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Abstract 18 

Objective: Auditory brainstem response (ABR) is widely employed to assess 19 

auditory function of humans and lab animals. Despite attempts to automation, ABR 20 

threshold determination still relies on human visual inspection on average responses. 21 

The aim of this study is to develop a robust procedure for automatic and accurate 22 

threshold determination. 23 

Design: Signal lag of maximal cross-covariance between sub-averaged sweeps was 24 

utilized to test the existence of time-locked components during progressive averaging 25 

by iterations. The minimal number of iterations required to reach the critical lag value 26 

versus sound level series was modeled to inform the estimation of ABR threshold. 27 

Study Sample: Test datasets containing single ABR sweeps were acquired from eight 28 

mice and four human participants. 29 

Results: To reach the critical lag value, weak responses at near-threshold levels 30 
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required more sweep averaging than strong responses at supra-threshold levels, 31 

allowing precise and robust determination of the ABR threshold. Moreover, by 32 

contrast to level averaging over fixed sweep number the algorithm saved up to 69 % 33 

and 36 % sweeps at supra-threshold sound levels for the threshold determination in 34 

mice and humans, respectively. 35 

Conclusion: Implementation of this method in commercial devices will automate the 36 

ABR test in a more reliable and efficient fashion.  37 
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Introduction 38 

The auditory brainstem responses (ABRs) are brain electrical potential changes due to 39 

synchronous neuronal activities evoked by supra-threshold acoustic stimuli (Jewett et 40 

al., 1970). These responses are detectable using non-invasive surface electrodes 41 

placed on the scalp of test subject. The ABR test is widely employed to assess the 42 

hearing function, particularly for infants, adults with learning disabilities and patients 43 

undergoing operation, to whom a test through communication or body movements is 44 

not applicable (Jacobson et al., 1990). Typical ABR waveform is composed of five 45 

peaks in the early onset of sound evoked potentials, corresponding to synchronous 46 

activities arising from auditory nerve, cochlear nucleus, superior olivary complex, 47 

lateral lemniscus and inferior colliculus, respectively. Thereby, features of the ABR 48 

waveform including peak latencies and amplitudes provide clinical-significant 49 

information, for instance hidden hearing loss (Mehraei et al., 2016; Ridley et al., 50 

2018), tinnitus (Bramhall et al., 2018; Castaneda et al., 2019), site of lesions or 51 

tumors in the auditory system (Roeser et al., 2007) based on the way how the 52 

waveform is altered. 53 

Although the ABR test itself is considered objective, the waveform recognition at 54 

near-threshold level is not always trivial. Currently, professionals are still required to 55 

supervise recording and interpret results, which account for the largest cost 56 

component of the test. Moreover, as accurate waveform recognition highly depends 57 

on the skill and the experience of the human assessors, often limited consensus occurs, 58 

especially when untypical waveform or high background noise are encountered 59 
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(Vidler and Parkert, 2004). As diagnosis of progressive and acquired hearing loss in 60 

preschool children (Lu et al., 2014; Lu et al., 2011) and categorizing temporal 61 

threshold shifts caused by noise exposure (Le Prell, 2019) require comprehensive 62 

hearing screening with high accuracy and robustness, there is an increasing demand 63 

for automatic approaches making the ABR test less labor-intensive. 64 

The fundamental challenge of automated ABR analysis is high-level noise 65 

contamination. In order to improve the signal-to-noise ratio (SNR) for unambiguous 66 

waveform recognition, averaging over hundreds of sweeps is exclusively required. 67 

Hence, ABR results are usually provided with statistical measures like well-known 68 

single- and multiple-point F-ratio (Fsp and Fmp) for evaluating the signal and noise 69 

characteristics (Don and Elberling, 1994; Elberling and Don, 1984). Over decades, 70 

several methods were proposed to automate the procedure. Feature-based strategies 71 

detect responses by quantifying the similarity of measured waveforms to either 72 

existing templates (Valderrama et al., 2014) or waveforms evoked by adjacent sound 73 

levels (Suthakar and Liberman, 2019), as well as by features learned by artificial 74 

neural network from human-annotated datasets (Alpsan and Ozdamar, 1991; 75 

McKearney and MacKinnon, 2019). However, the detection accuracy is often limited 76 

owing to waveform heterogeneity, varying data quality, and inconsistent training data 77 

