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Abstract 

Early assessments of the spreading rate of COVID-19 were subject to significant uncertainty, 
as expected with limited data and difficulties in case ascertainment, but more reliable 
inferences can now be made. Here, we estimate from European data that COVID-19 cases are 
expected to double initially every three days, until social distancing interventions slow this 
growth, and that the impact of such measures is typically only seen nine days - i.e. three 
doubling times - after their implementation. We argue that such temporal patterns are more 
critical than precise estimates of the basic reproduction number for initiating interventions. 
This observation has particular implications for the low- and middle-income countries 
currently in the early stages of their local epidemics.
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1. Introduction

In December 2019, a cluster of unexplained pneumonia cases in Wuhan, the capital of Hubei 
province in the People's Republic of China, rapidly progressed into a large-scale outbreak, 
and a global pandemic by 11 March 2020, as declared by the World Health Organisation [1]. 
The disease caused by this highly contagious infection has since been named COVID-19, and 
is caused by a single-stranded RNA coronavirus (SARS-CoV-2) similar to the pathogen 
responsible for severe acute respiratory syndrome (SARS) and Middle East respiratory 
syndrome (MERS) [2]. As of 29 March 2020, 657,140 confirmed cases and 29,957 deaths 
have been reported in nearly 200 countries and territories globally [3].

Various control measures have been implemented worldwide, including isolation of 
confirmed and suspected cases, contact tracing, and physical distancing. However, only the 
most aggressive measures have resulted in epidemic suppression. In Hubei, a regional 
lockdown was implemented on 23-24 January 2020, with a peak in reported cases occurring 
approximately two weeks later [4]. In Italy, a national lockdown was implemented on 9 
March 2020 once 7,375 confirmed cases and 366 deaths had been recorded; only in the last 
few days (as of 29 March) the epidemic seems to be slowing down [5]. In comparison, India 
declared a nationwide lockdown on 24 March 2020, with only 434 confirmed cases and 0 
deaths [6, 7]. Similarly, South Africa began a 21-day lockdown on 27th March, with 927 
known cases and 0 deaths [8, 9].  The implementation of such early and aggressive control 
measures in India and South Africa may substantially increase their chances of successful 
containment, although the social and personal cost could be substantial [10].

Planning of interventions usually relies on estimates of the basic reproduction number R0, 
defined as the average number of new infections generated by a single infected person within 
a susceptible population. Reported estimates of COVID-19 R0 are highly variable, ranging 
from 1.4 to 6.49 [2, 11], with the differences attributable to the variety of methods, model 
structures and parameter values (in particular, the estimated or assumed amount of pre-
symptomatic transmission), as well as the data sources used. Most official sources settle in the
range of 2-3 [3, 12-15], but these estimates mostly derive from early studies of the epidemic 
in Wuhan [16-18], or the Diamond Princess Cruise ship [19], and so are subject to important 
limitations: these include small amounts of data, uncertain or biased reporting of early cases 
in Wuhan, and the uniqueness of the specific settings in which they occurred.

We argue official ranges of R0 should be continuously updated with more recent estimates 
coming not only from China [20, 21], but also from the many different outbreaks observed 
worldwide [22-25]. Point estimates might not change, but the task remains imperative both 
because available data is now more numerous and reliable, and because estimates of R0 in one
population do not necessarily translate to another. 

However, we emphasise that the speed of epidemic growth and the delay between infection 
and case detection are more relevant for COVID-19 control implementation than estimates of 
R0 [26, 27]. Since doubling times can be estimated directly from data and estimates of delays 
are relatively consistent, sophisticated models are not required to infer when action is urgent. 

2. Results

To support our argument, we first estimate the growth rate in multiple countries and with 
different methods. We then estimate the incubation period and the distribution of times from 
symptoms onset to hospitalisation in different settings and compare it with other results from 
the literature. Observation of the outbreak in the UK and Italy provides further support to the 
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highlighted delays from infection to detection. Finally, we discuss the limitations of relying 
on R0 in this context. 

