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 23 

SUMMARY 24 

Severe COVID-19 patients account for most of the mortality of this disease. 25 
Early detection and effective treatment of severe patients remain major 26 
challenges. Here, we performed proteomic and metabolomic profiling of sera 27 
from 46 COVID-19 and 53 control individuals. We then trained a machine 28 
learning model using proteomic and metabolomic measurements from a 29 
training cohort of 18 non-severe and 13 severe patients. The model correctly 30 
classified severe patients with an accuracy of 93.5%, and was further 31 
validated using ten independent patients, seven of which were correctly 32 
classified. We identified molecular changes in the sera of COVID-19 patients 33 
implicating dysregulation of macrophage, platelet degranulation and 34 
complement system pathways, and massive metabolic suppression. This 35 
study shows that it is possible to predict progression to severe COVID-19 36 
disease using serum protein and metabolite biomarkers. Our data also 37 
uncovered molecular pathophysiology of COVID-19 with potential for 38 
developing anti-viral therapies. 39 

40 
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INTRODUCTION 41 

Coronavirus disease 2019 (COVID-19) is an unprecedented global threat 42 
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It 43 
is currently spreading around the world rapidly. The sudden outbreak and 44 
accelerated spreading of SARS-CoV-2 infection have caused substantial 45 
public concerns. Within about two months, close to one million individuals 46 
worldwide have been infected, leading to about 50,000 deaths. At the time of 47 
writing this manuscript, about 100,000 new infections are reported daily.  48 

Most COVID-19 studies have focused on its epidemiological and clinical 49 
characteristics(Ghinai et al., 2020; Guan et al., 2020; Li et al., 2020b; Team, 50 
2020). About 80% of patients infected with SARS-CoV-2 displayed mild 51 
symptoms with good prognosis(Team, 2020). They usually recover with, or 52 
even without, conventional medical treatment, and therefore are classified as 53 
mild or moderate COVID-19 (Medicine, 2020; Thevarajan et al., 2020). 54 
However, about 20% of patients suffer from respiratory distress and require 55 
immediate oxygen therapy or other inpatient interventions, including 56 
mechanical ventilation (Medicine, 2020; Murthy et al., 2020; Wu and 57 
McGoogan, 2020). These patients, classified as clinically severe or critical life-58 
threatening infections, are mainly diagnosed empirically based on a set of 59 
clinical characteristics, such as respiratory rate (≥ 30 times/min), mean 60 
oxygen saturation (≤ 93% in the resting state) or arterial blood oxygen partial 61 
pressure/oxygen concentration (≤ 300 mmHg) (Medicine, 2020). However, 62 
patients exhibiting these clinical manifestations have already progressed to a 63 
clinically severe phase and require immediate access to specialized intensive 64 
care; otherwise, they may die rapidly. Therefore, it is critical to develop new 65 
approaches to predict early which cases will likely become clinically severe. In 66 
addition, effective therapy for severe patients remains speculative, largely due 67 
to limited understanding of SARS-CoV-2 pathogenesis.  68 

In this study, we hypothesized that SARS-CoV-2 induces characteristic 69 
molecular changes that can be detected in the sera of severe patients. These 70 
molecular changes may shed light on therapy development for COVID-19 71 
patients. To test this hypothesis, we applied cutting-edge proteomic 72 
(Aebersold and Mann, 2016; Li et al., 2020a) and metabolomic (Hou et al., 73 
2020; Lee et al., 2019) technologies to analyze the proteome and 74 
metabolome of sera from severe COVID-19 patients and several control 75 
groups. 76 

 77 

RESULTS 78 

Proteomic and metabolomic profiling of COVID-19 sera 79 
We procured a cohort of patients (Zheng et al., 2020) containing 21 80 

severe COVID-19 patients, in which 11 sera from severe patients were 81 
collected one to six days before the patients were clinically assessed as 82 
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severe. Sera from the remaining eight patients were collected within about 3 83 
days after diagnosed as severe cases (Figure 1A, Table 1, Table S1). Controls 84 
with matched epidemiological features were included to identify severity-85 
related molecular alterations. These controls were 28 healthy subjects, 25 86 
non-COVID-19 patients (negative for the SARS-CoV-2 nucleic acid test) with 87 
similar clinical characteristics as COVID-19 patients, and 25 non-severe 88 
COVID-19 patients. A serum sample was obtained from each patient within a 89 
few days after hospital admission, with a few exceptions when samplings 90 
were performed at later disease stages. 91 

We used stable isotope labeled proteomics strategy TMTpro (16plex) (Li 92 
et al., 2020a) and UPLC-MS/MS untargeted metabolomics approach to 93 
analyze 92 undepleted sera from 86 individuals. Altogether 894 proteins were 94 
quantified and 941 (including 36 drugs and their metabolites) metabolites 95 
were identified with authentic compound library searching. For metabolomic 96 
analysis, both hydrophilic and hydrophobic molecules were analyzed using 97 
both positive and negative ionization to cover various endogenous 98 
biochemical classes. Our data were acquired with high degree of consistency 99 
and reproducibility. In quality control analysis, the median coefficient of 100 
variance (CV) values for proteomic and metabolomic data were 10% and 5%, 101 
respectively (Figure S1A). Remarkably, sera from SARS-CoV-2 infected 102 
patients were well resolved from healthy individuals, and the sera from severe 103 
patients displayed distinct proteomic and metabolomic patterns compared to 104 
those from other groups (Figures S1B-C). 105 

 106 
Identification of severe patients using machine learning 107 

We next investigated the possibility of classify the severe COVID-19 108 
patients based on the molecular signatures of proteins and metabolites (Table 109 
S2). We built a random forest machine learning model based on proteomic 110 
and metabolomic data from 18 non-severe and 13 severe patients (Figure 111 
1B), leading to prioritization of 29 important variables including 22 proteins 112 
and 7 metabolites (Figure 2A-B). This model reached an AUC of 0.957 in the 113 
training set (Figure 2C). One non-severe patient, XG3, was incorrectly 114 
classified as severe (Figure 2D), possibly because this 70-year-old male 115 
patient was the oldest individual in this cohort (Figure 1A). For patient XG40, 116 
the reason of incorrectly classified is unclear. 117 

