1	Deep Learning-Based Recognizing COVID-19 and other
2	Common Infectious Diseases of the Lung by Chest CT
3	Scan Images
4	
5	Running title: Deep Learning-Based Recognizing COVID-19
6	
7	Min Fu ^{1*} , Shuang-Lian Yi ^{2*} , Yuanfeng Zeng ^{3*} , Feng Ye ^{3*} , Yuxuan Li ⁴ , Xuan Dong ² ,
8	Yan-Dan Ren ² , Linkai Luo ⁵ , Jin-Shui Pan ² , Qi Zhang ⁶
9	
10	¹ School of Aerospace Engineering, Xiamen University, Xiamen 361002, Fujian,
11	China;
12	² Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen
13	University, Xiamen 361004, Fujian, China;
14	³ Department of Radiology, Zhongshan Hospital Affiliated to Xiamen University,
15	Xiamen 361004, Fujian, China;
16	⁴ Hubei University of Technology, Wuhan 430068, Hubei, China;
17	⁵ School of Aerospace Engineering, Xiamen University, Xiamen 361102, Fujian,
18	China;
19	⁶ Department of Nosocomial Infection and Public Health, Jin Yin-Tan Hospital, Wuhan
20	430023, Hubei, China.

- ^{*}The authors contribute equally to the work.
- 22
- 23 **E-mails:**
- 24Min Funarcissist_fm@163.com
- 25 Shuang-Lian Yi <u>yishuanglian1225@126.com</u>
- 26Yuanfeng Zeng345228436@qq.com
- 27 Feng Ye <u>13906051956@139.com</u>
- 28 Yuxuan Li <u>simon1999YX@126.com</u>
- 29
 Xuan Dong
 <u>362485659@qq.com</u>
- 30
 Yan-Dan Ren
 916659998@qq.com
- 31 Linkai Luo <u>luolk@xmu.edu.cn</u>
- 32 Jin-Shui Pan j.s.pan76@gmail.com
- 33
 Qi Zhang
 <u>1368011609@qq.com</u>
- 34
- 35 *Correspondence:
- 36 Qi Zhang, MD, PhD.
- 37 Department of Nosocomial Infection and Public Health,
- 38 Jin Yin-Tan Hospital, Wuhan 430023
- 39 No. 1, Yintan Road
- 40 E-mail: 1368011609@qq.com
- 41 Tel: +86 027 8550 9843

- 42 Fax: +86 027 8550 9843
- 43
- 44 Jin-Shui Pan, MD, PhD.
- 45 Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University
- 46 No. 201-209, Hubin Nan Road
- 47 Xiamen 361004, Fujian, China
- 48 E-mail: j.s.pan76@gmail.com
- 49 Tel.: +86 592 2590 150
- 50 Fax: +86 592 2590 150
- 51
- 52 Linkai Luo, Prof.
- 53 School of Aerospace Engineering, Xiamen University
- 54 Xiang'an Nan Road
- 55 Xiamen 361102, Fujian, China
- 56 E-mail: <u>luolk@xmu.edu.cn</u>
- 57 Tel.: +86 592 2183 216
- 58 Fax: +86 592 2182 221

59 Abstract

60	Purpose: COVID-19 has become global threaten. CT acts as an important method of
61	diagnosis. However, human-based interpretation of CT imaging is time consuming.
62	More than that, substantial inter-observer-variation cannot be ignored. We aim at
63	developing a diagnostic tool for artificial intelligence (AI)-based classification of CT
64	images for recognizing COVID-19 and other common infectious diseases of the lung.
65	Experimental Design: In this study, images were retrospectively collected and
66	prospectively analyzed using machine learning. CT scan images of the lung that show
67	or do not show COVID-19 were used to train and validate a classification framework
68	based on convolutional neural network. Five conditions including COVID-19
69	pneumonia, non-COVID-19 viral pneumonia, bacterial pneumonia, pulmonary
70	tuberculosis, and normal lung were evaluated. Training and validation set of images
71	were collected from Wuhan Jin Yin-Tan Hospital whereas test set of images were
72	collected from Zhongshan Hospital Xiamen University and the fifth Hospital of
73	Wuhan.
74	Results: Accuracy, sensitivity, and specificity of the AI framework were reported. For
75	test dataset, accuracies for recognizing normal lung, COVID-19 pneumonia,
76	non-COVID-19 viral pneumonia, bacterial pneumonia, and pulmonary tuberculosis
77	were 99.4%, 98.8%, 98.5%, 98.3%, and 98.6%, respectively. For the test dataset,
78	accuracy, sensitivity, specificity, PPV, and NPV of recognizing COVID-19 were
79	98.8%, 98.2%, 98.9%, 94.5%, and 99.7%, respectively.