For the estimation of the growth rate, we focus on the number of confirmed cases in European
countries that have experienced large local epidemics (Figure 1A), as reported by the WHO 
[28]. To avoid relying only on case confirmation, which could be affected by numerous 
biases, we also estimate the growth rate in hospitalisations, intensive care unit (ICU) 
admissions and deaths in Italy (Figure 1B; [5]). To ensure generalisability of results, we 
performed another analysis on a larger set of European countries (Figure 2). With the 
exception of a few countries with a small number of cases and potentially unreliable data, we 
consistently find doubling times of about 3 days or less, that appear to be sustained before 
mitigation interventions are put in place (Figure 2). These are significantly shorter than early 
estimates from China [16, 29]. For robustness, we have used two different methods: semi-
parametric and generalised linear (details in Materials and Methods). Unsurprisingly, the 
results differ in terms of their confidence intervals, but the conclusions are similar, and are in 
agreement with the common exploratory analysis based on visually inspecting data plotted on 
a logarithmic scale (Figure S3).

Although our results are robust to the method used, they might still be misleading if there are 
biases in the data, such as errors in reporting, changes in case definition or testing regime, and
so on. This issue is particularly critical as lags in reporting of cases can create discrepancies 
between national and international official sources [5, 28, 30] for case counts. However, these
are unlikely to affect our conclusions owing to the following considerations:

 The fast growth and high numbers likely make small biases negligible;

 Any multiplicative correction, such as constant underreporting, will not affect the 
observed trend;

 It is relatively easy for exponential growth to appear slower than reality, for example 
if reporting rates decline over time, but difficult for growth to appear consistently 
faster: aggressive swabbing of asymptomatic individuals (e.g. early on in the Italian 
locked-down towns; [31]), as well as changes in case definition [32], might explain 
such a bias in the data, but these factors are unlikely to affect observations for longer 
than a few days or consistently across different countries;

 Hospitalisation and ICU admission, which in the Italian data appear to grow at similar 
rates as the number of confirmed cases (Figure 1B), should be much less affected by 
reporting issues. The even faster increase in death rates we observe, instead, may be 
explained by rapid outbreaks among vulnerable groups, such as those in care homes, 
coupled with quicker progression to death among these groups, or possibly local 
hospital saturation.

We conclude that, although existing data has its limitations, the evidence for fast exponential 
growth in the absence of intervention is overwhelming. 

The delay between infection and case detection is crucial in determining how long cases have 
been growing unobserved. Early detection of cases during the incubation period, before 
individuals have become symptomatic, is typically not possible once containment has failed 
since it relies on full contact tracing and testing of asymptomatic individuals. Detecting cases 
at symptom onset is potentially more feasible, but in practice depends on the case-finding 
strategy. For example, in the UK, symptomatic individuals are instructed to self-isolate at 
home, and are only tested if they subsequently require hospitalisation. Thus the delay between
infection and case detection includes the incubation period, the time between symptom onset 
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and hospitalisation, and the time it takes to receive a positive test result. Similar effects will 
be visible in other countries where case counts are dominated by hospitalisations.

We report published estimates of the incubation period and the delay between symptom onset 
and hospitalisation (Table 1). Since none of these estimates simultaneously account for 
truncated observations and exponential growth in the number of infected cases, we also 
include our own estimates (see Materials and Methods) obtained by analysing UK line-list 
data provided by Public Health England (unfortunately not publicly available) and a publicly 
available line-list which collates worldwide data [33]. Although more robust, our estimates 
are consistent with the existing literature, and highlight geographical heterogeneity, such as 
shorter onset-to-hospitalisation intervals in Hong Kong and Singapore compared to the UK. 
With the exception of Singapore, the sum of the mean incubation period and mean onset-to-
hospitalisation interval is never shorter than 9 days, which corresponds to approximately 3 
doubling times in an unconstrained epidemic like those observed in Figures 1 and 2.