We then tested the model on an independent cohort of ten patients 118 
(Figure 2E, Table S3). All severe patients were correctly identified, except one 119 
patient, XG45, a 62-year-old male who had received traditional Chinese 120 
medicines during more than 20 days before admission. This individual was 121 
the patient with the longest pre-admission treatment in this cohort and the 122 
administration of traditional Chinese medicines might have also accounted for 123 
the incorrect prediction. Another incorrectly classified non-severe patient was 124 
XG22, a 43 year-old male with chronic HBV infection and diabetes who had 125 
the longest hospitalization (>50 days) among all non-severe patients. Indeed, 126 
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our molecular-based prediction flagged him as an outlier, suggesting that his 127 
prolonged treatment history might have interfered with the expression of the 128 
panel of the 29 variables. For reasons yet unclear, XG25, a 43-year-old male 129 
non-severe case, was incorrectly classified as severe. 130 

 131 
Proteomic and metabolomic changes in severe COVID-19 sera 132 

We found that 105 proteins were differentially expressed in COVID-19 133 
patients, but not in the non-COVID-19 patients (Figure S2, S4). After 134 
correlating their expression with clinical disease severity (Figure S5), 93 135 
proteins showed specific modulation in severe patients. Pathway analysis and 136 
network enrichment analyses of the 93 differentially expressed proteins 137 
revealed three pathways (Figure S6), namely activation of the complement 138 
system, macrophage function and platelet degranulation, involving 50 proteins 139 
(Figure 3A) in the sera of severe patients. Similarity, 373 and 204 metabolites 140 
were found with differential abundance in COVID-19 patients and continually 141 
changed correlated with disease severity in our metabolomics data, 142 
respectively (Figure S3, S4). Correspondingly, 82 metabolites were involved 143 
in the three biological processes. We summarize the key dysregulated 144 
molecules in Figure 5 and discussed in the following sections.  145 
 146 
Dysregulated macrophage and lipid metabolism 147 

Our data uncovered dysregulation of multiple apolipoproteins including 148 
APOA1, APOA2, APOH, APOL1, APOD and APOM (Figure 3A). Most of them 149 
are associated with macrophage function and were down-regulated. Decrease 150 
of APOA1 in serum has been reported during the transition of COVID-19 151 
patients from mild to severe illness (Nie et al., 2020). The APOM in serum of 152 
severe patients was downregulated compared with healthy and non-severe 153 
COVID-19 patients. Regulation of serum APOM has also been observed in 154 
hepatitis B virus (HBV) patients (Gu et al., 2011). 155 

Consistent with these proteomic findings, we also detected dysregulated 156 
metabolites involved in lipid metabolism. Accumulation of 16 steroid hormones 157 
in COVID-19 patients may contribute to macrophage modulation. Steroid 158 
hormones, including progesterone, androgens, estrogens and bile acids can 159 
promote the activity of macrophages (Vernon-Roberts, 1969). Specifically, 160 
glucocorticoids were recently reported to be clinically efficacious (Wang et al., 161 
2020b). We detected increased 21-hydroxypregnenolone, the essential 162 
intermediate for synthesizing corticosterone, suggesting that corticosterone 163 
biosynthesis may be a protective mechanism against SARS-CoV-2 infection. 164 

We also found evidence of significant activation of the kynurenine 165 
pathway. Metabolites of kynurenate, kynurenine, 8-methoxykynurenate were 166 
enriched in COVID-19 patients. Nicotinamide adenine dinucleotide (NAD+), 167 
the cofactor in many cellular redox reactions, can be synthesized from 168 
tryptophan by the kynurenine pathway and operates as a switch for 169 
macrophage effector responses (Minhas et al., 2019). 170 
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The macrophage process is closely related to lipid metabolism. Over 100 171 
lipids were down-regualted in severe patients. Our data showed decreased 172 
sphingolipids in both non-severe and severe COVID-19 patients (Figure 4A). 173 
Sphingolipids and glycerophospholipids are important components of 174 
biomembranes, which mediate signal transduction and immune activation 175 
processes. Sphingolipids, such as sphingosine-1-phosphate, can induce 176 
macrophage activation, inhibit macrophage apoptosis, and promote migration 177 
of macrophages to inflammatory sites (Weigert et al., 2009). Phagocytosis 178 
and platelet degranulation are coupled with changes in biomembrane lipid 179 
composition and fluidity, and modulate the production of glycerophospholipids 180 
(Rouzer et al., 2007). In this study, we found continuous decrease of 181 
glycerophospholipids after SARS-CoV-2 infection. Glycerophospholipids and 182 
fatty acids such as arachidonic acid have been found significantly elevated in 183 
HCoV-229E-infected cells, and exogenous supplement of arachidonic acid 184 
significantly suppressed HCoV-229E and MERS-CoV replication (Yan et al., 185 
2019). Our data suggest severe COVID-19 patients might benefit from this 186 
therapeutical strategy as well. 187 

Choline and its derivatives were down-regulated in COVID-19 patients, 188 
particularly in severe cases; phosphocholine, the intermediate product for 189 
producing phosphatidylcholine (PC) was up-regulated (Figure 4B). This was 190 
probably due to activated macrophage-mediated immunity (Sanchez-Lopez et 191 
al., 2019). Polarization of macrophages in response to pathogens requires 192 
increased absorption of choline for PC formation, thereby promoting cytokine 193 
secretion (Sanchez-Lopez et al., 2019). 194 

