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Abstract: Environmental factors, including seasonal climatic variability, can strongly impact on 

spatio-temporal patterns of infectious disease outbreaks. We assessed the effects of temperature 

and humidity on the global patterns of Covid-19 early outbreak dynamics during January-March 

2020. Climatic variables were the best drivers of global variation of confirmed Covid-19 cases 

growth rates. Growth rates peaked in temperate regions of the Northern Hemisphere with mean 5 

temperature of ~5°C and humidity of ~0.6-1.0 kPa during the outbreak month, while they 

decreased in warmer and colder regions. The strong relationship between local climate and 

Covid-19 growth rates suggests the possibility of seasonal variation in the spatial pattern of 

outbreaks, with temperate regions of the Southern Hemisphere becoming at particular risk of 

severe outbreaks during the next months. 10 

. 

One Sentence Summary: 

Temperature and humidity strongly impact the variation of the growth rate of Covid-19 cases 
across the globe. 
  15 
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Introduction 

Host-pathogen interaction dynamics can be significantly affected by environmental conditions, 

either directly, via e.g. improved pathogen transmission rates, or indirectly, by affecting host 

susceptibility to pathogen attacks (1). In the case of directly transmitted diseases, such as human 

influenza, multiple environmental parameters such as local temperatures and humidity impact on 5 

virus survival and transmission, with significant consequences for the seasonal and geographic 

patterns of outbreaks (2-6). A recently discovered coronavirus, SARS-CoV-2, is the aethiological 

agent of a pandemic disease, Covid-19, causing severe pneumonia outbreaks at the global scale 

(7). Covid-19 cases are now reported in about 170 countries and regions worldwide (8). Three 

months after the discovery of SARS-CoV-2, the global pattern and the early dynamics of Covid-10 

19 outbreaks seem highly variable. Some countries have been experiencing limited growth and 

spread of Covid-19 cases, while others are suffering widespread community transmission and 

nearly exponential growth of infections (8). Understanding the drivers of early growth rates is 

pivotal to predict progresses of disease outbreaks in the absence of containment measures (9, 10), 

yet no study has so far assessed the role of environmental variation in the worldwide growth of 15 

Covid-19 cases. Given the impact of environmental conditions on the transmission of many 

pathogens, we tested the hypothesis that the severity of Covid-19 outbreaks across the globe is 

affected by spatial variation of key environmental factors, such as temperature, air humidity (5, 

11-15), and pollution [fine particulate matter (16); see methods]. We then evaluated if this could 

help to illustrate global variation in the risk of severe Covid-19 outbreaks in the coming months. 20 

Relying on a publicly available global dataset (8), we computed the daily growth rates r 

of confirmed Covid-19 cases (Covid-19 growth rate hereafter) for 121 countries/regions (see the 

Methods section). We limited our measure of epidemics growth rate to the first 5 days after 
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reaching a minimum threshold of confirmed cases (25, 50 or 100), as the mean incubation period 

of Covid-19 is ca. 5 days (17) and, immediately after the first confirmed cases, many countries 

put in place unprecedented containment measures to mitigate pathogen spread and community 

transmission (18). Variation at these early epidemic growth rates should best reflect the impact 

of local environmental conditions on disease spread. We restricted analyses to data reported 5 

before March 19, as during that week many regions of the world adopted stringent containment 

measures even in absence of large numbers of reported cases. For instance, on March 17, 37 US 

states closed schools to prevent disease spread, including several states with less than 25 

confirmed Covid-19 cases (19). We also considered additional factors that could affect SARS-

CoV-2 transmission dynamics, such as human population density and government per-capita 10 

health expenditure (see Methods). 

 

Results and discussion 

Covid-19 growth rates showed high variability at the global scale (Fig. 1A-C). The 

observed daily growth rate after reaching 50 cases (r50) was on average 0.22 [95% CI 0.19-0.24], 15 

and ranged from 0.01 (Kuwait) to 0.55 (Denmark). The highest growth rates were observed in 

temperate regions of the Northern Hemisphere, although fast growth also occurred in some warm 

climates, as observed in Brazil and the Philippines, suggesting that no area is exempt from risk 

(Fig. 1C) Growth rates calculated using different minimum thresholds of confirmed cases (25 or 

100) were strongly positively correlated (see Methods), indicating robustness of our results to the 20 

choice of thresholds. 
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Climate variables were the most important predictors of Covid-19 growth rate (Table S1). 

