09.20060053
http://creativecommons.org/licenses/by-nc-nd/4.0/


quarters such as those found in the low and even middle income neighborhoods common
in Brazil. Our results therefore discourage confinement by age as the only exit strategy.
We urge Brazilian authorities to take action to prevent virus dissemination in the
critical coming weeks.

Supporting information

Markov Chain Monte Carlo. To fit the best value to w and p, and to better
constrain σ−1, γ−1, θ−1, ξ−1, we use the affine-invariant ensemble sampler for Markov
chain Monte Carlo (MCMC) [21] to sample the parameter space around the solutions
and evaluation of the parameter uncertainties. For the priors input, we use the values
taken from [18]. To search for the minimization of cumulative hospitalization Hc, we
generated a cumulative error Cerr on the reported confirmed cases Cc.

As the JHU-CSSE reports on the confirmed cases are given daily with some
fluctuations, we need to take this into account while weighing all solutions by adding a
1-day error matrix together with the confirmed cases (being conservative). In an ideal
scenario, the cumulative number of hospitalization would be the same as the number of
confirmed cases. In real life, not all confirmed cases are hospitalized so we do not expect
to fit the Hc with Cc. Rather, we weigh the Cc array with the Hc array using:

wt =

∑
Cc −Hc

n
(21)

H ′c = Hc + wt (22)

H ′c is the weighed cumulative hospitalizations and n is the length of the data.
Following we get the residual between Cc and H ′c, and we used the negative binomial
distribution to calculate each likelihood [22]:

Res = Cc −H ′c (23)

Z =

∑
Res
C2

err∑
1

C2
err

(24)

P =
∑ (Res− Z)2

C2
err

(25)

P ′ = −0.5P (26)

Equations 21 to 26 are implemented in the likelihood function on the code. If in each
run it returns a finite number, the algorithm parses the result, if not it returns a large
number (1020) to discard as a bad fit.

We limit each parameter using a range cutoff in when feeding the probability
function to restrict parameter space. That way, we do not run models with unrealistic
physical parameters (e.g. symptomatic going to the hospital in −2 days), and also
constrain the known range for the other parameters. The MCMC function feeds on 6
free parameters, 4 fixed parameters and 2 predetermined arrays as presented in Table 3.
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