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ABSTRACT 
 
Background 
As COVID-19 continues to spread around the world, understanding how patterns of human 
mobility and connectivity affect outbreak dynamics, especially before outbreaks establish 
locally, is critical for informing response efforts.  
 
Methods 
Here, in collaboration with Facebook Data for Good, we built metapopulation models that 
incorporate human movement data with the goals of identifying the high risk areas of disease 
spread and assessing the potential effects of local travel restrictions in Taiwan. We compared the 
impact of intracity vs. intercity travel restrictions on both the total number of infections and the 
speed of outbreak spread and developed an interactive application that allows users to vary 
inputs and assumptions.  
 
Findings 
We found that intracity travel reductions have a higher impact on overall infection numbers than 
intercity travel reductions, while intercity travel reductions can narrow the scope of the outbreak 
and help target resources. We also identified the most highly connected areas that may serve as 
sources of importation during an outbreak. The timing, duration, and level of travel reduction 
together determine the impact of travel reductions on the number of infections, and multiple 
combinations of these can result in similar impact. 
 
Interpretation 
In Taiwan, most cases to date were imported or linked to imported cases. To prepare for the 
potential spread within Taiwan, we utilized Facebook’s aggregated and anonymized movement 
and colocation data to identify cities with higher risk of infection and regional importation. 
Both intracity and intercity movement affect outbreak dynamics, with the former having more of 
an impact on the total numbers of cases and the latter impacting geographic scope. These 
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findings have important implications for guiding future policies for travel restrictions during 
outbreaks in Taiwan.  
 
Funding 
Ministry of Science and Technology in Taiwan and National Institute of General Medical 
Sciences in USA 
 
 
 
INTRODUCTION 
 
The Coronavirus Disease 2019 (COVID-19) was first reported in Wuhan, China in December 
2019 and has since caused a global pandemic, with over 500,000 confirmed cases and over 
23,000 deaths reported by March 27, 2020.1 Scientific discoveries have advanced at an 
unprecedented pace, with numerous clinical trials of drugs underway,2 and a phase 1 vaccine trial 
beginning in Seattle.3 Despite these advances, no pharmaceutical interventions are yet available. 
In the meantime, public health officials must rely on other interventions, such as social 
distancing and travel restrictions, to slow the spread and reduce the peak of the outbreak, in order 
to prevent health systems from being overwhelmed.4,5  
 
In January 2020, as the epidemic in Wuhan grew, many countries implemented travel bans, and 
airlines canceled flights to attempt to slow the spread.6 A number of studies have estimated the 
risk of importation globally, with some suggesting up to two-thirds of all imported cases went 
undetected.7,8 For Taiwan, there have been 267 reported cases as of March 27, 20209, with 227 
imported (85%) and 40 local cases (15%). 37 local cases (92.5 %) were linked to imported or 
known cases, and 3 local cases (7.5 %) have unknown origin.  
 
As the number of cases globally due to community transmission grows relative to the number of 
imported cases, attention has turned to more local measures to decrease spread, such as 
cancellations of mass gatherings, business closures, and local travel restrictions.10 Mobility data 
can provide critical information for responding to outbreaks and understanding the impact of 
travel restrictions.11 Recent studies have analyzed the effects of human mobility and travel 
restrictions on disease spread in China.12,13 Here, to prepare for COVID-19 and its impact, in 
collaboration with Facebook Data for Good, we describe the metapopulation models we’ve built 
that include human movement data to better understand the high risk areas of disease spread and 
assess the potential impact of local travel restrictions in Taiwan.  
 
 
METHODS 
 
Movement data 
We incorporated two different sources of movement data from Facebook into our models. In the 
first model, we used Facebook’s newly developed colocation matrices (Facebook colocation 
data), which give the probability that people from two different geographic units will be in the 
same 600 m × 600 m location for five minutes using data over the course of a week. In the 
second model, we used Facebook’s regular movement data (Facebook movement data), which 
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aggregates the number of trips Facebook users make between locations over time (Figure S1).14 
Facebook movement data between January 26th and March 9th were used and were disaggregated 
by Lunar New Year (January 26th to January 29th), weekdays (Monday to Friday between 
January 30th and March 9th, except February 28th, a National Public Holiday in Taiwan), and 
weekends (Saturdays and Sundays between January 30th and March 9th plus February 28th).  
 