Our estimate of the delay between infection and detection is consistent with observations of 
the UK and Italian epidemics (Figure 3). For both countries, we plot the numbers of new 
cases and notice a visible drop occurring 8-9 days after the first, relatively soft, control 
measures were implemented (in the UK, recommended self-isolation if symptomatic on 13 
March, and in Italy, lockdown of infected towns and school and university closure in 
Northern Italy, on 22-23 February). After the first control measure in the UK (Figure 3A), 
cases continued to increase exponentially with an estimated growth rate of ~0.22/day 
(corresponding to a doubling time of just over 3 days) for 9 days. During this period numbers 
of daily confirmed cases rose approximately 8-fold. Subsequently, the number of new 
infections started to tail off. A similar pattern is observed in Italy (Figure 3B). Because non-
pharmaceutical interventions, with unknown compliance, cannot be evaluated until their 
effects emerge in the data, a pattern of introduction of increasingly strong measures has 
repeated across Europe, with long delays to control. Even with immediate hard interventions 
halting all community transmission, within-household transmission will continue to occur, 
creating an additional delay between the beginning of the intervention and its effect. This is 
consistent with the approximate 2-week delay from lockdown to peak in new cases observed 
in Hubei [4]. Further delays in case-confirmations, hospitalisations, potential ICU admissions 
and deaths mean the latter figures keep on growing well after transmission control is 
achieved.

Since R0 remains the mainstay of most epidemiological analyses, we explored values of R0 
consistent with a range of growth rates and modelling assumptions. For a growth rate of 0.25/
day and our delay estimates (Table 1), we obtain values ranging from 2 to 4 or larger (Table 
S1A), owing to the extreme sensitivity to assumptions, in particular the extent of pre-
symptomatic transmission, for which estimates in the literature vary widely [34-37]. 

Although R0 is commonly used to determine the reduction in person-to-person transmission 
needed to achieve control, this brings limited insight into how to control the COVID-19 
pandemic. First, there is sufficient evidence worldwide that interventions must be draconian, 
particularly in countries where case numbers are high. Second, given the variability in R0 
estimates obtained from the same growth rate appear predominantly due to the assumed 
amount of pre-symptomatic transmission, the exact value of R0 is only poorly correlated with 
the required aggressiveness of the intervention [38]. For example, if R0 is four and most of the
transmission occurs after symptoms onset, 75% of the transmission needs to be stopped and 
self-isolation when symptomatic can easily achieve this. Conversely, if R0 is two but most of 
the transmission is pre-symptomatic, only 50% of the transmission needs to be prevented, but 
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in practice this can only be achieved through interventions, like quarantining apparently 
healthy individuals, that are highly socially disruptive and likely enforced rather than 
spontaneous. Finally, R0 informs how aggressive interventions should be, but not how quickly
they should be implemented.

3. Discussion

The highlighted risks of underestimating the combination of short doubling times and long 
delays between infection and case detection are consistent with the now-common pattern of 
countries misjudging the initial small number of observed cases, only to realise the storm has 
already arrived. At unconstrained growth, even the immense effort of doubling local hospital 
capacity only buys 3 days of reprieve before bed capacity is breached. Being blind to the 
extent of an epidemic and the true number of infections at any one time results in intervention
strategies based on the number of observed cases and measurements of R0. For COVID-19, 
these are insufficient and dangerously underestimate the true degree of intervention required 
to slow down and bring the epidemic under control. We advocate stronger action from 
national and international health care communities, with a particular focus on supporting low-
and middle-income countries where numbers of cases, at the time of writing, appear to be 
relatively low. In settings where health care capacity is low and intergenerational mixing 
common, swift action will save numerous lives.
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Fig. 1. Fit of a Generalised Additive Model with quasi-Poisson Family and canonical link to 
data between 23 February to 26 March, thin plate splines were used and the resulting output is
then converted to an instantaneous estimate of doubling time (see methods). (A) 
Instantaneous doubling time in selected European countries (UK, Italy, France, Germany and 
Spain). (B) Instantaneous doubling time arising from four different daily surveillance metrics 
(Confirmed Cases, Hospitalised cases, cases in ICU and Deaths) within Italy. Note that the 
Italian Hospitalised and ICU cases are daily prevalence rather than daily incidence. 
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Fig. 2. Log daily confirmed cases and growth rate estimation for numerous European 
countries. Curves (black lines) are fit using the Generalised Linear Model methodology (see 
Materials and Methods) to the first 9 days non-zero data after a cumulative incidence of 25 is 
reached (period shown as a blue rectangle), which for most countries coincided with the start 
of sustained local transmission, with the exception of the UK and Romania where fitting 
started an additional 9 days after this criterion was met to reflect the local situation. Daily new
cases are shown as red dots.
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Fig. 3. Observed departure from unconstrained exponential growth approximately 9 days after
intervention. Expected numbers of daily confirmed cases in (A) the UK and (B) Italy 
predicted in the absence of intervention (red line), fit using a Generalised Linear Model (see 
Materials and Methods). The fit is performed on circles; crosses are data added after the 
prediction is made. The exponential trend appears reasonably accurate for two more days, 
after which the effect of the first major intervention becomes visible.
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Parameter Mean Standard
deviation

