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Abstract (250 words) 

Background: Copy Number Variants (CNVs) associated with autism and schizophrenia 

have large effects on brain anatomy. Yet, neuroimaging studies have been conducted one 

mutation at a time. We hypothesize that neuropsychiatric CNVs may exert general effects 

on brain morphometry because they confer risk for overlapping psychiatric conditions.  

Methods: We analyzed T1-weighted MRIs and characterized shared patterns on brain 

anatomy across 8 neuropsychiatric CNVs. Clinically ascertained samples included 1q21.1 

(n=48), 16p11.2 (n=156), or 22q11.2 (n=96) and 331 non-carriers. Non-clinically 

ascertained samples from the UK Biobank included 1q21.1 (n=19), 16p11.2 (n=8), 

22q11.2 (n=9), 15q11.2 (n=148) and 965 non-carriers. Canonical correlation analysis 

(CCA) and univariate models were used to interrogate brain morphometry changes across 

8 CNVs.  

Results: Eight CNVs affect regional brain volumes along two main gene-morphometry 

dimensions identified by CCA. While fronto-temporal regions contributed to dimension 

1, dimension 2 was driven by subcortical, parietal and occipital regions. Consistently, 

voxel-wise whole-brain analyses identified the same regions involved in patterns of 

alteration present across the 4 deletions and duplications. These neuroanatomical patterns 

are similar to those observed in cross-psychiatric disorder meta-analyses. Deletions and 

duplications at all 4 loci show mirror effects at either the global and/or the regional level.  

Conclusion: Neuropsychiatric CNVs share neuroanatomical signatures characterized by a 

parsimonious set of brain dimensions. The latter may underlie the risk conferred by 

CNVs for a similar spectrum of neuropsychiatric conditions. 
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Introduction 

Genomic copy number variants (CNVs) are deletions or duplications of DNA segments 

of more than 1000 base pairs. Rare CNVs with large effects have been associated with a 

range of neurodevelopmental and psychiatric conditions. Sixteen recurrent CNVs have 

been associated with autism spectrum disorder (ASD) 1 and eight with schizophrenia (SZ) 

2. Among those, CNVs at the 22q11.2 (BPA-D), 16p11.2 (BP4-5), 1q21.1 (Class I & II) 

and 15q11.2 (BP1-2) genomic loci are the most frequently identified risk-factors for 

neuropsychiatric disorders identified in the clinic 3,4. They affect the dosage of 60, 29, 12 

and 4 genes, respectively 5–7. The largest increases in risk for SZ have been documented 

for the 22q11.2 deletion (30 to 40-fold) followed by the 16p11.2 duplication (10-fold), 

the 1q21.1 deletion and the 15q11.2 deletion (1.5-fold) 2. ASD risk is highest for 16p11.2 

deletions and duplications (10-fold) followed by 1q21.1 duplications and 22q11.2 

duplications (3 to 4-fold) 1,2,8–11. These variants are therefore opportunities to investigate 

the brain phenotypes associated with high-risk for mental illness. 

Neuroimaging studies have only been performed for a few CNVs. They have shown 

robust effects on total and regional brain volumes e.g. 22q11.2 10,12, 16p11.2 BP4-5 13–15, 

and 15q11.2 16–19. Deletions and duplications at the 16p11.2, and to a lesser extent 

22q11.2, loci affect global and regional brain volumes in opposite directions. This is also 

observed for cortical thickness (CT) and white matter (DTI) in deletions and duplications 

of the 15q11.2 BP1-BP2 locus 17,19. Moreover, neuroanatomical alterations associated 

with 16p11.2 and 22q11.2 show overlap with those observed in idiopathic ASD and SZ 

10,13–15,17.   
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However, CNV studies have been conducted one mutation at a time, which hinders our 

understanding of any potential general mechanism linking CNVs to effects on brain 

architecture. Indeed, several lines of evidence suggest shared mechanism across CNVs: 

1) Neuropsychiatric CNVs have been associated with a similar range of adverse effects 

on childhood neurodevelopment with only subtle quantitative and qualitative differences 

20, 2) CNVs affecting coding genes decrease IQ and increase risk for ASD across a large 

proportion of the genome 21,22, 3) Schizophrenia is associated with an increase in overall 

CNV burden 2. 

The large number of genes encompassed in CNVs has also limited the study of 

mechanisms associating CNVs to brain morphometry. Studies of the 16p11.2 locus have 

suggested that TAOK2 and KCTD13 within the 16p11.2 locus are implicated in 

embryonic neurogenesis and are candidate genes for differences in total brain volume in 

animal models 6,23. Similarly, DGCR8 and TBX1 within the 22q11.2 locus were found to 

be involved in neurogenesis 24,25. The effects of these genes on regional volumes have not 

yet been studied in humans or animal models. 