Colocation covered five different weeks, with one including the Lunar New Year (January 10th to 
16th) and the other four including only regular days (February 16th to 22th, February 26th to March 
3rd, March 4th to March 10th, and March 11th to March 17th). As the colocation data from the four 
regular weeks were very similar, we used data from February 16th to 22th for our model. The 
geographic unit used in this study was at the centrally-governed level of “city” (here “city” 
indicates city, county or special municipality in Taiwan). Shape files were downloaded from 
Government open data platform (https://data.gov.tw/dataset/7442). We excluded three cities 
outside of the main island of Taiwan from the analysis due to their low connectivity with the 
main island, leaving 19 cities.  
 
Models 
We developed susceptible-exposed-infectious-recovered (SEIR) models of the spread of 
COVID-19 throughout Taiwan. Note that this model does not attempt to fit epidemiological 
dynamics to data on COVID-19 cases, and we do not account for the many complexities 
associated with asymptomatic transmission and different clinical outcomes. Rather, we aim to 
examine the spatial dynamics that would result from transmission of SARS-COV-2 across 
Taiwan under various mobility scenarios. As such, these dynamics may be generalizable to other 
pathogens with similar transmission routes.  
 
We ran a deterministic SEIR model to analyze the overall infection dynamics, including time to 
peak and peak size, and we also ran the models stochastically to better understand the initial 
stages of disease spread. We ran the stochastic model until (1) it reached n accumulated 
infections or (2) the total number of infections became 0 to estimate the probability of having 
more than n infections (denoted by Pn,k, where k represents the number of initial infections), the 
time it takes to reach n infections (denoted by Tn,k), and the standard deviation of infection 
numbers at Tn,k (denoted by Vn,k). To assess the initial stages of the outbreak, we used n=1000 
and k=3 as our baseline values.  
 
Let Si, Ei, Ii, Ri be the number of susceptible, exposed, infectious, and recovered individuals in 
location i, respectively, and Ni be the total population in location i. Let R0 (=2.5)15 be the average 
number of secondary infections from one infected individual, DE (=5)16 be the incubation period 
(i.e. time from exposure to symptom onset), and DI (=7)17 be the duration of infectiousness.  
 
We incorporated the Facebook data into these models in two ways. In the “contact model”, we 
used the Facebook colocation data (Cij, the probability that a person from location i collocates 
with a person from location j) and assumed that the contact rate between a random pair of people 
was proportional to Cij. We scaled R0 by Cij*Nj (for j not equal to i) or Cii*(Ni-1), standardized to 
Cii*(Ni-1) in Taipei, which was assumed to be the same as Wuhan.  
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 11, 2020. ; https://doi.org/10.1101/2020.04.07.20053439doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.07.20053439
http://creativecommons.org/licenses/by/4.0/


𝑑𝑆#
𝑑𝑡 	= 	−	 ( 𝑆#

𝐼*
𝑁*
𝑅-#*
𝐷/*	#012345	#

 

𝑅-#* = 𝑅-	63780
𝐶#*𝑁*

𝐶:8#;5#<:8#;5#(𝑁:8#;5# − 1)
 

𝑅-## = 𝑅-	63780
𝐶##(𝑁# − 1)

𝐶:8#;5#<:8#;5#(𝑁:8#;5# − 1)
 

 
We defined R0ii as intracity R0 and ∑ 𝑅-#**A#  as intercity R0 for location i. The sum of intracity R0 
and intercity R0 reflects total risk of infection and was standardized to the highest sum of 
intracity R0 and intercity R0 as follows: 
 

Risk of infection for location i = ∑ 𝑅-#**	#012345	# 𝑚𝑎𝑥2(∑ 𝑅-2**	#012345	2 )⁄ . 
 

Facebook colocation data from regular days were used to calculate risk of infection. 
 