- 80 **Conclusions:** The performance of the proposed AI framework has excellent
- 81 performance of recognizing COVID-19 and other common infectious diseases of the
- 82 lung, which also has balanced sensitivity and specificity.
- 83
- 84 Key Words: deep learning, COVID-19, infectious disease, diagnostic imaging,
- 85 Computer Tomography.

86 Introduction

87	Coronaviruses are non-segmented positive-sense RNA viruses with envelope that
88	belongings to the family Coronaviridae, which widely distributed in humans and other
89	mammals. Since the beginning of this century, coronavirus has caused several
90	localized epidemics and even global pandemics, such as SARS, Middle East
91	Respiratory Syndrome, and the ongoing coronavirus disease 2019 (COVID-19). Up to
92	27 March 2020, 509164 confirmed cases were reported with 23335 deaths worldwide;
93	over 82078 cases of COVID-19 have been confirmed in mainland China, with a
94	mortality rate of $4.0\%^{(1)}$. Although the upward trend of COVID-19 has been
95	effectively curbed, the number of confirmed cases has increased dramatically in
96	several countries, such as South Korea, Japan, Italy, and other countries.
97	According to the WHO interim guidance ⁽²⁾ and series diagnosis and treatment scheme
98	for COVID-19 of China, confirmed case of COVID-19 was made on the basis of a
99	positive result on high-throughput sequencing or real-time
100	reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay of specimen
101	collected by nasal and pharyngeal swab. However, the false negative rate of nucleic
102	acid detection may be relatively high in early stage of COVID-19. Sometimes,
103	repeated tests are needed to get positive results. Novel coronavirus that leads to
104	COVID-19 is encoded by RNA, which is a highly unstable and tends to be degraded
105	by RNAase. RNAase is widely found in saliva and surrounding environment. Thus,
106	RNA of novel coronavirus in the specimen collected by nasal and pharyngeal swab

107	may have been degraded by contaminated RNAase, which at least partly explains the
108	low positive rate of nucleic acid assay from nasal and pharyngeal swab. Another
109	constraint in practice is that the supply of assay kits of nucleic acid detection may be
110	seriously inadequate in case of a large-scale outbreak of disease. In contrast,
111	COVID-19 has relatively unique imaging features in CT manifestations. In early stage
112	(less than 1 week after symptom onset), the predominant pattern was unilateral or
113	bilateral ground-glass opacities. Within 1-3 weeks, ground-glass opacities will
114	progress to or co-existed with consolidations. ⁽³⁾ According to the investigation by
115	Guan et al, ⁽⁴⁾ at the time of admission, 86.2% revealed abnormal CT scans whereas
116	radiographic or CT abnormality was found in 97.1% of the patients with severe type
117	of COVID-19. What cause the characteristic abnormality found by CT scans?
118	Histological examination reveals diffuse alveolar damage with cellular fibromyxoid
119	exudates, which may lead to the changes in CT scans ⁽⁵⁾ . Fibromyxoid exudates in
120	alveoli may further cause disorder in gas exchange and even respiratory failure, which
121	is consistent with the observation by Li et al. ⁽⁶⁾
122	Given the rapid spread of COVID-19 and the above advantages of CT scan, we
123	developed deep learning-based detection of characteristic abnormality to facilitate the
124	early diagnosis of COVID-19.
125	

126 Methods

127 Patients

128	Spiral CT scanning of the lung was performed in Department of radiology, Wuhan Jin
129	Yin-Tan Hospital, Zhongshan Hospital Xiamen University, the fifth Hospital of
130	Wuhan between January 1, 2015 and February 29, 2020. Adult patients who aged
131	between 18 and 75 were enrolled in case of the following conditions: laboratory
132	confirmed COVID-19, non-COVID-19 viral pneumonia, bacterial pneumonia,
133	pulmonary tuberculosis, or absent from abnormal finding in lung CT (normal lung).
134	Case of COVID-19 was confirmed based on the positive result of fluorescent RT-PCR
135	analysis of COVID-19 nucleic acid detection. Apart from COVID-19, the diagnoses
136	of other diseases were made based on pathogen examinations according to the
137	relevant guidelines, and were further confirmed by clinical manifestations, and
138	treatment outcomes. For the patients with more than one kind of the fore-mentioned
139	diseases, such as bacterial pneumonia complicated with pulmonary tuberculosis, will
140	be ruled out from this study. Findings of CT scan images, results of pathogen
141	examinations, and clinical diagnoses were recorded. This study was approved by the
142	Ethics Commission of Zhongshan Hospital Xiamen University. Written informed
143	consent was waived by the Ethics Commission of the designated hospital because of
144	non-interventional study and no identifiable personal information was recorded.
145	

.