Confidence interval
for the mean

Sample
size

Source

Incubation period 4.8 - 2.2 - 7.4 16 [40]

Incubation period 5.6 3.9 4.4 - 7.4 52 [41]

Incubation period 6.4 2.3 5.6 - 7.7 88 [42]

Incubation period 4.84 2.79 - 162 Materials and Methods 
(Data – [33])

Onset to confirmation 4.8 3.03 - 38 [43]

Onset to hospitalisation 5 - - - [44]

Onset to hospitalisation
(dead)

6.6 - 5.2 - 8.8 34 [41]

Onset to hospitalisation
(alive)

9.7 - 5.4 - 17 155 [41]

Onset to hospitalisation
(UK)

5.14 4.20 - 90 Materials and Methods 
(Data - PHE)

Onset to hospitalisation
(Singapore)

2.62 2.38 - 92 Materials and Methods 
(Data - [33])

Onset to hospitalisation
(Hong Kong)

4.41 4.63 - 52 Materials and Methods 
(Data - [33])

Table 1. Estimates of incubation period and delays from onset of symptoms to confirmation/ 
hospitalisation. For estimates from the literature, the source is provided. For our estimates, the
details can be found in Materials and Methods.
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Materials and Methods
Data Sources

We consider four sources for our epidemiological data: the WHO [28 ], line-list data provided by Public Health
England (PHE), line-list data from [33 ] and the Italian Istituto Superiore di Sanità [5 ]. Of these data sets, three
are publicly available. The line-list from PHE is unfortunately not publicly available. From these sources, we
extract epidemiological data concerning case counts, incidence, hospitalisation, and delays between infection and
symptom onset, and onset of symptoms and hospitalisation.
These data sources and the code used to carry out our data analysis can be found at:
https://github.com/thomasallanhouse/covid19-growth.

Supplementary Text
Fitting the growth rate

Typically, an infection spread from person to person will grow exponentially in the early phase of an epidemic.
This exponential growth can be measured through the real time growth rate r so that, loosely speaking, the
prevalence of infection is

I(t) = I0ert + noise. (S1)

A natural mathematical model to derive the estimate of r is a Poisson family generalised linear model (GLM) with
a log link. Given the over-dispersed noise inherent in both disease dynamics and surveillance data, a quasi-Poisson
family is considered here.

The growth rate r is more intuitively reported as a doubling time (the time taken to double case numbers) and
so tD = ln(2)/r. The log-linear analysis from a Poisson GLM defined formally below is restricted to datasets (or
time windows) with clear exponential growth, or when additional explanatory variables, which are rarely available
in real time, exist.

To allow, in semi-parametric manner, time variation in growth rates we adapt a generalised additive model
(GAM) where I ∝ es(t) for some smoother s(t). In particular, we use a quasi-Poisson family with canonical link
and a thin-plate spline as implemented in the R package mgcv [45, 46 ]. The instantaneous local growth rate is
then the time derivative of the smoother ṡ(t) and an instantaneous doubling time calculated as tD = ln(2)/ṡ(t).
Potential issues with the GAM approach include that extrapolation outside of the data range (and hence forecasting
epidemic trend) is not sensible, and that there may be boundary effects from the choice of smoother. However,
this approach has the major advantage that it allows for time-varying estimates of doubling time and thereby
implicitly allows for missing explanatory information.