(McKearney and MacKinnon, 2019). Alternatively, statistics-based strategies quantify 78 

either inter-sweep variability using correlation function (Bershad and Rockmore, 1974; 79 

Weber and Fletcher, 1980; Xu et al., 1995) or the ‘signal quality’ through scoring 80 

procedures like F-ratios (Don and Elberling, 1994; Elberling and Don, 1984), but 81 
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reliable response thresholding only is only obtained under a narrow range of 82 

experiment conditions. Although some approaches mentioned above have already 83 

been integrated in commercial devices, nowadays reliable threshold determination 84 

still involves human supervision due to frequent detection errors.  85 

In this study, we first tried to calibrate the single-sweep covariance measurement 86 

for ABR waveform detection and observed large inter-trial variability of both pairwise 87 

correlation coefficient and Fsp-ratio at the threshold level, limiting the reliability and 88 

accuracy of this approach. Next, we bypassed this limitation by proposing a novel 89 

procedure, in which time-locked ABR was detected with fixed cross-covariance 90 

criterion from progressively averaged responses by iterations and the executed 91 

iteration counts versus level function was modeled to interpolate for the threshold 92 

level beyond the sampling resolution of level series. Mouse and human ABR results 93 

suggested that the algorithm outcomes matched the expert assessments with a 94 

maximal aberration of 5 dB. Besides, in our hands the algorithm required up to 69 % 95 

and 36 % fewer sweeps for threshold determination in mice and humans, respectively. 96 

  97 
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Materials and methods 98 

Animals, human participants and ethics 99 

C57BL/6 mice were purchased from Sino-British SIPPR/BK Lab Animal Ltd. 100 

(Shanghai, China). The telomerase-knock-out mice were kindly donated by Prof. Lin 101 

Liu (Nankai University, China) and bred in house. Human participants were recruited 102 

from Shanghai Ninth People’s Hospital and consent forms were signed before the 103 

experiment. This study is conduct at the Ear Institute and the Hearing and Speech 104 

Center of the hospital. All procedures were reviewed and approved by the Institutional 105 

Authority for Laboratory Animal Care (HKDL2018503) and the Hospital Ethics 106 

Committee for Medical Research (SH9H-2019-T79-1). 107 

 108 

ABR recording 109 

Mouse ABR sweeps were recorded using TDT RZ6/BioSigRZ system (Tuck-Davis 110 

Tech. Inc., US) in a sound-proof chamber. 7-week-old mice were anesthetized through 111 

intraperitoneal injection of hydrate chloride (500 mg/kg). During the recording, 112 

animal body temperature was maintained at 37 °C using a regulated heating pad 113 

(Harvard Apparatus, US) with rectal thermal probe. Electrical potentials were 114 

registered via subdermal needle electrodes (Rochester Electro-Med. Inc., US) placed 115 

at animal vertex (record electrode), left infra-auricular mastoid (reference electrode) 116 

and right shoulder region (ground electrode). 3-millisecond tone pips at 16 kHz were 117 

delivered via a multi-field magnetic speaker (Tuck-Davis Tech. Inc., US) positioned 118 

at 10 cm from the animal vertex. Evoked potentials upon repeated stimuli (20 Hz) 119 
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were sampled at 24 kHz. 500 sweeps were acquired at test sound level series starting 120 

from 90 to 0 dB with 5-dB decrement. For one animal (Suppl. Figure 2), we acquired 121 

potentials starting from +10 to –10 dB around predetermined threshold level with 122 

1-dB decrement. 123 

Human ABRs were recorded using commercial ABR device (Intelligent Hearing 124 

Systems, US) with Smart EP software from four volunteers aged 21-29 years without 125 

preselection based on their medical conditions. Click sound stimulation (100 μs 126 

duration, rectangular envelopes) was generated and presented monaurally through 127 