In the “residence model”, we first estimated the proportion of time people living in location i 
spend in location j (Pij) based on Facebook movement data (see details in Supplementary 
Methods), and modeled the transmission dynamics by considering both that (1) non-travelers get 
infected by infectious visitors to their home location (the first part in the following equation) and 
that (2) naïve travelers get infected when they travel (the second part in the following equation).  
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The remaining equations are the same across the two models.  
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We defined K∑ LMNOM
PM*A# Q 𝑁#R  as risk of regional importation (i.e. importation from other cities 

within Taiwan) for location i, where qj represents the average number of subscribers in location j 
and mji represents the average number of people moving from location j to location i per unit of 
time in Facebook movement data. Source of importation was defined as the number of travelers 
from each location i and standardized to the highest value.  
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Source of importation for location i =∑ LNMON
PN*A# 𝑚𝑎𝑥2(∑
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PS*A2 )R  . 

 
Weekday movement data were used to calculate risk of regional importation and source of 
importation. Risk of regional importation, source of importation, and risk of infection defined 
above were calculated from movement data and represent different connectivity measures 
relevant for disease transmission. 

One of the major differences between the contact model and the residence model is that the 
transmission rate within each city (R0/DI) varies with colocation matrices in the contact model, 
while it remains constant in the residence model. In this sense, the contact model is similar to the 
traditional density dependent model, where contact rates (and therefore transmission rates) vary 
with population density, and the residence model is similar to the frequency dependent model.18 
As it is unclear which is most appropriate for COVID-19, we used both and compared the 
results.  

Modeling travel reduction 
To assess the potential effect of travel restrictions at multiple levels, we modeled either intra-city 
travel reductions, inter-city travel reductions, or a combination of both travel reductions (“overall 
reduction” in texts and figures) for 1, 2, 3, or 6 months or for the whole period of time. Travel 
reductions started from the beginning of the simulations or when there were 10, 20, 30, 50, or 
100 accumulated infections. The proportion of reduction is denoted by G. In the contact model, 
intracity reduction was modeled by R0ii*(1–G) for all i, and intercity reduction was modeled by 
R0ij*(1–G) for all i not equal to j. In the residence model, intracity reduction was modeled by 
R0*(1–G) and intercity reduction was modeled by Pij*(1–G) for all i not equal to j and Pii +(1–
Pii)*G for all i.  
 

RESULTS 

Initial stage of transmission 
 
At the end of March 2020, most cases in Taiwan were imported or linked to imported cases. 
Therefore, we explored a variety of initial conditions when estimating the probability of having 
more than 1000 infections (denoted by P1000,k, where k represents the number of initial 
infections), varying both the number of initial infections and their locations. As expected, we 
found that, if we assumed that the transmission rates varied among cities (contact model), the 
probability of having more than 1000 infections also varied, with the cities with larger intracity 
and intercity R0 (and larger risk of infection) showing larger P1000 (Figure 1, Figure S2 and Table 
S1). The top 5 cities with high risk of infection due to larger contact rates included Taipei City, 
New Taipei City, Kaohsiung City, Keelung City, Hsinchu City (Figure 2 and Table S2).  
 
In simulations where 1000 infections were reached, the time it took to reach 1000 infections 
(denoted by T1000,k) was also shorter for cities with larger intracity and intercity R0 (Figure S3). 
Due to higher mobility surrounding the holiday season, P1000,3 was higher (Figure 3) and T1000,3 
was lower during the Lunar New Year than regular days. Because of the high variation in 
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transmission rates in the contact model, the majority of infections at T1000,3 were in cities with 
larger intracity R0 no matter where the initial infections were (Figure S4). 
 
When assuming that the transmission rates in different cities were the same (residence model), 
the probability of having more than 1000 infections and the time to reach 1000 infections did not 
vary much among cities (Figure 1, Figure S3 and Table S3). P1000,3 during the Lunar New Year 
were not significantly different from regular weekends or weekdays either (Wilcoxon signed 
rank test, p-value= 0.57 [weekends] and 0.72 [weekdays]). The majority of infections at T1000,3 
were in cities with initial infections and the cities well-connected to them (Figure S4; and more 
details at https://roachchang.shinyapps.io/TW_CoV_Dynamics/). The effect of intercity 
connectivity, however, was reflected in the variation in infection numbers across cities at T1000 
(denoted by V1000; Figure S5). The variation in infection numbers was lower in more connected 
cities as the chance of spreading the virus to other cities was higher.  
 