The best-fitting linear mixed model suggested that r50 is non-linearly related to spatial variation 

in mean temperature of the outbreak month (Fig. 1A, Tables S2-S3). Growth rates peaked in 

regions with mean temperature of ~5°C during the outbreak month, and decreased both in 

warmer and colder climates (Fig. 1A, Table S3). The comparison of models with different 5 

combinations of predictors confirmed temperature as the variable with the highest relative 

importance in explaining variation of r50 (Table S1), and temperature was the only parameter 

included in the best-fitting model (Tables S2-S3). Temperature and humidity of the outbreak 

month showed a strong, positive relationship across regions (Fig. S1), thus they could not be 

included as predictors in the same model. When we repeated the analyses including humidity 10 

instead of temperature, r50 varied significantly and non-linearly with humidity, peaking at ~0.6-

1.0 kPa (Fig. 1B, Tables S4-S5). The best model including humidity also showed slightly larger 

growth rates in countries with greater health expenditure (Table S5), possibly because of more 

efficient early reporting and/or faster diagnosis of Covid-19 cases. Results were highly consistent 

if we calculated growth rates after minimum thresholds of 25 or 100 cases (r25 and r100, 15 

respectively) instead of 50 (Tables S3 and S5). Human population density and air pollution 

showed very limited relative importance values (always < 0.50; Table S1), suggesting that they 

play a relatively minor role in determining Covid-19 growth rates, at least at the coarse spatial 

scale of this study. 

Previous laboratory experiments on other viruses showed linear decrease in virus 20 

transmission and survival at temperatures increasing from 5 to 30°C (2, 6, 20), while here we 

detected a non-linear relationships between COVID-19 growth rates and climate variables (Fig. 

1A-B). These differences may be explained by complex interplays between climate-related 
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changes in human host social behavior, changes in host susceptibility to the virus, or changes in 

virus survival and transmission patterns. 

The clear relationship between COVID-19 growth rate and climate suggests that seasonal 

climatic variation may affect the spatial spread and severity of COVID-19 outbreaks (14), as 

observed for other virus-caused diseases (3, 6). We thus displayed potential seasonal changes in 5 

Covid-19 growth rates by projecting our best model of r50 in relation to temperature under the 

average temperature conditions of the current (March) and next (June and September) months 

(Fig. 1A-C). The predicted global distribution of Covid-19 growth rates based on March 

temperatures showed favorable conditions for disease spread in most temperate regions of the 

Northern Hemisphere, and matched well with the observed spatial distribution of Covid-19 10 

growth rates during the January-March global outbreak (Fig. 1C). The expected seasonal rise in 

temperatures during the next months could results in less suitable conditions for Covid-19 spread 

in these areas. Conversely, seasonal variation of temperatures could accelerate disease spread in 

large areas of the Southern Hemisphere, including south America, south Africa, eastern Australia 

and New Zealand, and at the high latitudes of the Northern hemisphere (14) (Fig. 1D-E). 15 

SARS-CoV2 shows a substantial rate of undocumented infections that could facilitate the 

spread of the disease (21). This may affect our analyses, which are based on the number of 

confirmed positive cases (8, 9). In most countries, reported positives largely refer to tested 

individuals showing Covid-19 symptoms that require hospitalization. Therefore, even though our 

models cannot capture the (unknown) dynamics of undocumented infections, they provide key 20 

information on the geographical variation in the risk of occurrence of symptomatic SARS-CoV2 

infections. 
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The management of Covid-19 outbreaks is undoubtedly one of the biggest challenges 

governments will face in the coming months. Our spatially-explicit analysis suggests that, at 

least in some parts of the world, ongoing containment efforts could benefit from the interplay 

between pathogen spread and local climate. We do not claim that climate is the single major 

driver of Covid-19 spread. The huge variation of Covid-19 growth rates among regions with 5 

similar climate indeed suggests that diverse and complex social and demographic factors, as well 

as stochasticity, may strongly contribute to determine the severity of Covid-19 outbreaks. Yet, 

climate can contribute to explain variability in global patterns of Covid-19 growth rates. In the 

coming months, we may thus expect that large areas of the Southern Hemisphere will show 

environmental conditions promoting severe Covid-19 outbreaks. Despite climate may mitigate 10 

Covid-19 growth rate, in absence of containment actions severe outbreaks are possible also in 

warm regions (Fig. 1C), thus stringent measures to prevent disease spread remain pivotal in all 

the areas of the world (18). 