The body of literature on CNVs raises several questions: What is the relationship 

between global and regional alterations associated with CNVs?  Does gene dosage at 

distinct genomic loci converge on a common set of brain alterations, or do genes lead to 

specific effects? More broadly, the field is lacking a conceptual framework to identify 

general principles linking CNVs to effects on brain architecture and risk for psychiatric 

conditions.  

In this study, we aimed to characterize shared and specific neuroanatomical variations 

across multiple CNVs by capitalizing on multivariate and univariate methods.  
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We analyzed T1 weighted MRIs of the largest multi-site dataset of CNV carriers (n=484, 

of which 87 have not yet been published) and controls (n=1296). Voxel and surface-

based methods were performed in parallel. First, a multi-view pattern-learning algorithm 

(Canonical Correlation Analysis, CCA) was used to identify latent brain morphometry 

dimensions explaining the effects of CNVs across genomic loci. Second, we investigated 

brain alterations shared across deletions and duplications using univariate linear models. 

Methods 

Clinically ascertained CNV carriers: Individuals carrying 1q21.1 (Class I & II), 22q11.2 

(BPA-D) or 16p11.2 (BP4-5) CNVs, were assessed as either probands referred for 

genetic testing, or as relatives. Controls were either non-carriers within the same families 

or individuals from the general population. We pooled data from 5 cohorts: Cardiff 

University (UK), 16p11.2 European Consortium (Lausanne, Switzerland), University of 

Montreal (Canada), UCLA (Los Angeles, USA) and the Variation in individuals Project 

(SVIP, USA) detailed in the supplementary files. 

CNVs assessed in non-clinical populations: Genetic and neuroimaging data from non-

clinical population were obtained from the UK Biobank dataset. PennCNV and 

QuantiSNP were used, using standard quality control metrics, to identify CNVs 21,22. 

Deletions and duplications with neuroimaging data included in the study were selected on 

the following breakpoints: 16p11.2 (BP4-5, 29.6-30.2MB), 1q21.1 (Class I, 146.4-

147.5MB & II, 145.3-147.5MB), 22q11.2 (BPA-D, 18.8-21.7MB) and 15q11.2 (BP1-2, 

22.8-23.0MB), together with control individuals not carrying any CNVs at these loci 
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(Table 1 and eTable 1). Signed consents were obtained from all participants or legal 

representatives prior to the investigation. 

MRI data: Data sample included T1-weighted (T1w) images at 0.8 - 1 mm isotropic 

resolution across all sites. The data distribution overview, as well as the population 

description is available in Table 1 and eTable 1. MRI protocol information is available in 

supplementary information. 

Data quality check: All data used in the analysis were quality checked by the same 

researcher (CM). A total of 107 structural brain scans were excluded from further 

analysis based on standardized visual inspection that identified significant artefacts 

compromising the accurate tissue classification and boundary detection (details in 

supplementary materials and methods). 

MRI data processing, Voxel-Based Morphometry: Data were preprocessed and analysed 

with SPM12 (http://www. fil.ion.ucl.ac.uk/spm/software/spm12/) running under 

MATLAB R2018b 

(https://www.mathworks.com/products/new_products/release2018b.html). Preprocessing 

steps are described in detail in supplementary eMethod 1.  

MRI data processing, Surface-Based Morphometry: Brain scans were processed using 

FreeSurfer 5.3.0 (http://surfer.nmr.mgh.harvard.edu 29). Quality control involved visual 

inspection of each cortical surface reconstruction output (KK) and the standardized 

ENIGMA quality control procedures (http://enigma.ini.usc.edu/protocols/imaging-

protocols/). Detailed procedure is provided in supplementary eMethod 2. 

Statistical analysis for global brain measures - Total Intracranial Volume (TIV), total 

Gray Matter volume (GM), total Surface Area (SA) and mean Cortical Thickness (CT): 
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Global brain aggregate measures were adjusted for age, age2, and sex as fixed effects and 

scanning site as a random factor. Global measure z-scores for each CNV for clinically 

and non-clinically ascertained CNVs were calculated using 331 and 965 controls, 

respectively. Within the two cohort ascertainments, we used ANOVA design to compare 

group means and p-value correction for multiple comparisons was performed with the 

Tukey Honest Significant Differences test. Wilcoxon Rank Sum and Signed Rank Tests 

were used to compare distributions between deletions and duplications of each CNV. All 

statistical analyses were performed in R, version 3.4.4 (https://www.r-project.org/) or in 

MatlabR2018b. 