In both models, well connected cities played more important roles, as they spread the virus to 
other cities more quickly and more widely. The top 5 cities with the highest risk of regional 
importation included Taipei City, Hsinchu City, Chiayi City, New Taipei City, and Hsinchu 
County, and the top 5 cities with the highest source values of importation were New Taipei City, 
Taipei City, Taoyuan City, Hsinchu City and Hsinchu County (Figure 2 and Table S2). In the 
contact model, these places also had higher intracity and intercity R0 values (i.e. bigger cities are 
more densely populated and more well connected) (Table S2), further increasing the speed of the 
spread. Similarly, higher travel volume during the Lunar New Year increased the spread of the 
virus at the initial stage compared to regular days in both models. 
 
The effect of travel restrictions at initial stage 
 
We analyzed Facebook’s movement data and found that intercity movement did not decrease 
between January 30th and March 9th in Taiwan among Facebook users (Figure S6A), suggesting 
that without travel restrictions imposed by the government, the public in Taiwan may not have 
reduced their frequency of travel voluntarily due to the awareness of SARS-CoV-2. We then 
examined the level to which travel restrictions could reduce the spread of SARS-CoV-2 in 
Taiwan at the initial stage of an outbreak. In both the contact model and the residence model, 
decreasing intracity movement had a much larger impact on P1000,3 (Figure 1) and T1000,3 (Figure 
S3) than decreasing intercity movement. The impact of reducing intercity travel was most 
evident in influencing how widespread the virus was: the infections were located in only a few 
cities at T1000,3 if intercity travel was reduced (Figure S5).  
 
We also examined the impact of different lengths of travel reductions (Figure 4). The probability 
of having more than 1000 infections decreased when the duration of intracity travel reduction 
increased in both models, while it did not change with the duration of intercity travel reduction. 
The results also suggest that higher levels of reduction and longer periods of reduction for 
intracity travel can have similar impacts. For example, a 60% intracity travel reduction for 2 
months had similar outcomes as a 70% reduction for 1 month. While P1000,3 did not change with 
the length of intercity travel reduction, longer intercity travel reduction led to slower progression 
of the outbreak (higher T1000,3) in the contact model and more clustered infections (higher V1000,3) 
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in both models (Figure S7). Furthermore, we found that the best timing for the travel reduction 
depended on both the duration of travel reduction and the level of reduction (Figure S8).  
 
Overall dynamics 
 
To assess the impact of travel on the overall dynamics, we performed deterministic simulations. 
Although the location of initial infections influenced the overall dynamics, with well-connected 
cities like Taipei City leading to higher total infection numbers and shorter time to peak than 
less-connected cities like Changhua County (Figure S9), the difference was minimal and 
therefore we only showed the results from Taipei (Figure 5 and Figure S10). Intracity travel 
reduction reduced the total number of infections and delayed time to peak in both the contact and 
residence models (Figure 5 and Figure S10), while intercity travel reduction had only minimal 
impact on the overall dynamics in both models. Similarly, increased intercity and intracity 
colocation probabilities during the Lunar New Year (Figure S6B) led to increased total number 
of infections and decreased time to peak in the contact model, but increasing only intercity 
movements during Lunar New Year in the residence model only shortened time to the peak 
minimally (Figure 5 and Figure S10), suggesting reducing large gatherings during holiday times 
is more important than reducing intercity travel. 

 
DISCUSSION 
 
By utilizing aggregated human movement data from Facebook, we built metapopulation models 
to understand the potential spread of SARS-CoV-2 in Taiwan given different initial conditions 
and to assess the potential impact of travel restrictions. We identified the top cities with the 
highest risk of infection as well as the top cities with the highest importation risk from other 
cities based on Facebook data and population sizes. We made a web-based interface showing the 
geographic distribution of infections at different time points (T100, T500 and T1000) in the initial 
stages of the outbreak given different locations of initial infections. This will help the public 
avoid high-risk areas, help public health professionals identify surveillance targets, and inform 
decisions on travel restrictions. 
 