As well as the semi-parametric GAM approach, we take a parametric approach based on direct estimation
of the exponential growth rate. This lacks the ability to capture time variation, but allows for extrapolation
and epidemiological interpretation. To capture over-dispersion we use a quasi-Poisson family for the noise model.
Explicitly, the Negative Binomial probability mass function (pmf) is

NB(k|n, p) =

(
k + n− 1

n− 1

)
pn(1− p)k . (S2)

We will work in the parameterisation where the mean is µ and the variance is θµ, i.e.

p(θ) =
1

θ
, n(µ, θ) =

µ

θ − 1
. (S3)

Let the number of new cases on day t be y(t). We assume that this is generated by an exponentially growing
mean,

E[y(t)] = y0ert = exp(ln(y0) + rt) , (S4)

which is then combined with the negative binomial pmf to give a likelihood function for the observations over a
set of times T of

L(y|y0, r, θ) =
∏
t∈T

NB(y(t)|n(y0exp(rt), θ), p(θ)) , (S5)

where y = (y(t))t∈T . This can then be viewed as a generalised linear model (GLM) with time as a continuous
covariate, intercept ln(y0), slope r, exponential link function and negative binomial noise model [47 ]. We can
perform inference through numerical maximum likelihood estimation (MLE) and calculate confidence intervals
using the Laplace approximation [48 ].

Each page of Figure S1 shows the GAM compared to a simple GLM with θ = 1 and T taken to be all of the
data range, in contrast to the results in the main paper and Figure S2, where we fit θ and let T correspond to
the first nine days of the local epidemic after the cumulative number of cases has reached 25 (the only exceptions
are the UK and Romania, where fitting started an additional 9 days later to reflect the local situation). While
the simple GLM method is clearly inadequate if the fit is not restricted to a window where exponential growth
appears reasonable, it is shown for comparison in these plots. The left panel shows the output of the model fit
and the data, the middle panel the instantaneous growth rate from GAM (black) and the growth rate from GLM
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(red) with 95% CI, and the right most panel shows these growth rates converted to doubling times. Of the fifteen
countries, two (Belgium and Romania) have equivalent fits from GAM as from GLM and show constant growth
rates over the time period. The Czech Republic, Greece, Ireland and Poland have the central GLM result within
the 95% CI of the GAM suggesting a constant growth rate is a plausible explanation of the data reported. Austria,
France, Italy, Portugal, Spain, Switzerland show a fairly smooth transition from short to longer doubling times.
Germany, Netherlands and UK show more oscillatory behaviour in doubling times.

As a further test for the robustness of our results, we simply visually assess the growth rates of the epidemic
in a set of countries by plotting data on a log scale and compare the observed slopes with pure exponential trends
(Figure S3). To avoid relying on confirmed cases only, we plot a ‘mixed bag’ of cumulative cases, daily new con-
firmations, hospitalisations and deaths. We also plot exponential trends with a lower growth rate (r = 0.18 and
r = 0.13) to aid the visual distinction in slopes between different exponential growths and the visual assessment
of the potential effects of interventions in Italy.

Estimating delay distributions
Delay distributions describe the time delay between two events. To understand how long until the impact of

an intervention may be observed, we need to understand the delay between infection and symptom onset (the
incubation period), and the delay from onset to hospitalisation. A difficulty with estimating delay distributions
during an outbreak is that events are only observed if they occur before the final sampling date. Since delay
distributions depend on the time between two events, if the first event occurs near to the end of the sampling
window, it will only be observed if the delay to the second event is short. This causes an over-expression of short
delays towards the end of the sampling window, which is exacerbated by the exponential growth of the epidemic.
Therefore, we need to account for this growth and truncation within our model.

To fit the data we use maximum likelihood estimation. However, we do not observe the delay directly, instead
observing the timing of the two events. Therefore, we need to construct a likelihood function for observing these
events. Following [49 ], we construct the conditional density function for observing the second event given the
time of the first event and given that the second event occurs before date T . That is, we are interested in the
conditional density function

L(X2 ∈ x2|X1 ∈ x1, X2 ≤ T ) =
L(X2 ∈ x2, X1 ∈ x1, X2 ≤ T )

L(X1 ∈ x1, X2 ≤ T )
, (S6)

where x1 and x2 can be exactly observed or interval censored.
The delay from onset to hospitalisation for the UK is estimated using FF100 data provided by Public Health