Multi-view pattern-learning analysis:  We re-purposed canonical correlation analysis 

(CCA) to interrogate the shared and distinct impact on brain morphometry (130 grey 

matter regions) across CNVs 31,32. This principled multivariate approach allowed 

investigating the underlying relationship between two sets of variables, and has been 

widely used in neuroimaging studies 31,32.  In our study, CCA identified modes of 

coherent co-variation that jointly characterize how CNVs and patterns of regional 

volumes systematically co-occur across subjects. We refer to these modes of co-variation 

as ‘CCA dimensions’ or ‘gene-morphology dimensions’. Details are provided in 

supplementary eMethod 3. 

Voxel-based measures and statistical analyses: To complement and illustrate the CCA 

analysis, we performed a whole-brain voxel-based approach. Analyses tested voxel-wise 

differences in volume using a mass-univariate analysis framework implemented in SPM. 

Details are available in supplementary eMethod 4. Cohen’s d (i.e. effect-size) 35 maps 

were obtained by converting SPM T-maps using the CAT12 toolbox for SPM 

(http://www.neuro.uni-jena.de/cat/).  
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Surface-based measures and statistical analyses:  In parallel to VBM, we used surface-

based GLM-based analysis to test differences in CT and SA (SurfStat toolbox 36). Each 

GLM used the surface feature as the dependent variable, the groups - as independent 

variable, which were adjusted for age, age2, sex, site, and Total-SA/Mean-CT. Post-hoc 

contrasts compared each CNV group against controls, including estimation of Cohen’s d 

effect size estimates from t-values 35. False Discovery Rate (FDR), with p-value at 0.05 

12–15 was applied to control for false positive errors due to multiple comparisons.  

Ranked Cohen’s d maps compared across CNVs: To adjust for the unequal power to 

detect change across different CNV groups in the univariate analyses, which have 

different sample and effect sizes, we ranked Cohen’s d distributions of all voxels 

(/vertices) from the estimated un-thresholded statistical maps. We then tested for spatial 

overlap between maps across CNVs after thresholding the tails of the distribution at:  i) 

5th & 95th quantiles, and ii) 15th & 85th quantiles. The dice-index was calculated using 

publicly available Matlab scripts and functions 

(https://github.com/rordenlab/spmScripts). 

Comparison across VBM, SA, and CT: To compare spatial pattern of  voxel- and surface- 

based results, we projected VBM results on fsaverage, using Freesurfer’s vol2surf 

function.   

Null hypotheses using spin permutations and label shuffling: We used spin permutation 

and label shuffling to calculate empirical p-values for 1) the deletion and duplication 

convergence pattern and 2) the correlation/dice-index between two maps. 

Spin permutation testing: The spin permutation test provides a null hypothesis 

quantifying the probability of observing by chance a dice index or correlation value, 
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while controlling for spatial auto-correlations inherent in neuroimaging data. This method 

has been established previously in 37,38, and detailed in supplementary eMethod 5. 

Label shuffling: We additionally tested the overlap significance by performing 

permutation of control and CNV labels, generating empirical null distributions and 

calculating dice index distribution with regard to the convergence pattern. Details are 

available in supplementary eMethod 6. 

Overlap with cross-psychiatric disorders map: Dice-index was computed to estimate the 

overlap between deletion and duplication convergence maps and the statistical maps 

obtained from a large cross-disorder neuroimaging meta-analysis (http://anima.fz-

juelich.de) 39.  

Results 

1. Effects on global brain morphometry 

Deletions and duplications of each genomic loci (except 15q11.2) showed opposing 

effects on total intracranial volume (TIV), total grey matter volume (GM) and total 

surface area (SA) (Figure 1a-c). For mean cortical thickness (CT), 22q11.2 and 15q11.2 

deletions and duplications showed opposing effects (Figure 1d). The directionality of 

global effects differed across loci: They were positively correlated with gene dosage at 

the 1q21.1, 22q11.2 and 15q11.2 loci (i.e., duplications associated with greater TIV, SA 

or CT), and negatively correlated with gene dosage at the 16p11.2 locus (Figure 1a-c.). 

Similar mirror effects on TIV, GM volume and total SA (Figure 1a-c.) in 1q21.1 CNV 
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carriers recruited in the clinic and identified in the UK Biobank, indicated that global 

effects were not influenced by ascertainment.  