 195 
Activated acute phase proteins (APPs) and the complement system 196 

We detected 10 APPs among 20 proteins that are differentially expressed 197 
between non-severe and severe groups (Figure 2A). They are involved at the 198 
early stages of immune responses to virus infection. Among the most 199 
significantly upregulated in severe sera were APPs, including serum amyloid 200 
A-1 (SAA1), serum amyloid A-2 (SAA2), serum amyloid A-4 (SAA4), C-201 
reactive protein (CRP), alpha-1-antichymotrypsin (SERPINA3) and serum 202 
amyloid P-component (SAP/APCS) (Figure 3B). Some of them are known to 203 
be biomarkers for viral infections, including SAA1, SAA2 and CRP. While 204 
CRP has been associated with COVID-19, the other proteins have not 205 
previously been reported in COVID-19 (Liang et al., 2020). SAA1 was 206 
reported to be elevated in severe SARS patients, but was not specific to 207 
SARC-CoV (Pang et al., 2006). As a major contributor to acute phase 208 
response, complement system plays a crucial role in eliminating invading 209 
pathogens in the early stage of infection. Among those APPs, two proteins 210 
belong to the complement membrane attack complex, including complement 6 211 
(C6) and complement factor B (CFB). Two other proteins, Properdin (CFP) 212 
and Carboxypeptidase N catalytic chain (CPN1), are regulators of 213 
complement system (Figure 3). 214 
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We also observed an accumulation of mannose and its derivatives in 215 
severe patients. In the complement system, binding of mannose to lectin 216 
leads to cleaveage of C2 and C4, which then form a C3 convertase to 217 
promote complement activation (Ricklin et al., 2010). 218 

 219 
Suppressed platelet degranulation in severe sera 220 

 Fifteen of 17 proteins involved in platelet degranulation were down-221 
regulated in SARS-CoV-2 infected patients, which may be associated with 222 
observed thrombocytopenia in this patient cohort (Zheng et al., 2020). Low 223 
platelet count is also reported to be associated with severe COVID-19 and 224 
mortality (Lippi et al., 2020). Two of the most intriguing proteins down-225 
regulated in severe patients are platlet expressing chemokines pro-platelet 226 
basic protein (PPBP; also called macrophage-derived growth factor) and 227 
platelet factor 4 (PF4). PF-4 was identified as a broad-spectrum HIV-1 228 
inhibitor at the level of virus attachment and entry via interaction with the 229 
major viral envelope glycoprotein gp120 (Auerbach et al., 2012). In another 230 
sera proteomic investigation of SARS, they found decreasing PF4 was 231 
associated with poor prognosis (Poon et al., 2012), in consistent with our 232 
findings regarding COVID-19. 233 

Most enterochromaffin cell-derived serotonins (5-hydroxytryptamine [5-234 
HT]) are transported to platelets for storage and release (Baganz and Blakely, 235 
2013). Our previous data showed that when platelet counts in COVID-19 236 
patients decrease as the severity of the disease increase (Zheng et al., 2020), 237 
serotonin (Figure 4B) level decreases accordingly. Compared with the healthy 238 
group, serotonin in non-severe and severe COVID-19 patients decreased by 239 
2.07-fold (p = 1.86e-04) and 3.31-fold (p = 9.07e-07), respectively.  240 

We also detected low levels of fatty acids such as arachidonate and 241 
docosapentaenoate in COVID-19 patients (Figure 4), which may be related to 242 
their decreased platelet counts. Fatty acids including arachidonate (20:4n6) 243 
are active factors of platelet degranulation. A study on H7N9 reported that 244 
H7N9 infection led to suppression of various fatty acids including palmitic acid 245 
(Sun et al., 2018). We also found palmitic acid decreased in severe COVID-19 246 
patients. 247 
 248 
Massive suppression of amino acids in the sera of COVID-19 patients 249 

More than 100 decreased metabolites in the sera of COVID-19 patients 250 
are amino acids and their derivatives were found significantly decreased in the 251 
sera of COVID-19 patients compared to their levels in the healthy controls, 252 
while their levels were either unchanged or even increased in the sera of non-253 
COVID-19 patients. Enriched in these metabolites are ten metabolites 254 
involved in arginine metabolism including glutamate, arginine, N-(l-255 
arginino)succinate, citrulline, ornithine, glutamine, 2-oxoglutarate, N-acetyl-L-256 
glutamate, urea, and fumarate. In addition, some arginine derivatives such as 257 
argininate, asymmetric dimethylarginine, symmetric dimethylarginine, 258 
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homoarginine and N-acetylarginine, were also significantly decreased in the 259 
sera of non-severe COVID-19 patients. It has been reported that arginine 260 
metabolism is suppressed in severe fever with thrombocytopenia syndrome 261 
caused by a SFTS bunyavirus (SFTSV)(Li et al., 2018b). Decreased arginine 262 
levels in SFTSV patients was associated with impaired anti-SFTSV functions 263 
of T cells. 264 

 265 

DISCUSSION 266 

Prediction of severe COVID-19 patients 267 
Although COVID-19 can be diagnosed effectively by nucleic acid-based 268 

methods at an early stage, it is equally critical to identify severe COVID-19 269 
patients before their manifestion of severe symptoms to minimize mortality. In 270 
this study we show that severe cases can be predicted by molecular 271 
signatures of metabolites and proteins using a machine learning model based 272 
on the expression levels of 22 serum proteins and seven metabolites (Figure 273 
2A-B). We achieved an overall accuracy of 93.5% in the training set. 274 
Prediction of two patients did not match clinical diagnosis. One of them is non-275 
severe individual who was the oldest patient in the training cohort. 276 
Remarkably, nine severe patients were correctly identified retrospectively 277 
based on the analysis of their sera collected one to six days before they were 278 
clinically diagnosed as having deteriorated to a severe state (Figure 1, Figure 279 
2D), suggesting that their sera protein and metabolite signatures at the 280 
sampling time were already pointing to further deterioration into severe state 281 
even when severe clinical symptoms have not started to appear yet. 282 

The proteins and metabolites used in our classifier (Figure 2A) contain 283 
several known biomarkers for viral infections, such as SAA2, SSA1 and CRP, 284 
which have already been used empirically to monitor the severity of COVID-285 
19. Our study suggests that more characteristic molecular changes at protein 286 
and metabolite levels can be used to build a predictive model for the 287 
prospective identification of severe cases. The classifier also included 288 
exceptionally high levels of other acute phase proteins, including SERPINA3, 289 
among others (Figure 2A-B). Our data suggest potential benefits of broader 290 
testing of these proteins in newly diagnosed cases to identify which COVID-19 291 
patients are likely to progress to severe disease. The model contains 292 
molecules involved in hepatic damage. The elevation of glucose, glucuronate, 293 
bilirubin degradation product and four bile acid derivatives, suggests 294 
suppressed hepatic detoxification (Rowland et al., 2013). Vascular cell 295 
adhesion protein 1 (VCAM-1) which helps to regulate transendothelial 296 
migration of leukocytes by stimulating production of reactive oxygen species 297 
(ROS), was upregulated in our data. As apotent antioxidant and inhibitor of 298 
VCAM-1 dependent cellular events (Keshavan et al., 2005), bilirubin was 299 
found to be down-regulated in our metabolomic data. 300 
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Seven patients were correctly classified in the independent validation 301 
cohort containing ten patients. Two of them could be explained by the 302 
patients’ complex comorbidity and medication history. The relatively small 303 
sample size necessitates future validation studies in independent cohorts. 304 
 305 
Molecular insights for pathogenesis of SARS-CoV-2 infection 306 