England, which contains data on the first few hundred infected individuals in the UK. This data incorporated
the time of symptom onset and time of hospitalisation. There were some cases who were hospitalised before their
onset date. These cases have been removed from the data set, since they do not provide insight into the delay.
Additionally, some cases have no symptom onset, so these have also been removed from the data. For cases where
symptom onset and hospitalisation occur on the same day, we add half a day to the hospitalisation day, since the
delay is unlikely to be instantaneous. After tidying the data, this left 106 cases from which to infer the onset to
hospitalisation delay. The dates in the line list are recorded exactly, so the likelihood function becomes

L(H = h|O = o,H ≤ T ) =
g(o)f(h− o)∫ T−o

0
g(o)f(x)dx

=
f(h− o)∫ T−o

0
f(x)dx

, (S7)

where f is the density of the onset to hospitalisation delay and g is the density of the onset time. Using this
truncation corrected method and a gamma distribution to fit the delay distribution, we get a mean delay of 5.14
with standard deviation 4.20. Unfortunately, we cannot share the FF100 data. To compare different regions, we
also use data from Hong Kong and Singapore to estimate the local onset to hospitalisation delays. This data
is taken from an open access line-list [33 ], and the filtered data sets used are provided in the supplementary
material. Using the method above, for Hong Kong the mean delay is 4.41 days, with standard deviation 4.63, and
for Singapore the mean delay is 2.62 with standard deviation 2.38.

For the incubation period, we use data from Wuhan during the early stages of the outbreak. This data was
extracted from an open access line-list [33 ], containing dates when individuals were in Wuhan and when they
developed symptoms (among other information). Since this data is from the early stages of the epidemic, the
majority of cases were in Wuhan. Therefore, it is likely that these individuals were infected in Wuhan, so the
time spent in Wuhan provides a potential exposure window during which infection occurred. For individuals with
symptom onset date before leaving Wuhan or the same day they left Wuhan, the upper bound on the exposure
window was adjusted to half a day before symptom onset. Using the data as of 21/02/2020, we have 162 cases
from which to infer the incubation period. This infection date is interval censored, so we obtain the likelihood
function

L(O = o|a < I < b,O ≤ T ) =

∫ b
a
g(i)f(o− i)di∫ b

a

∫ T−i
0

g(i)f(x)dxdi
, (S8)
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where f is the incubation period density function and g is the density of the infection date. We assume g is pro-
portional to force of infection of the outbreak, which is assumed to follow exponential growth with rate parameter
0.25 day−1. Using a gamma distribution to describe the incubation period, we get a mean incubation of 4.84
days with standard deviation 2.79. The data for the incubation period is also included as supplementary material,
along with MATLAB code to perform the maximum likelihood estimation.

Estimation of R0

The relationship between the growth rate r and the basic reproduction number R0 in a simple homogeneously
mixing model is provided by the Lotka-Euler equation:

1

R0
=

∫ ∞
0

ω(τ)e−rτdτ , (S9)

where τ represents the time since the infection of an individual and ω(τ) is the infectious contact interval distribu-
tion, defined as the probability density function (pdf) of the times (since infection) at which an infectious contact
is made. An infectious contact is a contact that results in an infection if the contactee is susceptible, and early on
in the epidemic any randomly selected contactee is almost surely susceptible.

Equation (S9) assumes all individuals have the same infectious contact interval distribution. However, if we
assume random variability between individuals, there will be a set S of curves Ω(τ). However, equation (S9) still
applies, with ω(τ) being the time-point average of all curves in S [50 ]; see Figure S4.

The generation time Tg is defined as the mean of the infectious contact interval distribution ω:

Tg =

∫ ∞
0

τω(τ)dτ . (S10)

The same definition extends to a random infectivity profiles of which ω is the time-point average.
For the incubation period we use our estimates from Table 1 (mean 4.84, standard deviation 2.79), which

are anyway similar to those estimated by others. However, information about any form of pre-symptomatic
transmission is hard to obtain but crucial for R0 estimates [34-37 ]. Furthermore, there is also limited information
concerning how infectivity changes over time. Therefore, Table S1 reports the estimates we obtain assuming the
infectious period starts at the onset of symptoms, one, two or three days earlier, and assuming a Gamma-shaped
infectivity with mean 2 or 3 days. In both cases, the standard deviation is assumed to be 1.5 and the infectivity
is truncated after 7 days (see Figure S4).