ER3 insert earphones with foam tips at a rate of 37.1/s with alternating polarity. 128 

Electrode impedance was less than 5 kΩ and interelectrode impedance was within ±1 129 

kΩ. Artifact rejection level was < 31% (rejection voltage 31 μV) to reduce response 130 

contamination of high EEG levels and myogenic activities. The recorded potentials 131 

were sampled at 40 kHz and amplified by a factor of 100,000. 100 Hz (high-pass) and 132 

3000 Hz (low-pass) filters were applied. Average responses over 500, 1000, and 2000 133 

sweeps were acquired three times at level series starting from 60 to 0 dB with 5-dB 134 

step size. 135 

 136 

Single-sweep covariance analysis 137 

Mouse ABR sweeps were analyzed using self-written routines in MATLAB 138 

(MathWorks Inc., US). The rejection amplitude of artifacts was set to 55 μV and a 139 

high-pass filter (smoothing splines with a smoothing parameter of 0.5) was applied to 140 

the raw recordings. The pairwise correlation coefficients were computed using 141 
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MATLAB function from 350 sweeps within a temporal window of 0-6 ms 142 

post-stimulation onset, resulting in 61,075 coefficients (350×349/2 sweep pairs) at 143 

each sound level. Histograms of the coefficients were fitted with shifted normal 144 

distributions. 145 

 146 

Progressive sub-average cross-covariance analysis 147 

For mouse ABR, 350 sweeps were loaded progressively by seven iterations (50 148 

sweeps per executed iteration). In each iteration, sweeps were randomly subdivided 149 

into two groups for separated averaging. Cross-correlation between sub-averages was 150 

computed to measure the signal lag of the maximal correlation-coefficient. 151 

Time-locked responses were detected based on the criterion whether the measured lag 152 

was fewer than 1 data point (equivalent to 1% of the analyzed record length, 1-6 ms 153 

post-stimulation onset). In order to reject cases of coincidently overlapped noise 154 

peaks with similar latency (false positives), three parallel runs were performed with 155 

regrouped sweeps. The executed iterations were counted to obtain the minimal sweep 156 

number required for detectable responses. The iteration upper limit was set to seven 157 

for total 350 recorded sweeps. Sigmoid and exponential function were employed to 158 

model the development of the normalized iteration counts (NC) with the presentation 159 

level (S). For modeling with sigmoid function (1), the best fit-parameter α = 0.6. At 160 

function growth of 0.9 interpolation was perform to determine the threshold level (T). 161 

For modeling with exponential function (2), the best fit-parameter α’ = 0.25 and the 162 

function growth of 1 was used to interpolate for the threshold level. 163 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. certified by peer review)

(which was notThe copyright holder for this preprint this version posted April 14, 2020. ; https://doi.org/10.1101/19003301doi: medRxiv preprint 

https://doi.org/10.1101/19003301
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

��� �
�

����������
   (1) 164 

��� � ���’ �����  (2) 165 

As for human ABR, average responses over 500, 1000 and 2000 sweeps were 166 

used as inputs for the algorithm variant (Suppl. Figure 4A). In each iteration three 167 

cross-correlation runs were performed with the combination of two out of three 168 

sub-averages which were updated with 500 more sweeps. The iteration upper limit 169 

was set to seven for maximum average over 3500 sweeps. Note that to generate 170 

average responses over 1500, 2500, 3000 and 3500 sweeps weighted averaging (3) 171 

was used, in which avg(M), avg (N) and avg(M+N) referred to averages over M, N 172 

and M plus N sweeps, respectively. 173 
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	��
     (3) 174 

The lag criterion for the time-locked component was fewer than 7 data points 175 

(equivalent to 2 % of the analyzed record length, 0-10 ms post-stimulation onset). 176 