2. Brain morphometry dimensions across 8 CNVs 

We used canonical correlation analysis (CCA) to interrogate morphometry changes of 

130 regional grey matter volumes across 4 genomic loci. Deletions and duplications were 

coded as opposing gene dosage at each locus. CCA was calculated using 484 CNV 

carriers without controls and identified 3 ‘gene-morphology dimensions’ (r=0.84, 0.79, 

0.73; statistically significant at p-value<0.01). Top ranking brain regions contributing to 

the most dominant dimensions of morphological variation included transverse temporal 

gyrus, planum temporale, parietal operculum/calcarine cortex, supplementary motor 

cortex, posterior and anterior insula, middle cingulate and temporal gyrus. Those 

contributing most to dimension 2 of gene-morphology co-variation included the 

accumbens, subcallosal area, cuneus, precuneus, brain stem, superior frontal gyrus, 

cerebellum, anterior insula and lingual gyrus (Figure 2b-c, eTable 5). 16p11.2 and 

22q11.2 preferentially contributed to dimension 1 and 2 respectively, and 1q21.1 loaded 

similarly on both dimensions. 15q11.2 CNVs showed the smallest loadings on both 

dimensions (Figure 2d).  

Projecting each CNV carrier on the canonical dimensions demonstrated contrasting 

loadings between deletions and duplications, and illustrated the ranking of effect-sizes for 

each genomic locus (From largest to smallest: 22q11.2, 16p11.2, 1q21.1 and 15q11.2, 

Figure 2a, supplementary eTable 2-4). While the two gene-morphology dimensions 

allowed for discrimination between genomic loci and between most CNV carriers and 
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controls, they also pointed to brain regions contributing to variation shared across loci 

(Figure 2b). 

3. Deletions at 4 genomic loci converge on shared 

neuroanatomical alterations 

To further dissect the “gene-morphology dimensions” identified above, we performed 

univariate whole-brain VBM analyses contrasting each deletion and duplication group 

with controls. We first only considered clinically ascertained individuals to account for 

selection bias. Cohen’s d maps from the 22q11.2 and 16p11.2 CNVs were consistent with 

previous studies (Figure 3) 10,15. Findings for all 3 deletions including 1q21.1 are detailed 

in Figure 3 and supplementary eTable 2.  

The conjunction analysis of 3 deletion vs control contrasts showed overlap in the left and 

right middle cingulate gyrus (Figure 4a), corresponding to the 8th and 18th highest loading 

regions on the first CCA dimension. However, conjunction analyses of FWE thresholded 

maps are extremely stringent and constrained by the group with the smallest effect and 

sample size. For example, in the 1q21.1 deletion group we could identify 1.5% of grey 

matter voxels that survived FWE correction, while the large subject sample and effect-

size of the 22q11.2 deletions allowed for the identification of alterations in 14.8% of grey 

matter (supplementary eTable 2).  

Therefore, to identify shared patterns across CNVs we ranked Cohen’s d maps and 

overlapped voxels with similar rankings. The conservative group of voxels with Cohen’s 

d values <5th and >95th percentiles, showed spatial overlap across all deletions in the 

middle cingulate gyrus (p-valueSHUFFLE<10e-4, Figure 4b). Using a lenient threshold for 
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voxels with Cohen’s d <15th and >85th percentiles, we observed a broader overlap 

between deletions (p-valueSHUFFLE<10e-4, Figure 4c). Volumes of the middle and anterior 

cingulate extending to the medial frontal cortex and supplementary motor cortex were 

decreased in all deletions while volumes were increased in the thalamus, ventral 

diencephalon, orbital gyrus and parahippocampal gyrus (Figure 4d). Supplementary 

motor cortex, posterior insula, orbital gyrus, precentral gyrus and thalamus were also 

found in the top 20 contributors of the CCA dimensions 1. Cerebellum and anterior insula 

were found in the top 20 contributors of CCA dimension 2 (Figure 2b, supplementary 

eTable 5). 

Spatial convergence could be related to clinical ascertainment. We, therefore, recomputed 

the deletion convergence map by replacing the clinically ascertained 1q21.1 Cohen’s d 

map by the one calculated using 1q21.1 deletion carriers from the UK Biobank (Table 1). 

This new deletion convergence map was similar to the initial one presented above with a 

dice index of 39.4% (p-valueSPIN< 10e-4). 

Finally, we investigated the robustness of the deletion convergence map by intersecting it 

with a fourth map calculated with 72 carriers of 15q11.2 deletions and 965 controls from 

the UK Biobank (supplementary eTable 2, Figure 4i). Voxels with Cohen’s d values 

<15th and >85th percentiles significantly overlapped with the clinically ascertained 

deletion convergence pattern (p-valueSPIN <10e-4, Figure 4e). We did not perform these 

analyses for 16p11.2 and 22q11.2 due to the limited sample size in UKBB. 