Our data shed light on the molecular changes reflected in COVID-19 sera 307 
which could potentially yield critical diagnostic markers or therapeutic targets 308 
for managing severe COVID-19 patients (Figure 5). These molecular 309 
derangements may originate from binding of SARS-CoV-2 to alveolar 310 
macrophages via the ACE2 receptor (Hoffmann et al., 2020), resulting in 311 
release of IL-6 and TNF-α (Mehta et al., 2020) by macrophages (Gabay and 312 
Kushner, 1999). In response to elevated cytokines, especially IL-6 which 313 
triggers fever, the liver releases various APPs. Activation of APPs is 314 
accompanied with the immunogenesis or organic damage (Gabay and 315 
Kushner, 1999). Our metabolomics data also provide plausible evidence for 316 
hepatic injury. In physiological condition, hormone or bilirubin binds to 317 
glucuronate, a derivative of glucose, for liver detoxification (Rowland et al., 318 
2013). The elevation of glucose, glucuronate, bilirubin degradation product 319 
and four bile acid derivatives in severe patients, indicating the potential 320 
declined detoxification function (Figures 4-5). Indeed, our data showed an 321 
upregulation of multiple APPs, including CRP and major attack complexes 322 
(MACs) in the severe sera. CRP can activate the complement system (Chirco 323 
and Potempa, 2018). This on the one hand leads to enhanced cytokine and 324 
chemokine production, potentially contributing to “cytokine storm"; and on the 325 
other overly recruits macrophages from the peripheral blood, which could 326 
result in acute lung injury(Chirco and Potempa, 2018; Narasaraju et al., 2011). 327 
Because about 50% of platelets are produced in the lung (Lefrancais et al., 328 
2017), platelet may in turn respond to lung injury and activate macrophases 329 
by degranulation (Mantovani and Garlanda, 2013), which may further add to 330 
“cytokine storm”. A recent necropsy report revealed alveolar macrophage 331 
infiltration and activation in severe COVID-19 patients (Liao M., 2020), 332 
supporting our findings. 333 
 334 
Insights for COVID-19 therapeutics 335 

To date, few other therapies are proven effective for severe COVID-19 336 
patients. Most of patients receive standard supportive care and antiviral 337 
therapy (Wang et al., 2020a). Corticosteroid treatment which are effectively in 338 
suppressing MERS-CoV and SARS-CoV (Arabi et al., 2018), but showed 339 
negligible effect on COVID-19 patients and may even have induced lung 340 
injury (Russell et al., 2020). The molecular changes revealed in this study in 341 
the COVID-19 sera have allowed us to propose potential new therapeutic 342 
strategies for the severe patients.  343 
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Our proteomic data showed that proteins related to platelet degranulation 344 
were substantially down-regulated in severe patients, a finding which was 345 
confirmed by low platelet counts (Zheng et al., 2020). The association 346 
between thrombocytopenia and viral infection has been observed in SARS-347 
CoV (Zou et al., 2004), hepatitis C virus (HCV) (Assinger, 2014), and Dengue 348 
virus (Wilder-Smith et al., 2004). We thus recommend watching closely 349 
monitoring changes in platelets and making interventions, such as infusions of 350 
thrombopoietin (TPO) as necessary, particularly when liver or kidney injuries 351 
occur.  352 

Complement activation suppresses virus invasion, and may lead to 353 
inflammatory syndromes (Barnum, 2016). Our data showed a general up-354 
regulation of complement system proteins, including MAC proteins such as 355 
C5, C6 and C8. Suppression of complement system has been reported as an 356 
effective immunotherapeutics in SARS-infected mouse model (Gralinski et al., 357 
2018). C5a has been reported as highly expressed in severe SARS and 358 
MERS patients as well (Wang et al., 2015). Inhibition of C5a has been 359 
reported to alleviate viral infection-induced acute lung injury (Garcia et al., 360 
2013; Jiang et al., 2018; Sun et al., 2014). Our data suggest that severe 361 
COVID-19 patients might benefit from suppression of complement system.  362 

The coronavirus are enveloped, positive strand RNA viruses, the 363 
replication and assembly of which consume large amount of lipids. Our 364 
metabolomics results showed that more than 100 lipids including 365 
glycerophospholipid, sphingolipids and fatty acids were down-regulated in 366 
COVID-19 patients sera, probably due to rapid replication of the virus. 367 
Glycerophospholipid, sphingolipids (one of the components of lipid rafts) and 368 
fatty acids have been reported to play an important role in the early 369 
development of enveloped viruses (Schoggins and Randall, 2013). 370 
Suppression of cholesterol synthesis by MβCD has been reported inhibiting 371 
the production of SARS-CoV particles released from infected Vero E6 cells (Li 372 
et al., 2007). Drugs inhibiting lipid synthesis such as statin have been 373 
proposed to treat HCV (Heaton and Randall, 2011) and COVID-19 (Fedson et 374 
al., 2020). Our data also supports this potential therapeutics for severe 375 
COVID-19 patients. 376 
 SARS-CoV-2 is highly infectious, applying huge pressure to the medical 377 
system worldwide. Upon COVID-19 outbreak, limited information of this 378 
pathogen was available, which restricted the collection of clinical specimens 379 
for this study. The reason for the small sample size of this study were 380 
biosafety constraints. 381 
 In conclusion, this study presents a systematic proteomic and metabolimic 382 
investigation of sera from multiple COVID-19 patient groups and control 383 
groups. We show that feasibility of predicting severe COVID-19 patients 384 
based on a panel of serum proteins and metabolites. Our data offer a 385 
landscape of blood molecular changes induced by SARS-CoV-2 infection, 386 
which may provide useful diagnositic markers and therapeutic targets. 387 
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Table 1. Demographics and baseline characteristics of COVID-19 patients. 586 
 587 