Same as for the mouse ABR, 0.9 was used to interpolate for the threshold level on the 177 

best-fit sigmoid growth. 178 

 179 

Human assessment of ABR threshold 180 

Human ground truth of the ABR threshold was obtained from visual inspection of 181 

waveforms at level series by five clinicians independently. Each of them was provided 182 

with average responses either over fixed sweep number (the conventional averaging) 183 

or over those used in the algorithm (the algorithm averaging). They were supposed to 184 

determine the lowest level with the presence of ABR waveform. They were blinded to 185 
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the test subject identities and the assessments from others. Means of the determined 186 

thresholds were used as ground truth to compare with algorithm outcomes.  187 
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Results 188 

ABR Thresholding by covariance analysis of single-sweeps 189 

ABRs are usually embedded in high-level background activities and system noise, 190 

and thereby smooth baseline and clear waveform, if present, require averaging over 191 

hundreds of sweeps. To generate test datasets, we recorded from mice single-sweeps 192 

upon 16 kHz tone-pips at different sound levels (Figure 1A). After exclusion of those 193 

with movement-induced excessive amplitudes, more than 350 sweeps were obtained 194 

and filtered sequentially through a high-pass filter (Nishida et al., 1993) to remove 195 

low frequency fluctuations in the short-latency component (Suppl. Figure 1). At each 196 

presentation level, pairwise correlation-coefficients (CCs, a statistical measure of 197 

waveform similarity) were sampled. Positively shifted distributions were obtained 198 

with increased sound levels, indicating elevated degrees of correlation (Figure 1B). 199 

Together with prior study (Galbraith, 2001), this result suggests that single-sweeps of 200 

supra-threshold ABRs are highly correlated. 201 

Next, we attempted to calibrate the CC criterion for reliable ABR thresholding. 202 

Recordings were performed at level series starting from 90 to 0 dB on three wild-type 203 

(wt) of normal hearing and five telomerase-knock-out mice (terc-/-) with high risk of 204 

deafness. Example ABR runs were illustrated in Figure 2A and the medians (peak 205 

positions) of pairwise CCs were plotted as a function of the level series (Figure 2B). 206 

Shifted rising phases of about 30 dB were observed when compared the CC median – 207 

level function of the terc-/- animal to that of the wt animal, consistent with the elevated 208 

threshold of the terc-/- animal. Together with early theoretical work (Bershad and 209 
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Rockmore, 1974), this result confirmed CC as a promising measure for detecting 210 

supra-threshold responses. In order to obtain the boundary value of CC for 211 

supra-threshold responses, we plotted the CC medians as a function of levels relative 212 

to the human-determined thresholds (Figure 2C). Large inter-trial variability (0.0119 213 

± 0.0034, mean ± s.d.), which was presumably caused varying SNRs of recordings 214 

under different experimental conditions (such as electrode position, depth of 215 

anesthesia, etc.), was observed and compromised a reliable ABR thresholding via this 216 

approach. Similarly, when Fsp-ratio was employed in the replacement of CC (Figure 217 

2D & E), large variation (3.09 ± 1.53, mean ± s.d.) persisted in the measured 218 

Fsp-rations at the threshold level. 219 

 220 

Threshold detection using cross-correlation test during ongoing averaging 221 

It had been shown above that both CC and Fsp-ratio measured at the threshold level 222 

differed from trial to trial, presumably due to varying SNRs of recordings. Within 223 

each trial, however, constant noise level is expected and weak response thereby 224 

requires more averaging than strong response to reach the same SNR level. Based on 225 

this idea, we designed a novel procedure for threshold determination by modeling the 226 

minimal required sweep number for an average response to reach stationary SNR 227 

criterion as a function of level series (Figure 3A). In detail, single-sweeps were 228 

randomly divided into two groups (Figure 3A – (I)) and the signal lag for maximal 229 

peak overlap between group averages (Figure 3B for averages of all sweeps; Figure 230 

3C for sub-averages) was searched using cross-correlation function (Figure 3A – (II)). 231 
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For time-locked ABRs, irrespective of waveform and amplitude, a neglectable lag 232 

(here the lag criterion k < 1 data point) was expected (Figure 3A – (III), see Figure 233 