Comparable findings were observed in the analysis, performed in parallel, for Freesurfer 

derived SA and CT measures (supplementary eFigure 3-4; 6-10). 
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4. Duplications at 4 genomic loci converge on common 

neuroanatomical alterations 

Conjunction analysis of the FWE thresholded duplication maps at the 1q21.1, 16p11.2 

and 22q11.2 loci showed no overlap (Figure 3d,f), but we were underpowered to detect 

the individual effects of 1q21.1 and 22q11.2 duplications (supplementary eTable 2). We 

therefore tested spatial overlap of voxels with Cohen’s d values <15th and >85th 

percentiles. Spatial overlap across all three clinically ascertained duplications (p-

valueSHUFFLE<10e-4, supplementary eFigure 5b) was characterized by larger volume in 

the middle cingulate gyrus, fusiform gyrus, superior temporal gyrus and supplementary 

motor cortex and smaller volume in anterior insula, caudate and temporal pole. These 

regions were among the top 20 contributors of both CCA dimensions. (Figure 2b, 

supplementary eTable 5).  

We carried out the same sensitivity analyses performed above for deletions. The new 

duplication convergence map including 1q21.1 duplications and controls from the UKBB 

showed significant overlap with the initial duplication convergence map (dice-index of 

26%, p-valueSPIN <10e-4). The intersection between the duplication convergence map 

above and a fourth map computed with 76 15q11.2 duplication carriers and 965 controls 

from the UK Biobank (supplementary eTable 2, eFigure 5h)  also showed significant 

overlap  (p-valueSPIN <10e-4, eFigure 5d). 

Comparable findings were observed for Freesurfer derived SA and CT measures 

(supplementary eFigure 3-4; 7-10). 
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5. Effect size ratio and mirror effects of deletions and 

duplications 

Deletions had larger effect sizes on grey matter alterations compared to duplications. 

Cohen’s d distributions showed a 1.24 to 2-fold deletion/duplication ratio, F test, p<10e-

16 (Figure 1, supplementary eTable 11). Similar effect-size ratio is also observed for SA 

alterations (supplementary eTable9). This was not the case for 15q11.2 deletions and 

duplications, which showed equally small effect sizes.  

We investigated the contrasting regional effects of deletion and duplication on brain 

morphometry. Deletion and duplication carriers showed brain-wide regional mirror 

effects for regional volumes and SA, but not CT, at all 4 genomic loci (Figure 5, 

supplementary eTable 8-10). The strongest anticorrelation of Cohen’s d values was 

observed for 16p11.2 (p-valueSPIN<10e-4) followed by 15q11.2 (p-valueSPIN<10e-4), 

1q21.1 (p-valueSPIN<0.033) and 22q11.2 (p-valueSPIN<0.038). This was true in clinically 

and non-clinically ascertained CNV carriers (supplementary eTable 6-8). 

6. Relationships with previously defined cross-psychiatric 

disorder maps 

We investigated similarities between our CNV convergence maps and alterations 

reported by a cross-disorder meta-analysis of case-control studies of schizophrenia, 

bipolar disorder, obsessive-compulsive disorder, substance-use disorder, major 

depression and anxiety 39. Deletion convergence map showed alterations affecting the 

same regions (cingulate and insula) with contiguous, but only marginally overlapping 
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clusters (supplementary eFigure 11). The duplication convergence map also showed 

marginal overlaps with a contiguous cluster in the anterior insula. 

Discussion 

Our study demonstrates that deletions and duplications at 4 distinct genomic loci have 

independent effects on global and regional brain morphometry. The Eight CNVs, 

associated with ASD and SZ, affect regional brain volumes along two gene-morphometry 

dimensions that emerged from our CCA results. These dimensions included regions such 

as the temporal gyrus, calcarine cortex, supplementary motor cortex, insula, middle 

cingulate gyrus, accumbens, subcallosal area, cuneus, precuneus, brain stem and superior 

frontal gyrus. Deletions and duplications of the same genomic loci lie on opposite ends of 

these brain dimensions. Univariate analyses similarly point towards a pattern of 

differences involving anterior cingulate, posterior insula and supplementary motor cortex 

observed in deletions across 4 loci. For duplications a different pattern is observed 

involving middle cingulate, anterior insula and lingual gyrus. Mirror effects are observed 

at the global and regional levels across loci, for volume and SA but not CT.  

Dissociation between global and regional effects  

Systematic comparison across loci suggests that CNVs have independent effect sizes on 

global and regional brain morphometry. For example, the 1q21.1 deletions and 

duplications highlight the contrast between very large effects on global measures, with 

small regional effects adjusted for total GM. The same dissociation is observed between 

the directionalities of global and regional effects across the 4 genomic loci. As an 
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example, 1q21.1 and 22q11.2 deletions have negative effects on TIV and GM, while 

16p11.2 deletions have positive effects, and 15q11.2 deletions have no detectable effects. 