Images 146

147	Lung CT scan images from the enrolled patients were retrospectively collected.
148	Images without perfect lung fields were filtered out. Identifiable personal information,
149	such as name of the enrolled patients, name of hospital, etc, was removed.
150	Consecutive images of the lung fields for each patient were selected for image
151	recognizing. For a specific patient, he will be classified as "COVID-19" case if
152	typical CT manifestations related to COVID-19 were identified even in only one
153	image. This rule was also true for other diseases, such as non-COVID-19 virtual
154	pneumonia, biological pneumonia, and pulmonary tuberculosis. But for each selectee,
155	only when all of his images were recognized as "normal" will he be classified into the
156	group of "normal".

.1

11 1

157

Datasets 158

159 Lung CT scan images collected from Department of radiology, Wuhan Jin Yin-Tan 160 Hospital were randomly divided into training set or validation set at a ratio of 3:1. The 161 training set was employed to construct the AI model whereas the validation set was 162 used to assess the accuracy of classification performance of the constructed model. 163 This process was repeated for 5 times. Lung CT scan images collected from Department of radiology, Zhongshan Hospital Xiamen University, the fifth Hospital 164 165 of Wuhan acted as test sets to evaluate the generalization performance in classifying

166 the images beyond the lung CT scan images used in the training set or validation set.167

168 **Training and validation the algorithm**

169	Based on deep learning, we used the PyTorch platform to adopt the ResNet-50
170	architecture pretrained using the ImageNet dataset ⁽⁷⁾ to develop our AI algorithm. The
171	retraining consisted of initializing the convolutional layers with loaded pretrained
172	weights and updating of the neural network to recognize our classes such as
173	COVID-19, non-COVID-19 viral pneumonia, bacterial pneumonia, pulmonary
174	tuberculosis, or and normal lung. The network structure was kept unchanged in this
175	study. However, the weights of the last fully connected layer and the last three
176	convolutional layers were tuned. Firstly, the weights were updated by Adam optimizer
177	and the learning rate was 0.0001; Secondly, the weights were updated by SGD
178	optimizer while the learning rate was set as 0.001. This strategy was superior to a sole
179	optimizer such as SGD or Adam optimizer. After 50 epochs (iterations through the
180	entire dataset), the training was stopped if no further improvement in accuracy or
181	cross-entropy loss were observed. Schematic diagram for the development of the AI
182	algorithm was shown in Supplementary Figure 1.
183	

185 Supplementary Figure 1 Schematic diagram for the development of the AI algorithm186

187 **Testing of the AI algorithm**

- 188 The AI algorithm was further tested by the lung CT scan images collected from
- 189 Department of radiology, Zhongshan Hospital Xiamen University, and the Fifth
- 190 Hospital of Wuhan. The classification performance was evaluated independently in
- 191 the images collected from these two hospitals.

193 **Comparison between the AI algorithm and radiologist**

194	The lung CT scan images collected from Department of radiology, Zhongshan
195	Hospital Xiamen University, and the Fifth Hospital of Wuhan were also sent to expert
196	radiologist to make a diagnosis. Classification performance and cost of time were
197	compared with that of the AI algorithm. Expert radiologists were senior staffs of
198	Department of Radiology, Zhongshan Hospital Xiamen University, with clinical
199	experience about 10 years. Diagnosis was made independently.
200	

201 Statistical analysis

202	To evaluate the	classification	performance of	of the AI al	lgorithm on	lung CT	scan
-----	-----------------	----------------	----------------	--------------	-------------	---------	------

- 203 images, five indies including AUC, accuracy, sensitivity, specificity, PPV, and NPV
- 204 were calculated. The receiver operating characteristics (ROC) curves plot the true
- 205 positive rate (sensitivity) versus the false positive rate (1-specificity). P < 0.05 was set
- as the level for statistical significance for two-tailed paired test.