3D for measured lags between sub-averages). To reject false positives caused by 234 

coincidently overlapped noise peaks with similar latency, three parallel runs were 235 

performed with regrouping. Upon detection of time-locked response, the procedure 236 

was then repeated with sweeps recorded at lower sound level; when time-locked 237 

response was under detected or absent, additional sweeps were added iteratively to 238 

increase total number for the random-split averaging until the iteration upper limit 239 

(Imax = 7) was reached (Figure 3A – (IV)). As illustrated in Figure 3E, we found that 240 

the counts of executed iterations increased rapidly when approaching to the threshold 241 

level. That was expected, because to reach the lag criterion weak responses of small 242 

amplitudes required more sweep averaging to suppress noise peaks. Here the iteration 243 

upper limit was crucial to avoid infinity iterations, as time-locked responses were 244 

absent from the averages at sub-threshold levels. 245 

So far, we showed that this procedure was able to determine the lowest 246 

supra-threshold level (last level with iteration counts fewer than upper limit) and 247 

highest sub-threshold level (first level with reached iteration upper limit). Further 248 

attempt was made to interpolate for the threshold beyond the step size of sampled 249 

levels (Figure 3F). From one animal, we acquired single-sweeps with level series of 250 

1-dB- instead of 5-dB step size. By fitting the rising phase of the normalized iteration 251 

counts with different functions, the threshold was found at 1 on the exponential 252 

growth and 0.9 on the sigmoid growth (Suppl. Figure 2). In our hands, fitting with 253 
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sigmoid function was more reliable than that of exponential function, especially when 254 

limited data points were present at the rising phase. Thus, we used 0.9 on the sigmoid 255 

growth for threshold interpolation with 5-dB-spaced level series. In addition, this 256 

procedure was not limited to the detection method of ABR waveform. Similar results 257 

were obtained when measured mean Fsp-ratio at the threshold (Fsp-threshold = 3.09, 258 

Figure 2E) was utilized in the replacement of the lag criterion for response detection 259 

(Suppl. Figure 3). 260 

 261 

Accuracy and efficiency of the new method for threshold determination 262 

To evaluate the performance of the new method, we compared the 263 

algorithm-determined thresholds with human ground-truth on both mouse and human 264 

ABR. Note that for human ABR, sub-averages were separately acquired instead of 265 

generated by random-split averaging, as single-sweep registration mode was not 266 

applicable on the commercial devices we used (see Suppl. Figure 4A for the 267 

modified flowchart and Materials and Methods for details). Close matches were 268 

found between the algorithm-determined thresholds and the readouts of five 269 

independent clinicians (2.5 ± 1.6 dB for mouse ABR and 0.75 ± 0.95 for human ABR, 270 

mean ± s.d., Figure 4A & Suppl. Figure 5A), suggesting a detection accuracy of 271 

near-human-performance. Besides, upon detected responses ongoing averaging was 272 

stopped by the algorithm at supra-threshold levels and fewer sweeps in a 273 

response-amplitude-dependent manner did not appear to influence the waveform 274 

recognition by human (Figure 4B & Suppl. Figure 5B). When compared to 275 
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averaging with fixed sweep number, the new method required 69.39 ± 17.45 % and 276 

36.19 ± 17.53 % (mean ± s.d.) fewer sweeps in mouse and human ABR, respectively, 277 

without compromising the detection accuracy (Figure. 4C & Suppl. Figure 5C). 278 

  279 
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Discussion 280 

Since decades attempts have been made to automate ABR analysis. Several 281 

techniques were proposed including correlation function for detecting time-locked 282 

waveform in random fluctuations. In this study, we first reinvestigated the pairwise 283 

CCs of single-sweeps as a function of level series: (1) constant peak broadening of 284 

CC distributions across sound levels was observed (Figure 1B). Considering the 285 

broadening as a consequence of random correlation and anti-correlation of noise 286 

peaks with evoked responses, this result implied high fidelity of auditory transmission 287 

and stable noise level for single experiment; (2) within single recording session, CC 288 

peak position increased monotonically with elevated test sound level (Figure 2B). 289 