In contrast, all four deletions show smaller regional volumes in the middle and anterior 

cingulate, medial frontal cortex and supplementary motor cortex, as well as larger 

volumes in the thalamus, orbital gyrus and parahippocampal gyrus. The same 

dissociation between global and regional effect sizes and between directionalities applies 

to duplications. 

We posit that global and local effects may be mechanistically unrelated. Animal studies 

have proposed that CNV-related differences in global brain volume may be due to the 

modulation of embryonic neurogenesis 6, dendrite growth or spine and synapse 

development 23. Larger brain size in individuals diagnosed with autism-related genetic 

conditions such as tuberous sclerosis complex has been linked to cell body size and is 

sensitive to medication 40. On the other hand, the mechanisms underlying local relative 

effects have not been investigated in animal models. Although both, global and regional 

brain alterations show mirror effects in deletions and duplications across most loci. 

General effects of gene dosage on brain structure  

Altering gene dosage at 4 distinct loci encompassing 60, 29, 12 and 4 genes lead to a 

degree of shared regional patterns. In line with this observation, a complex landscape of 

rare deleterious CNVs have been associated with cognition 21, increased risk of 

neurodevelopmental and psychiatric disorders such as autism 1,20,22 and schizophrenia 2. 

Recent studies estimated that 71%–100% of any 1-MB window in the human genome 

contributes to increased risk for schizophrenia 41. The same has been demonstrated for 
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autism 22.  We therefore speculate that CNVs will lead to patterns of brain alterations 

similar to the one characterized in our study irrespective of their genomic location.  

A plausible hypothesis for the pervasive effects of CNVs on cognition, behavior and 

brain architecture, is that these phenomena are related to emerging properties of the 

genome, rather than the function of individual genes 42. In other words, gene dosage at 

any node of the genomic network will alter its efficiency leading to a measurable effect 

on brain organization and behavior. Gene dosage affecting diverse molecular functions 

may lead to a limited number of ways in which the brain reconfigures, compared to non-

carriers. 

Neuroanatomical patterns across brain measures 

Systematic analysis through the two most widespread computational neuroanatomy 

frameworks (VBM and Freesurfer) shows that main grey matter volume findings are 

recapitulated by SA results. On the other hand, changes in CT seem to be distinct, which 

is in line with previous investigations of 16p11.2 CNVs 15 as well as studies suggesting 

that apparent CT is mainly related to cortical myelination 43. Volume is a product of SA 

and CT, measures that have been shown to be genetically unrelated 44. 

Limitations 

Our study was focused on investigating shared features across genomic loci. The study of 

many more loci would be required to characterize specific effects. Integrating data from 

multiple study sites may have introduced noise and heterogeneity in our investigation. 

We have previously shown that, although site effects on neuroimaging data are 
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measurable, they do not influence the neuroanatomical patterns associated with CNVs at 

the 16p11.2, 22q11.2 and 15q11.2 loci 10,15,45.  

We carried out the first whole-brain voxel- and vertex-wise analyses for 15q11.2 and 

1q21.1 CNVs and replicated findings for 22q11.2 and 16p11.2 CNVs 10,14,17. For 1q21.1, 

we used multisite data as an opportunity to perform sensitivity analyses and challenge the 

robustness of our results. Although we were underpowered to clearly delineate the small 

effect of 15q11.2 deletions and duplications at the voxel level, regions with top Cohen’s d 

values that significantly overlap with the 3 other loci –frontal, cingulate gyrus, and 

parietal lobes–, are concordant with those reported in a recent large scale study using the 

Desikan-Killiany Atlas 45. 

Conclusions 

In this proof of concept, our investigation demonstrates the relevance of simultaneously 

analysing the effect of several genomic variants on neuroimaging intermediate 

phenotypes. Extending our approach to the rapidly expanding number of rare genomic 

variants associated with psychiatric disorders should provide the field with a scheme to 

understand general principles linking deleterious genomic variants with their 

consequence on human brain architecture. These general neuroanatomical patterns may 

help understand the broad locus heterogeneity of psychiatric conditions. 
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CLINICAL ASCERTAINMENT 

CNV 
loci 

Copy 
number 

Age 
mean 
(SD) 

Male/ 
Female 

TIV mean 
(SD) 

FSIQ mean 
(SD) ASD SCZ Other 

diagnosis 

1q21.1 

Deletions 
N=29 29(18) 11/18 1.22(0.14) 90.85 (21.75) 