208 **Results**

209 Characteristics of patient and image

- 210 After filtering those images without good lung fields. Three radiologists with more
- than 10 years of clinical experience labelled infection lesions in the images, and
- 212 lesions reach a consensus were labelled. A total of 60427 CT scan images collected
- 213 from Wuhan Jin Yin-Tan Hospital from the following patients: 100 cases of
- 214 COVID-19 pneumonia, 102 cases of non-COVID-19 viral pneumonia, 103 cases of
- 215 bacterial pneumonia, 105 cases of pulmonary tuberculosis, 200 cases of normal lung,
- 216 were employed to develop the model (Table 1). These images were randomly divided
- 217 into training and validation datasets. Enrolled images in training and validation
- 218 dataset covered almost all common types of infectious diseases of the lung.
- 219
- 220 Table 1 Characteristics of the enrolled patients and images

	Training and Validation set		Test set		Test set	
	Wuhan Jin Yin-Tan		Zhongshan Hospital		the fifth Hospital of	
	Hospital		Xiame	n University		Wuhan
	Patients	Images	Patients	Images	Patients	Images
Normal	200	19976	50	4478	50	4419

COVID-19	100	10057	13	1288	37	3599
Non-COVID-19 viral pneumonia	102	10028	32	3004	20	2101
Bacterial pneumonia	103	10107	28	2719	25	2386
Pulmonary tuberculosis	105	10259	16	1589	38	3618

222 Performance of the AI algorithm during training and validation

223 Based on validation dataset, we evaluated the performance of our AI algorithm in

diagnosing the most common infectious diseases of the lung, including

225 non-COVID-19 viral pneumonia, bacterial pneumonia, pulmonary tuberculosis except

226 COVID-19. During training and validation process, accuracy and cross-entropy were

227 plotted against the iteration step, which were shown in Figure 1. Confusion matrix of

the AI framework during validation process was also shown in Figure 1. Multi-class

229 comparison was performed between COVID-19, non-COVID-19 viral pneumonia,

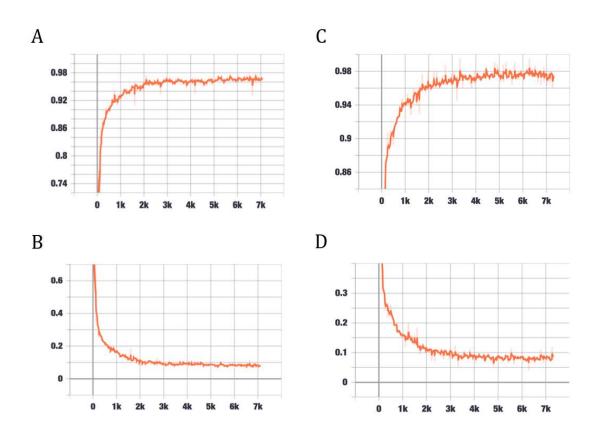
230 bacterial pneumonia, pulmonary tuberculosis, and normal lung. Binary comparison

between COVID-19 and the other four types, including non-COVID-19 viral

pneumonia, bacterial pneumonia, pulmonary tuberculosis and normal lung, was also

233 implemented to evaluate the performance of recognizing COVID-19. Accuracy,

sensitivity, specificity, PPV, and NPV of recognizing COVID-19 were 98.9%, 96.7%,
99.3%, 96.7%, and 99.3%, respectively (Supplementary Table 1). Similarly, binary
comparison was performed for the other four conditions (Supplementary Table 1).



E		Predicted Labels					
		Normal	COVID -19	VP	BP	TB	
	Normal	4945	11	14	15	9	
ls	COVID -19	13	2430	24	28	19	
True Labels	VP	19	30	2408	32	18	
Ę	BP	31	29	17	2426	23	
	TB	10	13	19	31	2491	

239 Figure 1 Performance of the AI algorithm during training and validation.

- 240 (A) Classification accuracy is plotted against training epochs. (B) The categorical
- cross-entropy loss is shown as a function of training epochs for the binary
- 242 classification problem. (C) Classification accuracy is plotted against validation epochs.
- 243 (D) The categorical cross-entropy loss is shown as a function of validation epochs for
- the binary classification problem. The curve is smoothed. (E) Confusion matrix of the
- 245 AI framework during validation process.
- 246