Often slow increase or even decline in CCs was observed at 30 dB above the 290 

threshold level. The reason was unclear and might suggest none-linear change of 291 

response peak amplitudes at those levels; (3) the obtained CCs at the threshold level 292 

showed large trial-to-trial variations (Figure 2C). Together with similar result of 293 

quantification using Fsp-ratio (Figure 2D & E), we concluded that this approach is 294 

sensitive to experimental settings (for instance electrode position, anesthesia depth, 295 

etc.) and thereby may not be suitable for reliable response detection across multiple 296 

test subjects or recording sessions.  297 

To bypass this limitation, we proposed a novel strategy. While keeping a 298 

stationary waveform detection criterion, we asked the minimal sweep number for an 299 

average response to reach that criterion and in turn the threshold was informed by 300 

development of this number with level series. By contrast to prior studies, in which 301 
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signal lag of maximal correlation was used to detect auditory evoked responses in two 302 

consecutive recordings (Xu et al., 1995), here the lag criterion was applied to 303 

random-split averaged responses, so that multiple test runs were possible by 304 

regrouping. At near-threshold levels, we observed a fast increase of the minimal 305 

sweep number (reported as the executed iteration counts in the algorithm) for 306 

sub-averaged responses to reach the lag criterion (Figure 3F). Since varying noise 307 

level only contributes to the baseline sweep numbers, the location of the characteristic 308 

fast rising is supposed to be threshold-specific and insensitive in different 309 

experimental trials. Besides, neither the selection of the lag criterion nor maximal 310 

iteration number played critical role for the threshold determination, because the 311 

measured lags were much larger at sub-threshold than supra-threshold level (Figure 312 

3D) and shifting iteration upper limit caused only little change of the corresponding 313 

level due to the exponential-like growth (Figure 3E, Suppl. Figure 2). These features 314 

made our approach robust and almost calibration-free. Next, we showed that precise 315 

threshold determination was possible by modeling and interpolation beyond the 5-dB 316 

step size of sampled levels (Figure 3F), in our case up to 1 dB. Further development 317 

of this method is to combine with sampling strategy of progressively reduced level 318 

step size and increased sweep averaging per iteration at near-threshold sound levels in 319 

order to estimate the model in a more precise and efficient way (Cebulla and 320 

Sturzebecher, 2015).  321 

For both mouse and human ABR, the new method was proven reliable in 322 

threshold determination and required fewer sweeps at supra-threshold levels. This 323 
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selective reduction did not cause increased difficulty in waveform assessment by 324 

human (Figure 4B & Suppl. Figure 5B), as SNR of responses at near-threshold is 325 

most crucial for the threshold determination. Such feature is attractive in two respects. 326 

First, it provides minimal quality control for unambiguous waveform recognition for 327 

both human and machine. Further, standardized data will benefit 328 

machine-learning-based approaches by minimizing discrepancy in training data 329 

(McKearney and MacKinnon, 2019). Second, when to stop averaging is an important 330 

decision to make during ABR recording, the new method not only makes the ABR test 331 

more efficient by avoiding prolonged acquisition and redundant data, but also 332 

specifies the confidence level of waveform interpretation (Don and Elberling, 1996; 333 

Madsen et al., 2018). Based on our quantification, up to 69 % sweeps in mouse ABR 334 

and 36 % in human ABR were saved when ongoing averaging was stopping upon 335 

detected responses (Figure 4C & Suppl. Figure 5C), implying the potentials of 336 

bursting the regular ABR test in speed and efficiency. 337 

  338 
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Figure Legends 358 

Figure 1. Pairwise CCs of single-sweep mouse ABRs. (A) Example sweeps recorded 359 

at four different sound levels (grey lines). Average responses (colored lines) were 360 
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obtained from 350 sweeps. (B) Distributions of pairwise CCs from (A) were fitted 361 

with normal distributions (colored lines, mean full-width-at-haft-maximum was 362 