We conclude that the estimates of R0 are highly sensitive to small variations in quantities that are poorly
supported by available data, but that for a growth rate of 0.25 day−1, close to what is observed in Italy and the
UK, are also generally larger, and possibly much larger, than official estimates [3, 12-15 ]. Smaller values in this
range are associated with significant amounts of pre-symptomatic transmission [34 ], leading to a generation time
for example compatible with some of the shortest estimates of the serial interval seen in the literature [51 ], and
with a front-loaded infectivity curve (mean 2, rather than 3).

We tested further assumptions. A simple SEIR model, with exponentially distributed incubation and infectious
periods (with the same means as above but constant infectivity) leads to much smaller values of R0 than our
estimates, as it favours really short incubation periods (Table S1B, left). Estimates, instead, do not change
significantly if high variability in total infectiousness between individuals, in line with what observed for SARS, is
assumed (Table S1B, right) or if 50% of cases are assumed to be fully asymptomatic and transmit at half the rate
as those with symptoms (not shown).

These simple estimates are obtained under the assumption of mass-action mixing. The explicit presence of a
social structure (e.g. age-stratification, household/network structure, etc.), which in principle could affect them, is
likely negligible in such a high R0 and growth rate regime [52 ]. The effect of the social structure on transmission
is expected to grow in importance (especially the household structure, since isolation and quarantine facilitate
within-household transmission) the closer R0 is to 1.
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Fig. S1: GAM and GLM model fit for multiple countries. Left panel: model fit and data; middle panel:
instantaneous growth rate from the GAM (black) and the (constant) growth rate from the GLM (red) with 95%
CI; right panel: doubling time from GAM (black) and GLM (red). The x-axis gives time since 21 February 2020.
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Fig. S2: Linear version of Figure 2 from the main paper.
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Fig. S3: Growth rates in different EU countries and visual comparison with simple exponential growth. A ‘mixed
bag’ of numbers of daily new confirmed cases, cumulative confirmed cases, hospitalisations and deaths, all showing
similar fast growth. Visible exceptions are: Sweden, which has changed testing regime; Italy, where growth in new
confirmed and cumulative confirmed cases appears to be slowing down from beginning of March (quarantining
infected towns from 22-23 Feb) and growth in hospitalisations around a week later (deaths not slowing down yet);
deaths in Netherlands and new cases in Spain, which are growing even faster than the rest. Coloured dashed lines
are pure exponential growth with r = 0.25 day−1 (doubling time of 2.77 days, in the same ballpark as UK and
Italy). No statistical fit is performed: lines’ slope and intercept are purely eyeballed. Black thick dashed lines
show growth at r = 0.18 day−1 (doubling time of 3.85 days). Black thin dotted line shows growth at r = 0.13
day−1 (doubling time of 5.33 days). Notice how this is roughly the growth in cases (new and cumulative) and
hospitalisations in Italy around 17 March.
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Fig. S4: Random variability in the generation time distribution (thin coloured lines) and time-point average
(thick black line).
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6.20 5.37 4.40 3.39 6.81 5.84 4.78 3.80

R0,	assuming	infectivity	peaks	in	2	days

Days	of	pre-symptomatic	transmission:

R0,	assuming	infectivity	peaks	in	3	days

Doubling	
time	(day)

Growth	rate	
(1/day)

A

R0	for	SEIR	model R0	assuming	variability	in	total	infectiousness	between	cases

Growth	rate	
(1/day)

Doubling	
time	(day)

Days	of	pre-symptomatic	transmission: Days	of	pre-symptomatic	transmission:
B

Days	of	pre-symptomatic	transmission:

Generation	time:

Generation	time:

Table S1: Values of R0 derived from different growth rates and different modelling assumptions. A) Gamma-
distributed latent period with estimates from Table 1, and Gamma-shaped infectivity profile with mean 2 (left)
and 3 (right) and standard deviation 1.5; B) SEIR model (left) and same model as in A) but assuming total
infectiousness is randomly drawn from a Gamma-distribution with mean 1 and standard deviation 1/

√
k, with

k = 0.25.
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