Consistent with previous findings showing that international travel bans are less effective than 
social distancing within the country,6,19 we found that intracity travel reduction has a higher 
impact on disease dynamics than intercity travel reduction and increasing the length of intracity 
travel reduction increases the impact. Intercity travel reduction, however, influences the variation 
in infection numbers across cities and can reduce the number of cities that have infections at the 
initial stage of the outbreak. While intercity travel did not decrease the probability of having high 
numbers of infections, containing the infections to a few cities has important public health 
impacts, as this means surveillance system can focus on fewer cities and control efforts can be 
more targeted.  
 
Intracity travel reduction in our model is effectively the same as any measure that can reduce 
contact rates between individuals, such as social distancing, or transmission probability given 
contact, such as hand washing or wearing facemasks. These measures have been shown to be 
effective in reducing the transmission of respiratory viral pathogens in both modeling and 
empirical studies,20–24 and should be encouraged. Our study found that similar overall numbers 
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of infections can occur with various combinations of length of reductions and percent reduction 
in intracity travel (e.g. 60% reduction for 2 months had similar outcomes as 70% reduction for 1 
month). The effectiveness of travel reductions varied depending on how early into the outbreak 
they started and their duration; for example, if restrictions lasted at least three months, starting 
them as early as possible had the greatest impact on P1000,3, but if limited to only one month, 
starting them later sometimes had more of an impact and sometimes did not, depending on the 
context. Health officials can therefore take into consideration feasibility of different 
interventions, impact on society, and the capacity of the healthcare system to determine the 
optimal interventions and their duration.5  
 
We found that the volume of intercity travel around Lunar New Year, where both intercity 
movements and intracity colocation rates increased, can significantly increase the speed of virus 
spread. Another traditional holiday, Ching Ming festival, is coming soon (April 2 to 5), and the 
volume of human movement between cities during this period is expected to increase like Lunar 
New Year, but at a lower level. Our results suggest that it is important to avoid travel or reduce 
the impact of travel through measures such as limiting social interactions and wearing facemasks 
when taking public transportation to reduce the spread of the virus.  
 
Although we did not observe a significant change in intercity movements from January 30th to 
March 8th, Facebook data have the potential to track how the volume and pattern of travel change 
through time as the outbreak progresses, and we can incorporate any change in human mobility 
into the metapopulation models in nearly real time to help fight COVID-19.11,25 Moreover, our 
model utilizing human mobility data from Facebook is not limited to intercity or intracity level, 
or Taiwan. Facebook movement data are also calculated at finer geographic scales (such as 
towns) and for other countries, and our model can be easily applied in these settings to 
understand disease dynamics of COVID-19.  
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FIGURES 
 
Figure 1. The probability of having 1000 infections. P1000,3 from simulations with initial 
infections in Taipei City (representing big cities) or Changhua County (representing small cities) 
using both contact and residence models are shown. The difference between big and small cities 
was more significant in the contact model than in the residence model. Intracity and intercity 
travel reduction reduced P1000,3, while the impact of intercity travel reduction was minor. 
Increased human mobility during Lunar New Year increased P1000,3. 
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Figure 2. Connectivity measures. Three kinds of connectivity measures relevant to disease 
spread are shown. The values for bigger cities were larger. (A) Risk of infection. (B) Risk of 
importation. (C) Source of importation.  
  
(A) (B) (C) 
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Figure 3. The probability of having 1000 infections was higher with human movements 
during Lunar New year. P1000,3 was significantly higher if human mobility during Lunar New 
Year was used (Wilcoxon signed rank test, p-value= 3.82´10-6). Each point represents a city in 
Taiwan, and the red line is the x=y line.  
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Figure 4. The impact of the duration of travel reduction and the level of reduction on the 
probability of having 1000 infections. P1000,3 from the contact model (A) and the residence 
model (B) with initial infections in Taipei City. The color represents the level of reduction in 
P1000,3 (white to red represents smaller to larger reduction). ). As the duration of intracity travel 
reduction increased, P1000,3 decreased in both models. P1000,3 did not change with the duration of 
intercity travel reduction.  
 