Variables 

Healthy 

Control 

(N=28) 

non-COVID-

19 

(N=25) 

COVID-19 

Total  

(N=46) 

non-Severe 

(N=25) 

Severe  

(N=21) 

Sex - no. a (%)      

Male 21 (75.0) 17 (68.0) 31 (67.4) 18 (72.0) 13 (61.9) 

Female 7 (25.0) 8 (32.0) 15 (32.6) 7 (28.0) 8 (38.1) 

Age - yr. b      

Mean ± SD 44.4±8.3 49.2±14.0 47.7±13.9 42.2±12.8 54.3±12.4 

Median (IQR) 
45.0 

(38.0-51.0) 

53.0 

(37.0-61.0) 

46.5 

(35.8-59.0) 

43.0 

(33.0-50.0) 

55.0 

(47.0-63.0) 

Range 28.0-57.0 23.0-67.0 20.0-75.0 20.0-70.0 30.0-75.0 

BMI, kg/m2      

Mean ± SD c 24.4±2.7 23.5±2.7 24.9±3.0 24.5±3.3 26.0±2.4 

Median (IQR) d 24.2 

(22.5-26.5) 

24.7 

(20.9-25.8) 

24.8 

(22.7-27.0) 

24.9 

(21.7-26.8) 

25.8 

(24.4-28.0) 

Range 19.9-32.9 19.1-27.4 19.0-31.3 18.9-30.4 22.2-31.3 

Smoke - no. (%)   5 (10.9) 2 (8.0) 1 (4.8) 

Alcohol - no. (%)   1 (2.2) 1 (4.0) 0 (0.0) 

Time from onset to admission, days   

Mean ± SD   3.0±4.2 1.6±2.1 4.6±5.4 

Median (IQR)   1.5 

(0.0-4.0) 

1.0 

(0.0-2.0) 

2.0 

(0.5-6.0) 

Range   0.0-20.0 0.0-10.0 0.0-20.0 

Time from admission to severe, days   

Mean ± SD     4.0±2.1 

Median (IQR)     4.0 (2.5-5.5) 

Range     0.0-7.0 

Symptoms - no. (%)     

Fever  9 (36.0) 34 (73.9) 16 (64.0) 18 (85.7) 

Cough  11 (44.0) 26 (56.5) 13 (52.0) 13 (61.9) 

Headache  2 (8.0) 7 (15.2) 4 (16.0) 3 (14.3) 

Fatigue  2 (8.0) 8 (17.4) 5 (20.0) 3 (14.3) 

Pharyngalgia  0 (0.0) 3 (6.5) 1 (4.0) 2 (9.5) 

Expectoration  3 (12.0) 12 (26.1) 4 (16.0) 8 (38.1) 

Diarrhea  0 (0.0) 3 (6.5) 1 (4.0) 2 (9.5) 

Chest tightness  2 (8.0) 1 (2.2) 1 (4.0) 0 (0.0) 

Chest CT e - no. (%)     

Involvement of chest radiographs 1 (4.0) 45 (97.8) 24 (96.0) 21 (100) 

Comorbidity- no. (%)     

Hypertension  10 (40.0) 6 (13.0) 1 (4.0) 5 (23.8) 

Diabetes  0 (0.0) 6 (13.0) 3 (12.0) 3 (14.3) 
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Respiratory system 2 (8.0) 4 (8.7) 3 (12.0) 1 (4.8) 

Endocrine system 0 (0.0) 3 (6.5) 0 (0.0) 3 (14.3) 

Chronic kidney disease 0 (0.0) 1 (2.2) 0 (0.0) 1 (4.8) 

Digestive system 2 (8.0) 6 (13.0) 3 (12.0) 3 (14.3) 

Oxygenation Index - mmHg    

Mean ± SD    478.4±147.5 347.4±124.1 

Median (IQR)    447.6 

(390.5-506.0) 

341.4 

(266.5-381.9) 

Range    289.7-890.5 133.3-728.6 

Treatment - no. (%)     

Oxygen inhalation  3 (12.0) 30 (65.2) 10 (40.0) 20 (95.2) 

Antibiotics  0 (0.0) 15 (32.6) 8 (32.0) 7 (33.3) 

Antiviral drug  25 (100) 46 (100.0) 25 (100.0) 21 (100.0) 

Immunoglobulin  0 (0.0) 19 (41.3) 0 (0.0) 19 (90.5) 

Methylprednisolone    0 (0.0) 16 (34.8) 0 (0.0) 16 (76.2) 

Chinese medicine  0 (0.0) 45 (97.8) 25 (100.0) 20 (95.2) 
a no. (%): number. 588 
b yr.: year. 589 
c SD: Standard Deviation. 590 
d IQR: Interquartile range 591 
e CT: Computed tomography 592 

  593 
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Figure 1. Summary of COVID-19 patients and machine learning design. 594 
(A) Summary of COVID-19 patients, including non-severe (n=25) and severe 595 
(n=21) patients with more details in Table S1. Patients labeled in red (Y-axis) 596 
indicate chronic infection of viruses including HBV. (B) Study design for 597 
machine learning-based classifier development for severe COVID-19 patients. 598 
We first procured samples in a training cohort for proteomic and metabolomic 599 
analysis. The classifier was then validated in an independent cohort.  600 
Figure 2. Separation of severe and non-severe COVID-19 patients by 601 
machine learning of proteomic and metabolomic features. (A) Top 22 602 
proteins and 7 metabolites prioritized by random forest analysis ranked by the 603 
mean decrease in accuracy. (B) Network of prioritized proteins appeared in 604 
the classifier. (C) ROC of the random forest model in the training cohort. (D) 605 
Principal Components Analysis (PCA) plot of COVID-19 patients from the 606 
training cohort. (E) Performance of the model in the validation cohort of ten 607 
COVID-19 patients. Patients labeled in red received serum test before they 608 
were diagnosed as severe. 609 
Figure 3. Dysregulated proteins in COVID-19 sera. (A) Heatmap of 50 610 
selected proteins whose regulation concentrated on three enriched pathways. 611 
(B) The expression level change (z-scored original value) of six selected 612 
proteins of interest with significance indicated by the asterisks (unpaired two 613 
sided Welch’s t test. p value: ***, <0.001; **, <0.01; *, <0.05) 614 
Figure 4. Dysregulated metabolites in COVID-19 sera. (A) Heatmap of 82 615 
regulated metabolites belonging to six major classes: fatty acids, steroids, 616 
glycerophospholipid, sphingolipid, choline and serotonins. (B) The expression 617 
level change (z-scored log2 original value) of six regulated metabolites from 618 
each metabolite class with significance indicated by the asterisks as 619 
described in Figure 3. 620 
Figure 5. Key proteins and metabolites characterized in severe COVID-621 
19 patients in a working model. SARS-CoV-2 may target alveolar 622 
macrophages via ACE2 receptor with increasing level of cytokines including 623 
IL-6 and TNF-α, which subsequently induce the elevation of various APPs 624 
such as SAP, CRP, SAA1, SAA2 and C6 which are significantly upregulated 625 
in the severe group. Proteins involved in macrophage, lipid metabolism and 626 
platelet degranulation were indicated with their corresponding expression 627 
levels in four patient groups. 628 