 

Materials and methods 15 

 

Covid-19 dataset  

We downloaded the time series of confirmed Covid-19 cases from the Johns Hopkins University 

Center For Systems Science and Engineering (JHU-CSSE) GitHub repository 

(https://github.com/CSSEGISandData/Covid-19/; file ‘time_series_19-covid-Confirmed.csv’) 20 

(8). This datafile is updated once a day (at 23:59 UTC) and reports, for each day since January 

22, 2020, all confirmed Covid-19 cases at the country level or at the level of significant 

geographical units belonging to the same country, which we defined here as ‘regions’ (e.g. US 
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states or China provinces), whenever separate Covid-19 cases data for these regions are 

available. Initially, US data were reported by county but, as of March 9, they were reported at the 

state level. We therefore merged all US county data before March 9 to state level, and used state-

level time series for subsequent calculations. With the exception of US data, in all other cases we 

maintained the original country/region information adopted by the JHU-CSSE. The datafile 5 

considered for the analyses was downloaded on March 19, 2020, and included confirmed Covid-

19 cases until March 18, 2020. From this dataset, we selected data for all countries/regions for 

which local outbreaks were detected. We define a local outbreak event when at least 50 positive 

cases were detected in a given country/region, and calculated the growth rate of confirmed 

Covid-19 cases between day 1 and day 5, when day 1 was the day at which the 50 cases 10 

threshold was reached. We calculate the daily growth rate r of confirmed Covid-19 cases for 

each country/region, assuming an exponential growth as: r = [ln(n casesday 5) - ln(n casesday 1)] / 

4. We checked the robustness of our estimates of growth rate by calculating daily growth rate 

after the first 25, 50 or 100 cases (r25, r50 and r100, respectively). Growth rates estimated at 

different thresholds were strongly positively correlated (Pearson’s correlation coefficients, r25 vs. 15 

r50: r = 0.74; r50 vs. r100: r = 0.81). 

The dataset does not report information on containment measures, and these may be 

highly heterogeneous among countries/regions. We decided to calculate growth rate on the basis 

of the first five days, in order to obtain an estimate of the non-intervened spread of the disease 

(i.e. before stringent containment measures are undertaken). Five days provides a reasonable 20 

trade-off between having to unreliable estimates of growth rates (if calculated on the basis of a 

smaller number of days, e.g. 3), and obtaining growth rates influenced by the enforcement of 

heavy containment measures (such as immediate isolation of confirmed cases). Five days is the 
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median estimated time spanning before the onset of symptoms (17), implying that infected 

patients might spread the virus for 5 days undetected in absence of preventive control measures. 

The mean estimated growth rate of confirmed Covid-19 cases showed a tendency to decrease 

from r25 to r100 (mean and 95% c.i.: r25 = 0.26 [0.24-0.28, n = 121], r50 = 0.22 [0.19-0.24, n = 

90], r100 = 0.20 [0.17-0.22, n = 69]), possibly because of the progressive effect of containment 5 

measures that were adopted in different countries at different times and different minimum 

thresholds after the onset of the local outbreak. We excluded from analyses countries/regions 

with less than 100,000 inhabitants (in our dataset, San Marino only). As of March 19, 2020, the 

JHU-CSSE dataset provided information for a total of 121 countries/regions for the calculation 

of r25, 90 for r50, and 69 for r100. The final list of countries/regions included in the analyses, 10 

together with estimated confirmed Covid-19 growth rates at different thresholds, is reported in 

Table S6. 

 

Environmental and socio-economic variables 

We considered two climatic variables that are known to affect the spread of viruses: mean air 15 

temperature and vapor pressure, which is a measure of absolute humidity. Previous studies 

showed that, for coronaviruses and influenza viruses, survival is generally higher at low 

temperature and low values of absolute humidity (2, 5, 6, 12, 20). For each country/region, we 

thus calculated the mean monthly values for temperature (°C) and vapor pressure (kPa) for 

January, February and March on the basis of the WorldClim 2.1 raster layers at 10 arc-minutes 20 

resolution (22). We relied on WorldClim climatic data because homogeneous data on conditions 

for the period January-March 2020 are not yet available at a global scale (see e.g. 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5, where global monthly data 
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are available with a delay of approx. three months), and spatial variation among areas of the 

world is generally much stronger than inter-annual variation for the same region (23). As 

additional predictors, we considered mean human population density (24) (population density 

hereafter, expressed in inhabitants/km2) and per-capita government health expenditure (health 

expenditure hereafter) (indicator ‘Domestic General Government Health Expenditure (GGHE-D) 5 

per Capita in US$; average of 2015-2017 values downloaded from the World Health 

Organization database at https://apps.who.int/nha/database). Health expenditure was available at 

country-level only: hence, regions within countries were assigned the same health expenditure 

value. Finally, it has been proposed that air pollution, and especially fine atmospheric particulate, 

could enhance the persistence and transmission of coronaviruses (16, 25). We therefore extracted 10 

values of annual concentration (µg/m3) of ground-level fine particulate matter (PM2.5) for 2016 

from the NASA Socioeconomic Data and Applications Center (26), and calculated the mean 

abundance of PM2.5 for each country/region. We performed all spatial analyses using the raster 

package in R (27). 