 (A)                                                                 (B)  
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Figure 5. Reduction in total number of infections by different kinds of travel reduction. 
Total infection ratio represents the ratio of total infections with travel reduction to total infections 
without travel reduction. The ratios shown here are from deterministic simulations with initial 
infections in Taipei City. Intracity and overall travel reduction effectively decreased the total 
number of infections. The impact of intercity travel reduction was small. For some conditions, 
number of infections decreased from the beginning of simulations and no bar was shown.  
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SUPPLEMENTARY MATERIALS 
 
SUPPLEMENTARY METHODS 
 
Estimating Pij 

We built a travel model to estimate the proportion of time people living in location i spend in 
location j (Pij) by fitting the model to the Facebook movement data. Xij represents the proportion 
of people living in location i currently in location j, and  𝑋UVW  represents the equilibrium state of 
Xij, and its value under the fitted model is used as our estimate of Pij. People living in location i 
travel with probability Fi, and the probability that a traveler from location i travels to location j is 
denoted by Tij. Travelers go back to their home location at probability	𝜆# per unit of time. Mij,t,t+1 
represents the number of people moving from location i to location j between time t and t+1. 
 

𝑋#*(𝑡 + 1) = 𝑋#*(𝑡) + 𝑋##(𝑡)𝐹#𝑇#* − 𝑋#*(𝑡)𝜆#	

𝑋##(𝑡 + 1) = 𝑋##(𝑡) − 𝑋##(𝑡)𝐹# +(𝑋#*(𝑡)𝜆#
*A#

 

𝑀#*,],]^_ = 𝑁#𝑋##(𝑡)𝐹#𝑇#* + 𝑁*𝑋*#(𝑡)𝜆* 

𝑀##,],]^_ = 𝑁#𝑋##(𝑡)(1 − 𝐹#) +(𝑁*𝑋*#(𝑡)`1 − 𝜆*a
*A#

 

 
At equilibrium,  
 
										𝑋UVW = bN:NM

bN^cN
, 𝑋UUW = cN

bN^cN
, 𝑀UVW = ONbN:NMcN

bN^cN
+ OMbM:MNcM

bM^cM
, and 𝑀UUW = ON(_<bN)cN

bN^cN
+ ∑ OMbM:MN(_<cM)

bM^cM*A# . 

 
For simplicity, we assumed that the majority of travel is work-related travel and on average 
travelers spend eight hours in the travel destination (𝜆# =1 given the unit of time is 8 hours) and 
that Tij is proportional to Mij, leaving Fi the only parameters to be fitted. We used a gradient 
descent algorithm to find the local optimum solution for Fi, where the cost function is defined by 
the sum of the squared difference between normalized mij and the normalized value of Mij  from 
the model. We calculated 𝑋UVW  under fitted parameters to obtain estimates of Pij.  
 
 
  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 11, 2020. ; https://doi.org/10.1101/2020.04.07.20053439doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.07.20053439
http://creativecommons.org/licenses/by/4.0/


SUPPLEMENTARY FIGURES 
 
Figure S1. Movement patterns estimated from the Facebook data in Taiwan. (A) Regular 
movement data. (B) Colocation matrices.  
 