629 
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MATERIALS AND METHODS 630 

Patients and samples 631 
Our team procured serum samples from 46 patients who visited Taizhou 632 
Public Health Medical Center during January 23 and February 4, 2020. They 633 
were diagnosed as COVID-19 according to the Chinese Government 634 
Diagnosis and Treatment Guideline (Trial 5th version)(Medicine, 2020). For 635 
diagnosing COVID-19, nucleic acid from sputum or throat swab was extracted 636 
using nucleic acid extractor (Shanghai Zhijiang, China, EX3600) and virus 637 
nucleic acid extraction reagent (Shanghai Zhijiang, China, NO. P20200201) 638 
was used to extract nucleic acid. Fluorescence quantitative PCR (ABI7500) 639 
and SARS-CoV-2 nucleic acid detection kit (triple fluorescence PCR, 640 
Shanghai Zhijiang, China, NO. P20200203) were used for nucleic acid 641 
detection. This kit uses one step RT-PCR combined with Taqman technology 642 
to detect RdRp, E and N genes. Positive was concluded if RdRp gene was 643 
positive (Ct < 43), and one of E or N was positive (Ct <43). Patients were also 644 
diagnosed as positive if two sequential tests of RdRp were positive while E 645 
and N were negative. According to the abovementioned guideline, COVID-19 646 
patients are classified into four subgroups: 1) Mild: mild symptoms without 647 
pneumonia; 2) Typical: fever or respiratory tract symptoms with pneumonia; 3) 648 
Severe: fulfill any of the three criteria: respiratory distress, respiratory rate ≥ 649 
30 times/min; means oxygen saturation ≤ 93% in resting state; arterial blood 650 
oxygen partial pressure/oxygen concentration ≤ 300 mmHg (1 mmHg = 0.133 651 
kPa); 4) Critical: fulfill any of the three criteria: respiratory failure and require 652 
mechanical ventilation; shock incidence; admission to ICU with other organ 653 
failure. In this study, we included both severe and no-severe patients, with the 654 
latter composed of mild and typical COVID-19 patients. Last follow-up of 655 
these patients was March 10, 2020. We also procured 25 non-COVID-19 656 
patients with similar clinical characteristics including fever and/or cough as 657 
COVID-19 patients however negative in the nucleic acid test. Based on the 658 
Chinese Government Diagnosis and Treatment Guideline (Trial 5th version) 659 
(Medicine, 2020), patients are defined as suspected COVID-19 cases when 660 
they meet the following three clinical criteria: 1) fever or respiratory symptoms, 661 
2) imaging manifestation of pneumonia, and 3) optional reduction of white 662 
blood cell or lymphocyte count at early stage. The patients only need to meet 663 
at least two of the above three criteria if they have been exposed to COVID-664 
19 individuals. We also collected serum samples from 28 healthy individuals 665 
as control. All the serum samples were collected as venous whole blood in the 666 
early morning before diet using serum separation tubes (Zhejiang GongDong 667 
Medical Technology Co., Ltd, China). The blood samples were centrifuged at 668 
3,500 rpm for 10 min for serum collection. The serum samples were frozen at 669 
-80℃. The samples from this study is from a clinical trial that our team initiated 670 
and registered in the Chinese Clinical Trial Registry with a ID of 671 
ChiCTR2000031365. This study has been approved by the 672 
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Ethical/Institutional Review Board of Taizhou Public Health Medical Center 673 
and Westlake University. Contents from patients were waived by the boards. 674 
 675 
Proteomic analysis 676 
Serum samples were inactivated and sterilized at 56℃ for 30 min, and 677 
processed as previously with some modifications. Five μL serum from each 678 
specimen was lysed in 50 μL lysis buffer (8 M urea in 100 mM 679 
triethylammonium bicarbonate, TEAB) at 32℃ for 30 min. The lysates were 680 
reductive with 10 mM tris (2-carboxyethyl) phosphine (TCEP) for 30 min at 681 
32℃, then alkylated for 45 min with 40 mM iodoacetamide (IAA) in darkness 682 
at room temperature (25℃). The protein extracts were diluted with 200 μL 100 683 
mM TEAB, and digested with double-step trypsinization (Hualishi Tech. Ltd, 684 
Beijing, China), each step with an enzyme-to-substrate ratio of 1:20, at 32℃ 685 
for 60 min. The reaction was stopped by adding 30 µL 10% trifluoroacetic acid 686 
(TFA) in volume. Digested peptides were cleaned-up with SOLAμ (Thermo 687 
Fisher Scientific™, San Jose, USA) following the manufacturer's instructions, 688 
and lableled with TMTpro 16plex label reagents (Thermo Fisher Scientific™, 689 
San Jose, USA) as described previously. The TMT samples were fractionated 690 
using a nanoflow DIONEX UltiMate 3000 RSLCnano System (Thermo Fisher 691 
Scientific™, San Jose, USA) with an XBridge Peptide BEH C18 column (300 692 
Å, 5 μm × 4.6 mm × 250 mm) (Waters, Milford, MA, USA)(Gao et al., 2020). 693 
The samples were separated using a gradient from 5% to 35% acetonitrile 694 
(ACN) in 10 mM ammonia (pH=10.0) at a flow rate of 1 mL/min. Peptides 695 
were separated into 120 fractions, which were consolidated into 40 fractions. 696 
The fractions were subsequently dried and re-dissolved in 2% ACN/0.1% 697 
formic acid (FA). The re-dissolved peptides were analyzed by LC-MS/MS with 698 
the same LC system coupled to a Q Exactive HF-X hybrid Quadrupole-699 
Orbitrap (Thermo Fisher Scientific™, San Jose, USA) in data dependent 700 
acquisition (DDA) mode. For each acquisition, peptides were loaded onto a 701 
precolumn (3 µm, 100 Å, 20 mm*75 µm i.d.) at a flowrate of 6 μL/min for 4 min 702 
and then injected using a 35 min LC gradient (from 5% to 28% buffer B) at a 703 
flowrate of 300 nL/min (analytical column, 1.9 µm, 120 Å, 150 mm*75 µm i.d.). 704 
Buffer A was 2%ACN, 98% H2O containing 0.1% FA, and buffer B was 98% 705 
ACN, 2% H2O containing 0.1% FA. All reagents were MS grade. The m/z 706 
range of MS1 was 350-1,800 with the resolution at 60,000 (at 200 m/z), AGC 707 
target of 3e6, and maximum ion injection time (max IT) of 50 ms. Top 15 708 
precursors were selected for MS/MS experiment, with a resolution at 45,000 709 
(at 200 m/z), AGC target of 2e5, and max IT of 120 ms. The isolation window 710 
of selected precursor was 0.7 m/z. The resultant mass spectrometric data 711 
were analyzed using Proteome Discoverer (Version 2.4.1.15, Thermo Fisher 712 
Scientific) using a protein database composed of the Homo sapiens fasta 713 
database downloaded from UniprotKB on 07 Jan 2020 and the SARS-CoV-2 714 
virus fasta downloaded from NCBI (version NC_045512.2). Enzyme was set 715 
to trypsin with two missed cleavage tolerance. Static modifications were set to 716 
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carbamidomethylation (+57.021464) of cysteine, TMTpro (+304.207145) of 717 
lysine residues and peptides’ N termini, and variable modifications were set to 718 
oxidation (+15.994915) of methionine and acetylation (+42.010565) of 719 
peptides’ N-termini. Precursor ion mass tolerance was set to 20 ppm, and 720 
product ion mass tolerance was set to 0.06 Da. The peptide-spectrum-match 721 
allowed 1% target false discovery rate (FDR) (strict) and 5% target FDR 722 
(relaxed). Normalization was performed against the total peptide amount. The 723 
other parameters followed the default setup.  724 
 725 
Quality control of proteomic data 726 
The quality of proteomic data was ensured at multiple levels. First, a mouse 727 
liver digest was used for instrument performance evaluation. We also run 728 
water samples (buffer A) as blanks every 4 injections to avoid carry-over. 729 
Serum samples of four patient groups from both training and validation 730 
cohorts were randomly distributed in eight different batches. Six samples were 731 
injected in technical replicates. 732 
 733 
Metabolomic analysis  734 