0.1778 ± 0.0154, mean ± s.d.) with varying peak positions. 363 

 364 

Figure 2. Quantification of pairwise CC and Fsp-ratio at the threshold level. (A) 365 

Example average responses of 350 sweeps recorded from a wt animal (black lines) 366 

and a terc-/- animal (red lines). Attenuated ABR amplitudes were observed: > 25 dB 367 

for the wt animal (pointed by black asterisk) and > 55 dB for the terc-/- animal 368 

(pointed by double red asterisks). (B) Plot of the pairwise CC medians vs. the level 369 

series. A shifted rising of CCs by about 30 dB in level was observed between the wt 370 

(black dots) and the terc-/- animal (red cycles). (C) Plot of pairwise CC medians vs. 371 

levels relative to the threshold. Datasets of three wt (black dots) and five terc-/- animal 372 

(red cycles) were centered to the human-determined thresholds (pointed by asterisks). 373 

Mean of CC medians at the threshold (level = 0) was 0.0119 ± 0.0034 (mean ± s.d., 374 

varying from 0.0090 to 0.0199). (D) Similar to (B), plot of Fsp-ratios vs. the level 375 

series. (E) Similar to (C), plot of Fsp-ratios vs. levels relative to the threshold. Mean of 376 

Fsp-ratios at the threshold was 3.09 ± 1.53 (mean ± s.d.). 377 

 378 

Figure 3. Progressive sub-average cross-covariance test of mouse ABR. (A) 379 

Flowchart of the algorithm, in which argA, argB, argC referred to the subgroup 380 

averages (I), xcorr the cross-correlation operation (II), k the lag criterion for 381 

time-locked responses (here k = 1 data point, 1% of record length, III), r1, r2, r3 the 382 
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outcomes of three parallel runs, as well as Imax the iteration upper limit (Imax = 7 for 383 

total 350 sweeps, IV). (B) Example average responses of 350 single-sweeps recorded 384 

from mouse. The human-assessed threshold was 30 dB (black asterisk). (C) Averaged 385 

responses (black and grey lines) of random-split sweeps at the level series. (D) Mean 386 

lags for maximal overlap between sub-averages from three parallel cross-correlation 387 

runs were plotted as a function of the level series. At supra-threshold levels (dots) 388 

small lags were obtained, while large amplitude and significant inter-trial variability 389 

(31.11 ± 16.12 data points, mean ± s.d.) were observed at sub-threshold levels 390 

(cycles). (E) Increased number of sweeps (50 sweeps per iteration) were used for 391 

random-split averaging, until the lag criterion (k < 1 data point) was fulfilled. 392 

Executed iteration counts (dots) were plotted as a function of the level series. If the 393 

iteration upper limit (Imax, dash red line) was reached at two consecutive levels 394 

(cycles), the time-locked response was considered absent from the average and the 395 

algorithm was aborted to stop testing at lower levels (triangles). (F) The normalized 396 

iteration counts vs. level function was fitted by a sigmoid function and 0.9 on the 397 

growth was used to interpolate for the ABR threshold between adjacent levels (see 398 

Suppl. Figure 2 for the calibration). 399 

 400 

Figure 4. Performance of the new method on mouse ABR. (A & B) Average 401 

responses (n = 8) were generated by averaging total 350 sweeps (A, conventional 402 

averaging) or those used in the executed iterations (B, algorithm averaging). The 403 

mean thresholds determined independently by five clinicians were consistent with the 404 
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algorithm outcomes (aberration δ = 2.50 ± 1.60 dB in A and 2.13 ± 2.47 dB in B, 405 

mean ± s.d.). Linear fit: adjust R2 = 0.9587 in A and 0.9713 in B. (C) Comparison 406 

between the sweep number used in the conventional averaging (left bar) and the 407 

algorithm averaging (right bar). Note that the sweeps were counted at all 408 

supra-threshold and two highest sub-threshold level for both averaging modes. The 409 

algorithm averaging used 69.39 ± 17.45 % (mean ± s.d.) fewer sweeps than the 410 

conventional averaging. 411 
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