247	Supplementary	Table 1 D	Diagnostic 1	performance	of the AI	algorithm	during validation

	Accuracy (%)	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
Normal	99.2	99.0	99.3	98.5	99.5
COVID-19	98.9	96.7	99.3	96.7	99.3
Non-COVID-19	98.9	96.1	99.4	97.0	99.2
viral pneumonia					
Bacterial	98.6	96.0	99.2	95.8	99.2
pneumonia					
Pulmonary	99.1	97.2	99.4	97.3	99.4
tuberculosis					

248 Note: PPV, positive predictive value; NPV, negative predictive value.

250 **Performance of the AI algorithm during test**

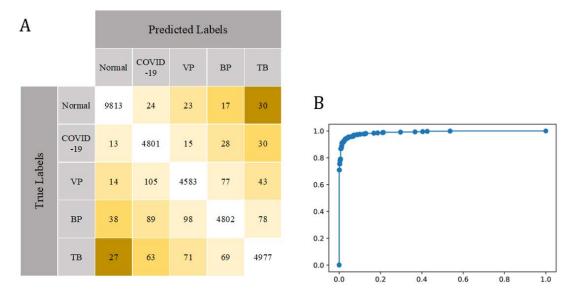
251	From Zhongshan Hospital Xiamen University, and the fifth Hospital of Wuhan, 29201
252	CT scan images were collected from the following patients: 50 cases of COVID-19
253	pneumonia, 52 cases of non-COVID-19 viral pneumonia, 53 cases of bacterial
254	pneumonia, 54 cases of pulmonary tuberculosis, 100 cases of normal lung, were
255	employed to develop the model (Table 1). Multi-class comparison was performed
256	between COVID-19, non-COVID-19 viral pneumonia, bacterial pneumonia,
257	pulmonary tuberculosis, and normal lung. Confusion matrix of the AI framework
258	based on test dataset was shown in Figure 2. Binary classification between COVID-19
259	and the other four types, including non-COVID-19 viral pneumonia, bacterial
260	pneumonia, pulmonary tuberculosis and normal lung, was also implemented to
261	evaluate the performance of recognizing COVID-19. For test dataset, accuracy,
262	sensitivity, specificity, PPV, and NPV of recognizing COVID-19 were 98.8%, 98.2%,
263	98.9%, 94.5%, and 99.7%, respectively (Supplementary Table 2). The ROC curve was
264	generated to evaluate the AI algorithm's ability to distinguish COVID-19 from other
265	four types. The area under the ROC curve was 99.0% (Figure 2).
266	

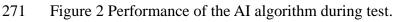
267 Supplementary Table 2 Diagnostic performance of the AI algorithm during test

	Accuracy (%)	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
Normal	99.4	99.1	99.5	99.1	99.5

COVID-19	98.8	98.2	98.9	94.5	99.7
Non-COVID-19 viral pneumonia	98.5	95.0	99.2	95.7	99.0
Bacterial	98.3	94.1	99.2	96.2	98.8
pneumonia					
Pulmonary	98.6	95.6	99.3	96.5	99.1
tuberculosis					

268 Note: PPV, positive predictive value; NPV, negative predictive value.





(A) Confusion matrix of the AI framework during test process. (B) ROC curve for
binary classification between COVID-19 and the other four types of diseases or
conditions.

276 **Discussion**

277 Nowadays, COVID-19 has become global threaten. Timely diagnosis and isolation of including infected patients and asymptomatic carriers are critical to prevent further 278 279 spread of the virus. RT-PCR-based detection of Coronavirus specific nucleic acid is regarded as the standard method of establishing the diagnosis of COVID-19. However, 280 281 the positive rate of nucleic acid detection based on the samples collected from upper 282 respiratory tract is unsatisfying. In an investigation with large sample, in the group of 283 0~7 days after onset (d.a.o), positive rates based on the samples from throat swabs for severe cases and mild cases were 60.0% and 61.3%, respectively whereas positive 284 285 rates for throat swabs reduced to 50.0% and 29.6% for severe cases and mild cases, respectively⁽⁸⁾. 286 COVID-19 may cause asymptomatic infection in some individuals⁽⁹⁾. Asymptomatic 287 288 or mild cases combined are reported to represent about 40-50% of all infections⁽¹⁰⁾. 289 Like confirmed COVID-19 cases, asymptomatic carriers of novel coronavirus acts as 290 the infectious sources of COVID-19. Usually, confirmed COVID-19 patients are 291 known risk and easy to prevent. However, asymptomatic carriers are "hidden 292 enemies", which tends to become mobile infectious sources. 293 Due to the unsatisfying positive rate nucleic acid detection and huge number of 294 asymptomatic carriers, developing alternative methods of detection is urgently needed. 295 Indeed, there is some significant advantages of detecting infected patients by CT scanning. According to the report by Ai et al,⁽¹¹⁾ the positive rate of chest CT imaging 296

is 88% for the diagnosis of suspected patients with COVID-19, which is superior tothat of RT-PCR assay (59%).