Ethanol was added to the serum samples and shaken vigorously to 735 
inactivate any potential viruses, then dried in a biosafety hood. The dried 736 
samples were further treated for metabolomics analysis. The metabolomic 737 
analysis was performed as described previously(Lee et al., 2019). Briefly, 738 
deactivated serum samples, 100 μL each, were extracted by adding 300 μL 739 
extraction solution. The mixtures were shaken vigorously for 2 min. Proteins 740 
were denatured and precipitated by centrifugation. The supernatants 741 
contained metabolites of diverse chemical natures. To ensure the quantity 742 
and reliability of metabolite detection, four platforms were performed with non-743 
target metabolomics. Each supernatant was divided into four fractions: two for 744 
analysis using two separate reverse-phase /ultra-performance liquid 745 
chromatography (RP/UPLC)-MS/MS methods with positive ion-mode 746 
electrospray ionization (ESI), one for analysis using RP/ UPLC-MS/MS with 747 
negative-ion mode ESI, and one for analysis using hydrophilic interaction 748 
liquid chromatography (HILIC)/UPLC-MS/MS with negative-ion mode ESI. 749 
Each fraction was dried under nitrogen gas to remove the organic solvent and 750 
later re-dissolved in four different reconstitution solvents compatible with each 751 
of the four UPLC-MS/MS methods.  752 

All UPLC-MS/MS methods used ACQUITY 2D UPLC system (Waters, 753 
Milford, MA, USA) and Q Exactive HF hybrid Quadrupole-Orbitrap (Thermo 754 
Fisher Scientific™, San Jose, USA) with HESI-II heated ESI source and 755 
Orbitrap mass analyzer. The mass spectrometer was operated at 35,000 756 
mass resolution (at 200 m/z). In the first UPLC-MS/MS method, the QE was 757 
operated under positive electron spray ionization (ESI) coupled with a C18 758 
column (UPLC BEH C18, 2.1 × 100 mm, 1.7 μm; Waters) was used in UPLC. 759 
The mobile solutions used in the gradient elution were water and methanol 760 
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containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% FA. In the second 761 
method, the QE was still operated under ESI positive mode, and the UPLC 762 
used the same C18 column as in method one, but the mobile phase solutions 763 
were optimized for more hydrophobic compounds and contained methanol, 764 
acetonitrile, water, 0.05% PFPA, and 0.01% FA. The third method had the QE 765 
operated under negative ESI mode, and the UPLC method used a C18 766 
column eluted with mobile solutions containing methanol and water in 6.5 mM 767 
ammonium bicarbonate at pH 8. The UPLC column used in the fourth method 768 
was HILIC column (UPLC BEH Amide, 2.1 × 150 mm, 1.7 μm; Waters), and 769 
the mobile solutions were consisted of water and acetonitrile with 10 mM 770 
ammonium formate at pH 10.8; the QE was operated under negative ESI 771 
mode. The QE mass spectrometer analysis was alternated between MS and 772 
data-dependent MS2 scans using dynamic exclusion. The scan range was 773 
70-1,000 m/z.  774 