N=26 1 - 7 

Duplication 
N=19 34(17) 10/9 1.57(0.11) 95.56 (23.19) 

N=18 1 - 4 

16p11.2 

Deletions 
N=83 17(12) 47/36 1.54(0.17) 82.17 (14.99) 

N=64 13 - 36 

Duplication 
N=73 31(14.9) 41/32 1.33(0.17) 85.47 (19.48) 

N=63 10 1 19 

22q11.2 

Deletions 
N=74 16(8.6) 35/39 1.30(0.15) 77.42 (13.51) 

N=48 9 2 32 

Duplication 
N=22 20(14.2) 15/7 1.47(0.16) 97.83 (20.34) 

N=12 2 - 8 

Controls N=331 26(14.6) 189/142 1.46(0.15) 106.73 (15.03) 
N=224 1 - 23 

NON-CLINICAL ASCERTAINMENT 

CNV 
loci 

Copy 
number 

Age 
mean 
(SD) 

Male/ 
Female 

TIV mean 
(SD) 

UKB FI mean 
(SD) ASD SCZ Other 

diagnosis 

1q21.1 

Deletions 
N=10 59.1(6.7) 6/4 1.35(0.12) -0.8 (0.5)   

N=9 - 1* 3 

Duplication 
N=9 60.6(7) 2/7 1.55(0.14) 0.2 (1.3)    

N=9 - - - 

15q11.2 

Deletions 
N=72 63.4(7.6) 31/41 1.54(0.15) -0.3 (0.9) 

N=63 - - 2 

Duplication 
N=76 62.9 (7.3) 36/40 1.49(0.15) 0 (1.1)     

N=71 - - 6 

16p11.2 

Deletion 
N=4 65.6 (3.2) 3/1 1.56(0.13) 0.8 (0.5)    

N=2 - - - 

Duplication 
N=4 69.3 (2.1) 1/3 1.29(0.11) -1.6 (0.2)   

N=4 - - - 

22q11.2 

Deletion 
N=1 69.8(-) 1/- 1.44(-) - - - - 

Duplication 
N=8 62(9.5) 4/4 1.55(0.17) -0.2 (1.1)   

N=8 - - 1 

Controls N=965 62.1(7.4) 358/607 1.51(0.14) 0 (1)      
N=866 - 2* 65 
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Table 1. Demographics.  

Legend: CNV: Copy Number Variant, SD: Standard deviation, TIV: total intracranial 

volume, FSIQ: Full scale IQ, UKB FI: UK Biobank fluid intelligence, ASD: Autism 

Spectrum Disorders, SCZ: Schizophrenia (including * ICD10 code F25.9 Schizoaffective 

disorder, unspecified). CNV carriers and controls from the clinically ascertained group 

come from 5 different cohorts (eTable 1), while non-clinically ascertained participants 

were identified in the UK Biobank. UK Biobank fluid intelligence scores (UKB 

field:20016) were adjusted for age, age2, sex, site and then z-scored. 16p11.2 and 22q11.2 

from the UKBB were not included in the VBM and SBM due to small sample size.  
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Figure 1: The effect of 1q21.1, 16p11.2, 22q11.2 and 15q11.2 on global brain measures.  

Legend: Total intracranial (a), total surface area (b), total grey matter volume (c) and 

mean cortical thickness (d) for clinically and non-clinically ascertained CNVs. Z-scores 

for clinically and non-clinically ascertained CNVs were calculated using 331 and 965 

controls respectively, adjusting for age, age2, sex and site as a random factor. Y axis 

values are z scores. X axis are CNV groups. Significant difference between CNV group 

and corresponding control group is indicated with a star. Horizontal bars with stars show 

significant differences between deletions and duplications within the same locus. 
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Figure 2: Co-analysis of shared brain changes due to 8 CNVs.  

Legend: (a) Scatterplot showing the position of each of the 484 carriers of 8 different 

CNVs along 2 dominant brain-gene Canonical Correlation (CC) dimensions established 

using 130 neuroanatomical GM regions of CNV carriers. GM region volumes were 

obtained using neuromorphometric and were adjusted for total grey matter, age, age2 sex 

and site. The empty and full symbols represent deletions and duplication respectively. 