299	Because of the relatively high positive rate of CT imaging in the early stage and the
300	characteristic lesions of COVID-19 such as ground-glass opacity ^(3, 4, 12) , CT imaging
301	has potential in the diagnosis of COVID-19 that cannot be ignored. There is large
302	number of potential patients in need. More than that, each examination of CT imaging
303	will generate a large number of images and significant inter-observer-variation exists
304	in the interpretation of CT images. Thus, it is necessary to develop new auxiliary
305	measures for the interpretation of CT images. In this study, we report an artificial
306	intelligence framework based on deep learning for identifying COVID-19, which has
307	balanced sensitivity and specificity. More than that, the area under the ROC curve was
308	high as 99.0% evaluated by test dataset. Another advantage of our study is that five
309	diseases or conditions were enrolled, which cover the most common infectious
310	diseases of the lung. The limitation is that our AI framework will need further
311	evaluation by more wide clinical application.
312	

313 Acknowledgements

314	This work was supported by the National Natural Science Foundation of China
315	No.81871645 (J.S.P.). The funding source did not have any role in the design and
316	conduct of the study; collection, management, analysis, and interpretation of the data;
317	preparation, review, or approval of the manuscript; and decision to submit the
318	manuscript for publication.
319	

320 Contributions

321	MF, and JSP c	conceived and	designed	the project.	JSP obtained funding.	QZ, SLY, YZ,
-----	---------------	---------------	----------	--------------	-----------------------	--------------

322 YF, YL, XD, and YDR performed clinical diagnosis and collected samples. MF and

323 JSP analysed and interpreted data. MF and LL trained and tested the AI model. JSP

324 drafted the manuscript. JSP, QZ, and LL revised the manuscript. All the authors

325 approved the final version of the manuscript.

327 **References**

328	1)	Coronavirus disease	2019 (COVID-19)	Situation Report-67	. In: World Health	Organization.
-----	----	---------------------	-----------------	---------------------	--------------------	---------------

- 329 2) Organization WH. Clinical management of severe acute respiratory infection when novel
- 330 coronavirus (2019-nCoV) infection is suspected: interim guidance. January 28, 2020. In.
- 3) Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J,
- Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z,
- Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan,
- China. The Lancet 2020.
- 335 4) Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ,
- Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ,
- Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J,
- 338 Ye CJ, Zhu SY, Zhong NS, China Medical Treatment Expert Group for C. Clinical Characteristics
- of Coronavirus Disease 2019 in China. N Engl J Med 2020.
- 340 5) Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C, Gao
- 341 T, Song J, Xia P, Dong J, Zhao J, Wang FS. Pathological findings of COVID-19 associated with
- acute respiratory distress syndrome. Lancet Respir Med 2020.
- 343 6) Li X, Wang L, Yan S, Yang F, Xiang L, Zhu J, Shen B, Gong Z. Clinical characteristics of 25 death
- 344 cases infected with COVID-19 pneumonia: a retrospective review of medical records in a single
- 345 medical center, Wuhan, China. medRxiv 2020:2020.2002.2019.20025239.
- 346 7) He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Computer Vision

- and Pattern Recognition 2016.
- 348 8) Yang Y, Yang M, Shen C, Wang F, Yuan J, Li J, Zhang M, Wang Z, Xing L, Wei J, Peng L, Wong G,
- 349 Zheng H, Liao M, Feng K, Li J, Yang Q, Zhao J, Zhang Z, Liu L, Liu Y. Evaluating the accuracy
- 350 of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of
- 351 2019-nCoV infections. medRxiv 2020:2020.2002.2011.20021493.
- 352 9) Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern.
- 353 The Lancet 2020.
- 354 10) Qiu J. Covert coronavirus infections could be seeding new outbreaks. In: Nature; 2020.
- 355 11) Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, Tao Q, Sun Z, Xia L. Correlation of Chest CT and
- 356 RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases.
- 357 Radiology 2020:200642.
- 358 12) Zhang S, Li H, Huang S, You W, Sun H. High-resolution CT features of 17 cases of Corona Virus
- 359 Disease 2019 in Sichuan province, China. Eur Respir J 2020.