(A) (B) 
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Figure S2. The probability of having a large number of infections was associated with 
intracity and intercity R0 and risk of infection. Both intracity and intercity R0 were positively 
correlated with P1000,3 (Pearson’s correlation test, r= 0.93 [intracity], 0.83 [intercity], and 0.94 
[risk of infection], p-value= 1.28´10-8, 1.34´10-5 [intercity], and 4.03´10-9 [risk of infection]). 
Intercity and intracity R0 were also positively correlated (Pearson’s correlation test, r= 0.80, p-
value= 3.75´10-5, not shown). 
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Figure S3. Time to reach 1000 accumulated infections. If initial infections were in a big city, 
it took less time to reach 1000 infections in the contact model. The difference between big and 
small cities was not significant in the residence model. Intracity and overall travel reduction 
delayed the time to reach 1000 infections in both models, while intercity reduction did not. For 
some conditions, P1000,3 was 0 and no bar was shown.  
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Figure S4. The distribution of infections at T1000,3. The location of initial three infections is 
labeled with a white border. In the contact model, the first 1000 infections were in big cities; in 
the residence model, the first 1000 infections were located in cities with initial infections and the 
cities well-connected to them.  
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Figure S5. Standard deviation of infection numbers across different cities at T1000,3 (V1000,3). 
Intercity travel reduction increased the variation in infection numbers across cities in both 
models.  
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Figure S6. The frequency of travel between January 26th and March 9th. Lunar New Year 
ended on January 29th. The frequency of travel did not decrease after Jan 30th. Three travel routes 
are shown here, including a small city to big city (Changhua County to Taipei City), a big city to 
big city (Taipei City to New Taipei City) and a big city to small city (Taipei City to Yilan 
County). 
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Figure S7. T1000,3 and V1000,3 under different lengths of intercity travel reduction. T1000,3 
(upper panel) and V1000,3 (lower panel). 
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Figure S8. P1000,3 when travel reduction started at different conditions. P1000,3 when travel 
reduction started from the beginning of the simulations (denoted by 0), or when there were 10, 
20, 30, 50, and 100 infections in both contact (left) and residence (right) models. Two different 
lengths of travel reduction duration were shown: (A) 1 month (B) 3 months. Only intracity travel 
reduction was shown here because intercity travel reduction only had minimal impact on P1000,3 
and the results from overall reduction and intracity reduction were qualitatively similar. The 
timings associated with the lowest P1000,3 differed for one-month and three-month travel 
reductions. It was best to reduce travel at the beginning if the duration was for three months, but 
the pattern for one-month travel reduction was more complicated. 
 
(A) 

 
(B) 
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Figure S9. Comparison of overall dynamics with initial infections in big and small cities. 
Total infection ratio and the ratio of time to peak are the infection numbers and the time to peak 
standardized to the highest values, respectively. The total infection numbers were similar 
between the outbreaks seeded by infections from big and small cities. The time to peak was 
slightly longer if the outbreak was initiated with infections in a small city.  
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Figure S10. The delay in peak time by travel reduction. The time to peak was standardized to 
regular days in the contact model and to weekdays in the residence model. The time to peak 
increased significantly with intracity and overall travel reduction, but only increased minimally 
with intercity reduction. 
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SUPPLEMENTARY TABLES 
 
Table S1. The probability of having 1000 infections given different numbers of initial 
infections in different cities (contact model). Colocation matrices in regular days were used. 
  

1 2 3 4 5 6 7 8 9 10 
Keelung City 0.378 0.591 0.757 0.854 0.895 0.920 0.956 0.963 0.984 0.989 
New Taipei City 0.608 0.857 0.943 0.976 0.991 0.997 0.997 0.999 1 1 
Taipei City 0.677 0.871 0.954 0.983 0.992 0.997 1 1 1 1 
Taoyuan City 0.247 0.437 0.562 0.663 0.753 0.820 0.865 0.888 0.919 0.940 
Hsinchu County 0.094 0.211 0.271 0.356 0.400 0.443 0.545 0.592 0.615 0.633 
Hsinchu City 0.232 0.399 0.510 0.620 0.726 0.781 0.829 0.866 0.897 0.907 
Miaoli County 0.055 0.092 0.103 0.147 0.213 0.246 0.276 0.300 0.299 0.376 
Taichung City 0.157 0.266 0.397 0.485 0.568 0.633 0.690 0.727 0.770 0.814 
Changhua County 0.033 0.045 0.082 0.121 0.151 0.144 0.186 0.203 0.232 0.237 
Yunlin County 0.021 0.048 0.073 0.099 0.109 0.141 0.155 0.185 0.195 0.216 
Chiayi County 0.026 0.059 0.062 0.098 0.109 0.142 0.135 0.200 0.189 0.220 
Chiayi City 0.088 0.174 0.263 0.338 0.391 0.452 0.463 0.534 0.590 0.635 
Nantou County 0.031 0.047 0.091 0.097 0.130 0.171 0.182 0.197 0.215 0.240 
Tainan City 0.065 0.137 0.230 0.234 0.309 0.351 0.416 0.436 0.446 0.491 
Kaohsiung City 0.268 0.449 0.613 0.710 0.803 0.829 0.888 0.927 0.950 0.952 
Pingtung County 0.041 0.086 0.114 0.154 0.183 0.216 0.267 0.295 0.303 0.335 
Taitung County 0.028 0.069 0.092 0.137 0.160 0.202 0.231 0.246 0.291 0.313 
Hualien County 0.056 0.087 0.147 0.193 0.274 0.279 0.310 0.322 0.388 0.408 
Yilan County 0.103 0.170 0.241 0.334 0.369 0.478 0.489 0.527 0.561 0.619 

 
Table S2. Intracity R0, intercity R0, risk of infection, and risk of importation. 
 