The grey hexagonal bin plot represents the frequency of controls (n=1296). Controls were 

not used to calculate the CCA and were projected post hoc on the 2 dimensions using 

CCA prediction.  X and Y axis values: z-scores of regional volumes. (b) Loading of 

Neuromorphometric Regions of Interests (ROIs) on the 2 CC dimensions. X axis and Y 
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axis values: normalized values from (-1 to +1) of dimensions 1 and 2 respectively. The 

font size is correlated to the region's contribution to dimensions. ROI names are color 

coded as being part of the deletion (red), duplication (blue) and both deletion and 

duplication (magenta) convergence patterns. (c) CCA dimension 1 and 2 regional 

relevances projected on axial brain slices. The darker the red or blue color, the stronger 

the positive or negative association with the CCA dimensions. (d) Loading of the first 

and second CCA dimension on 4 CNV genomic loci. Values are CCA loading 

magnitudes and represent the contribution of a CNV loci to the canonical dimension. 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 17, 2020. ; https://doi.org/10.1101/2020.04.15.20056531doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.15.20056531
http://creativecommons.org/licenses/by/4.0/


 
   
 

37 
 
 
 
 

  

 
   

 

Figure 3: Cohen’s d maps of VBM regional brain differences in deletion and duplication 

carriers at the 1q21.1, 16p11.2 and 22q11.2 loci compared to controls.  

Legend: Regional brain differences adjusted for total grey matter volume. Left and right 

columns show results for deletions (a, c, e)  and duplication (b, d, f) carriers respectively.  

Color maps show the significant effects of each CNV, thresholded at q< 0.05 FWE. Color 

scale represents positive and negative Cohen’s d effect sizes were estimated. Linear 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 17, 2020. ; https://doi.org/10.1101/2020.04.15.20056531doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.15.20056531
http://creativecommons.org/licenses/by/4.0/


 
   
 

38 
 
 
 
 

  

 
   

model were adjusted for sex, linear and quadratic expansion of age and total grey matter 

volume. 15q11.2 was not displayed because only a few voxels survived FWE correction. 

 

 

Figure 4: Spatial overlap across deletions at 3 and 4 genomic loci. 

Legend: (a-d) The spatial overlap between the grey matter volume effects of 3 clinically 

ascertained deletions (16p11.2, 1q21.1 and 22q11.2). (a) The blue map is the conjunction 

of 3 FWE corrected (q< 0.05) contrasts between deletion and controls, demonstrating that 

volume in the middle cingulate gyrus is significantly decreased in all 3 deletions. (b-d) 

Spatial overlap between 3 clinically ascertained deletions adjusted for effect size and 
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sample size by using thresholds based on ranking: <5th/>95th (b) and <15th/>85th (c) 

percentiles of Cohen’s d values. Spatial overlap is shown separately for the top negative 

and positive Cohen’s d values (d). Overlap across the 3 clinically ascertained deletions 

are reported in blue and pairwise overlaps are reported in purple, cyan and yellow. (e) 

Spatial overlap across clinically and non-clinically ascertained deletions at 4 genomic 

loci for <15th and >85th percentile of Cohen’s d values. Overlap of all four deletions is 

shown in blue. Overlaps of any combination of three deletions are shown in red. Top 

ranking Cohen’s d values used in (b, c, d, e) are presented on the density plots for all four 

deletions: 1q21.1 (f), 16p11.2 (g), 22q11.2 (h) and 15q11.2 (i). The X axes values of the 

3 density plots are Cohen’s d. Corresponding maps for duplications as well as Surface 

Area and Cortical Thickness are reported in supplemental eFigures 5-10. 
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Figure 5: Cortex-wide mirror effects between deletions and duplications. 

Legend: Pearson correlations between Cohen’s d values for deletions and duplications. 

Voxel-Based Morphometry (a) and Surface Area (b) are adjusted for total gray matter 

and total surface area respectively. The 4 vertical lines represent the correlation (Pearson 

r) between deletions and duplications at each locus: 1q21.2 (red), 15q11.2 (green), 

16p11.2 (blue), and 22q11.2 (magenta), with the corresponding empirical p-values 

(uncorrected) shown next to them in same color code. The 4 density plots represent the 

distribution of Pearson Correlations obtained by performing 10000 spin permutations of 

duplication maps while keeping deletion maps fixed.  Negative correlations between 

deletions and duplication are observed across loci and are significantly different 

(Bonferroni) from the null distributions for 16p11.2 and 15q11.2 (p-values are 

uncorrected). X axis = Pearson r coefficients, y axis = the surface under the curve is 

100% of the distribution. (c-d)  Mirror effects between deletions and duplications at both 
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tails of the distribution c) The red bar is the proportion of voxels that are in the top 85th 

percentile for deletions and the lower 15th percentile for duplications and vice versa. The 

blue bar represents voxels that are either in the top 85th or lower 15th percentile for both 

deletions and duplications. d) The same bar plots are presented for surface area. (All 

Correlation values are reported in supplemental eTable 8-10). 
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