After raw data pre-processing, peak finding/alignment, and peak 775 
annotation using in-house software, metabolites were identified by searching 776 
an in-house library containing more than 3,300 standards with library data 777 
entries generated from running purified compound standards through the 778 
experimental platforms. Identification of metabolites must meet three strict 779 
criteria: narrow window retention index (RI), accurate mass with variation less 780 
than 10 ppm and MS/MS spectra with high forward and reverse scores based 781 
on comparisons of the ions present in the experimental spectrum to the ions 782 
present in the library spectrum entries. Almost all isomers can be 783 
distinguished by these three criteria. All identified metabolites meet the level 1 784 
requirements by the Chemical Analysis Working Group (CAWG) of the 785 
Metabolomics Standards Initiative (MSI) expect some asterisk labeled lipids 786 
which MS/MS spectral were in silico matched.  787 

 788 
Quality control of metabolomics analysis 789 

Several types of quality control samples were included in the experiment: 790 
a pooled sample generated by taking a small volume of each experimental 791 
sample to serve as a technical replicate that was run multiple times 792 
throughout the experiment, extracted water samples served as blanks, and 793 
extracted commercial plasma samples for monitoring instrument variation. A 794 
mixture of internal standards was also spiked into every sample to aid 795 
chromatographic peak alignment and instrument stability monitoring. 796 
Instrument variability was determined by calculating the median relative SD 797 
(RSD) of all internal standards in each sample. The experimental process 798 
variability was determined by calculating the median RSD for all endogenous 799 
metabolites present in the pooled quality control samples. 800 

 801 
Statistical analysis  802 

Metabolites and therapeutic compounds with over 80% missing ratios in a 803 
particular patient group were removed for the metabolomics dataset 804 
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containing endogenoeous metabolites while full proteomics features were 805 
used for the subsequent statistical analysis. Missing values were imputated 806 
with the minimal value for each feature. Log2 fold-change (log2 FC) was 807 
calculated on the mean of the same patient group for each pair of comparing 808 
groups. Two-sided unpaired Welch’s t test was performed for each pair of 809 
comparing groups and adjusted p values were calculated using Benjamini & 810 
Hochberg correction. The statistical significantly changed proteins or 811 
metabolites were selected using the criteria of adjust p value less than 0.05 812 
indicated and absolute log2 FC larger than 0.25. From the training cohort, the 813 
important features were selected with mean decrease accuracy larger than 3 814 
using random forest containing a thousand trees using R package 815 
randomForest (version 4.6.14) random forest analysis with 10-fold cross 816 
validation as binary classification of paired severe and non-severe group 817 
using combined differentially regulated proteins and metabolites features. The 818 
random forest analysis was further performed for a hundred times on the 819 
matrix with only the selected important features using normalized additive 820 
predicting probability as the final predicting probability and the larger 821 
probability as the predictive label. Those selected important features were 822 
used for the random forest analysis on the independent validation cohort. 823 

 824 
Pathway analysis  825 
Four network pathway analysis tools were used for pathway analysis using 93 826 
differentially expressed proteins (DEPs). The top Gene Ontology (GO) 827 
processes were enriched by Metascape web-based platform (Zhou et al., 828 
2019). The GO terms is enriched using the Cytoscape plug-in ClueGO 829 
(Bindea et al., 2009). Ingenuine pathway analysis (Kramer et al., 2014) of the 830 
regulated proteins identifies most significantly relevant pathways with p value 831 
of determined based on right-tailed Fisher's Exact Test with the overall 832 
activation or inhibition states of enriched pathways were predicted by z-score. 833 
Functional co-expression network analysis by GeNet(Li et al., 2018a) to 834 
represent statistical co-expressed protein modules. 835 
  836 
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Figure S1. Quality control of proteomic and metabolomic data. (A) 837 
Coefficient of variation (CV) of the proteomic data is calculated by the proteins 838 
quantified in six quality control (QC) samples using the pooled samples from 839 
all samples in training cohort. CV of the metabolomic data is calculated by 840 
twelve QC samples using a set of isotopic internal spiked-in standards. (B) 841 
UMAP of sera samples using 791 measured proteins. (C) UMAP of sera 842 
samples using 847 metabolites.  843 
Figure S2. Differentially expressed proteins in different patient groups in 844 
the training cohort. Volcano plots compare four pairs of patient groups as 845 
indicated in the plot. Proteins with log2 (fold-change) beyond 0.25 or below -846 
0.25 with adjusted p value lower than 0.05 were considered as significantly 847 
differential expression. Number of significantly down- (blue) and up- (red) 848 
regulated proteins were shown on the top. 849 
Figure S3. Differentially expressed metabolites in different patient 850 
groups in the training cohort. The volcano plots follow that for Figure S3 851 
except metabolomic data were used as the input. 852 
Figure S4. Proteins and metabolites regulated in COVID-19 patients but 853 
not in non-COVID-19 patients. Venn diagrams showing the overlaps 854 
between significantly regulated proteins (A) and metabolites (B) as identified 855 
in volcano plots. Proteins and metabolites labeled in red are the shortlisted 856 
molecules which differentially expressed in the COVID-19 patients but not in 857 
the non-COVID-19 patients. 858 
Figure S5. Identification of specific clusters of proteins and metabolites 859 
in COVID-19 patients. 791 proteins (A) and 941 metabolites (B) were 860 
clustered using mFuzz into 16 significant discrete clusters, respectively, to 861 
illustrate the relative expression changes of the proteomics and metabolomics 862 
data. The groups in proteomics data: 1: Healthy; 2: non-Severe COVID-19; 3: 863 
Severe COVID-19. The groups in metabolomics data: 1: Healthy; 2: non-864 
COVID-19; 3: non-Severe COVID-19; 4: Severe COVID-19. 865 
Figure S6. Pathway analysis of 93 differential expressed proteins in 866 
COVID-19 patients. (A) The Gene Ontology (GO) processes enriched by 867 
Metascape. (B) The GO terms enriched using the Cytoscape plug-in ClueGO. 868 
(C) Ingenuine pathway analysis of most significantly relevant pathways with 869 
the predicted activation or inhibition state. (D) Functional network analysis by 870 
GeNet identifies several communities. 871 
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