City Intracity 

R0 
Intercity 
R0 

Risk of 
infection 

Risk of 
importation 

Source of 
importation 

Keelung City 1.016 0.348 0.451 0.107 0.095 
New Taipei City 2.247# 0.368 0.865 0.125 1.000 
Taipei City 2.500 0.523 1.000 0.155 0.951 
Taoyuan City 0.985 0.162 0.379 0.073 0.321 
Hsinchu County 0.562 0.187 0.248 0.123 0.136 
Hsinchu City 1.023 0.241 0.418 0.143 0.138 
Miaoli County 0.425 0.104 0.175 0.044 0.062 
Taichung City 1.051 0.081 0.375 0.026 0.130 
Changhua County 0.475 0.074 0.182 0.029 0.089 
Yunlin County 0.348 0.071 0.138 0.019 0.031 
Chiayi County 0.258 0.121 0.125 0.073 0.084 
Chiayi City 0.836 0.212 0.347 0.141 0.075 
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Nantou County 0.408 0.092 0.166 0.036 0.047 
Tainan City 0.842 0.063 0.299 0.019 0.069 
Kaohsiung City 1.323 0.066 0.459 0.022 0.124 
Pingtung County 0.482 0.087 0.188 0.036 0.071 
Taitung County 0.468 0.072 0.179 0.004 0.003 
Hualien County 0.590 0.063 0.216 0.006 0.005 
Yilan County 0.524 0.106 0.208 0.018 0.019 

#Top five values in each column are bold. 
 
Table S3. The probability of having 1000 infections given different numbers of initial 
infections in different cities (residence model). Movement data on weekdays were used. 
  

1 2 3 4 5 6 7 8 9 10 
Keelung City 0.595 0.857 0.941 0.970 0.993 0.998 0.999 1 1 1 
New Taipei City 0.585 0.832 0.945 0.965 0.984 0.993 0.998 0.999 0.998 1 
Taipei City 0.613 0.847 0.923 0.973 0.992 0.994 0.996 0.999 0.999 1 
Taoyuan City 0.603 0.819 0.935 0.978 0.991 0.998 0.999 1 1 1 
Hsinchu County 0.584 0.842 0.948 0.982 0.991 0.997 0.997 1 1 1 
Hsinchu City 0.594 0.849 0.927 0.975 0.990 0.994 1 0.999 1 1 
Miaoli County 0.567 0.853 0.931 0.978 0.987 0.997 0.999 1 1 1 
Taichung City 0.584 0.837 0.953 0.972 0.989 0.994 0.997 0.999 0.999 1 
Changhua County 0.586 0.838 0.915 0.970 0.994 0.996 0.996 0.999 1 1 
Yunlin County 0.589 0.826 0.926 0.981 0.993 0.997 1 0.999 1 1 
Chiayi County 0.598 0.828 0.945 0.972 0.989 0.997 0.998 0.999 1 1 
Chiayi City 0.585 0.846 0.934 0.977 0.989 0.994 0.999 1 1 1 
Nantou County 0.606 0.847 0.940 0.976 0.991 0.998 0.999 1 0.999 1 
Tainan City 0.587 0.853 0.933 0.968 0.987 0.998 0.999 0.997 1 1 
Kaohsiung City 0.609 0.834 0.942 0.977 0.994 0.995 0.998 0.999 0.999 1 
Pingtung County 0.635 0.832 0.939 0.978 0.991 0.993 0.998 1 0.999 1 
Taitung County 0.595 0.850 0.922 0.965 0.990 0.995 0.999 1 1 1 
Hualien County 0.600 0.836 0.945 0.971 0.993 0.998 0.997 1 0.999 1 
Yilan County 0.632 0.847 0.939 0.972 0.985 0.996 0.999 0.999 1 1 
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