 15 

Statistical analyses 

We used linear mixed models (LMMs) to relate the global variation of r50, r25 and r100 to the five 

environmental predictors (temperature and humidity of outbreak month; population density; 

health expenditure and PM2.5). To associate climate variables to the estimated r-values for each 

country/region, we first extracted the mean month of the 5 days over which we computed the r-20 

values (rounded to the nearest integer) (outbreak month). We then assigned to the r-values of 

each country/region the mean temperature and humidity of the month during which the outbreak 

occurred. Country was included as a random factor to take into account potential non-
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independence of growth rates from regions belonging to the same country. Non-linear 

relationships between climatic factors and ecological variables are frequent, and have also been 

proposed for relationships between SARS-CoV-2 occurrence and climate (14, 28), and in 

exploratory plots we detected a clear non-linear relationship between r-values and climate. 

Therefore, for climatic variables, we included in models both linear and quadratic terms. 5 

Humidity, population density, health expenditure and PM2.5 were log10-transformed to reduce 

skewness and improve normality of model residuals. 

We adopted a model selection approach to identify the variables most likely to affect the 

global variation of Covid-19 growth rate (29). We built models representing the different 

combinations of independent variables, and ranked them on the basis of Akaike’s Information 10 

Criterion (AIC). AIC trades-off explanatory power vs. number of predictors; parsimonious 

models explaining more variation have the lowest AIC values and are considered to be the “best 

models” (29). For each candidate model, we calculated the Akaike weight ωi, representing the 

probability of the model given the data (30). We then calculated the relative variable importance 

of each variable (RVI) as the sum of ωi of the models where each variable is included. RVI can 15 

be interpreted the probability that a variable should be included in the best model (29, 31). Model 

selection analyses and the calculation of RVI can be heavily affected by collinearity among 

variables. In our dataset, temperature and humidity showed a very strong positive correlation 

(Fig. S1 and Table S7); furthermore, population density was strongly positively associated with 

PM2.5 (Figure S1 and Table S7). Therefore, temperature and humidity, or population density 20 

and PM2.5, could not be considered together in the same models (31, 32). All other predictors 

showed weak correlations and should not cause collinearity issues (32) (Table S7). We therefore 

repeated the model selection for different combinations of uncorrelated variables. First, we 
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considered temperature, health expenditure and population density as independent variables. 

Then we repeated the analysis using humidity instead of temperature, and we calculated the RVI 

of variables separately for these two model selection analyses. Finally, to assess the role of 

PM2.5, we repeated these two model selections analyses using PM2.5 instead of health 

expenditure. The RVI values for all tested models are reported in Table S1. Due to low RVI of 5 

PM2.5 in all models (Table S1), we subsequently report detailed results of models including 

population density instead of PM2.5 (Tables S2-S5). To test the robustness of our conclusion to 

subjective thresholds for the minimum number of cases, all analyses were repeated considering 

the three estimates of Covid-19 growth rate as dependent variables (r25, r50 and r100).  

LMMs were fitted using the lmer function of the lme4 R package (33), while tests 10 

statistics were calculated using the lmerTest package (34). To confirm that spatial 

autocorrelation did not bias the outcome of our analyses, we calculated the spatial 

autocorrelation (Moran’s I) of the residuals of best-fitting models using the EcoGenetics package 

in R (35) at lags of 1000 km up to a maximum distance of 5000 km. Model residuals did not 

show significant spatial autocorrelation at any lag (in all cases, |Moran’s I| < 0.10 and P > 0.11), 15 

suggesting that spatial autocorrelation was not a major issue in our analyses (36). 
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Figure 1. Variation of Covid-19 growth rates in relation to climate, and spatial predictions 

for different months. Variation of confirmed Covid-19 cases growth rates for the first 5 days 

after reaching a minimum threshold of 50 cases (r50) during the January-March 2020 pandemic 

outbreak in relation to A) mean temperature and B) mean absolute humidity of the outbreak 

month. Partial regression plots (37) of the best-fitting linear mixed models (LMMs) of r50 in 5 

relation to temperature and humidity, respectively (Tables S3-S5). The quadratic terms of both 

temperature and humidity were highly significant (temperature: F1,87 = 14.4, P < 0.001; 

humidity: F1,84 = 7.82, P = 0.006; full details in Tables S3 and S5). Shaded areas are 95% 

confidence band. C): global pattern of r50; the size of dots is proportional to the observed r50 

values. The background shows the spatial prediction of growth rates according to mean March 10 

temperatures (22). Predictions are based on the best-fitting LMM of r50 in relation to mean 

temperature of the outbreak month (Table S3). D-E: Spatial prediction of growth rates according 

to mean June and September temperatures (22), highlighting that conditions for rapid disease 

spread appear in temperate regions of the Southern Hemisphere. 
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