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Abstract 

Background 

Prematurity is a severe pathophysiological condition associated with increased morbidity and 

mortality; however, little is known about the gestational-age-dependent development of the 

neonatal metabolome.  

 

Methods 

Using an untargeted liquid chromatography tandem mass spectrometry (LC-MS/MS) 

metabolomics protocol we measured over 6000 metabolites in 148 neonatal heel prick dried 

blood spots retrieved from the Danish Neonatal Screening Biobank. Using a combination of 

state-of-the-art metabolome mining tools, including mass spectral molecular networking 

(GNPS), unsupervised substructure discovery (MS2LDA) and in silico structure annotation, 

we retrieved chemical structural information at a broad level for over 4000 (60%) metabolites 

and assessed their relation to gestational age. 

 

Results 

A total of 744 (~12%) metabolites were significantly correlated with gestational age (false-

discovery-rate-adjusted P < 0.05), whereas 93 metabolites were strongly predictive of 

gestational age, explaining on average 37% of the variance. Using a custom algorithm based 

on hypergeometric testing we identified 17 molecular families (230 metabolites) 

overrepresented with metabolites correlating with gestational age (P < 0.01). Metabolites 

significantly related to gestational age included bile acids, carnitines, polyamines, amino-acid-

derived compounds, nucleotides, dipeptides as well as treatment-related metabolites such as 

antibiotics and caffeine. 

 

Conclusions 

Carnitines, bile acids, as well as amino acid-derived compounds are known to be affected by 

the gut microbiota, whereas polyamines such as spermine and spermidine may play an 

important role in regulating (epithelial) cell growth. Our findings reveal for the first time the 

gestational-age-dependent development of the neonatal blood metabolome and suggest that gut 

microbial and gestational-age-dependent metabolic maturation may be monitored during 

newborn screening.  
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Introduction 

Prematurity is a complex and challenging pathophysiological condition associated with 

increased morbidity and mortality (1,2). Numerous early- and late onset disorders are 

associated with preterm birth, including psychiatric disorders (9). The risk of complications is 

inversely correlated to the gestational age at birth but with large variations within age-groups. 

It is likely that the individual maturation more accurately represents the complication risk. 

Metabolomic analyses could allow for an individual assessment of multi-organ function and 

maturity and may thus contribute to improved understanding of pathophysiological 

mechanisms behind the development of prematurity associated disorders. However, currently 

there is limited knowledge on the metabolomic profile of preterm neonates (3–5) and on how 

to assess metabolic maturity.  

 

Growing evidence suggests a strong link between early-life microbiota and disease (6) and 

short- as well as long-term complications associated with preterm birth such as necrotizing 

enterocolitis, diabetes, cardiovascular disease, neurodevelopmental disorders and 

neuropsychiatric disorders have been related to the underdevelopment of the gut microbiota, 

gastrointestinal tract and immune system (7–13). Although the exact timing of the 

establishment of the intestinal microbiome in human life remains unknown (14), it is generally 

agreed upon that the gut microbial colonization starts at birth at the latest and undergoes shifts 

in composition and structure as the host matures over time (15–19). 

 

Recent studies have shown that marker metabolites of microbial metabolism are readily 

detectable in human blood and that the human blood metabolome may predict gut bacterial α-

diversity (20). However, gut microbiome-derived metabolites that become available to the 

preterm infant and may impact gut maturation and overall host metabolism and health remain 

unknown.   

 

Monitoring gut microbial health and metabolic maturation during newborn screening could 

offer a powerful tool for the early detection and possible early intervention in disease 

progression through probiotics, diet or microbial transplants. Dried blood spots (DBS) 

routinely collected for newborn screening are minimally invasive and metabolomics 

approaches enable the simultaneous measurement of thousands of metabolites thus offering 
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unique insights into metabolic underpinnings of complex pathophysiological conditions 

(21,22).  

 

Here we hypothesize that gestational-age dependent microbial and fetal maturation impacting 

overall host metabolism and health may be monitored during newborn screening. Using dried 

blood spots retrieved from the Danish Neonatal Screening Biobank  in combination with 

recently developed computational metabolomics tools including mass spectral molecular 

networking, unsupervised substructure discovery and in silico structure annotation (23–26), we 

assess the gestational age-dependent development of the blood metabolome of very preterm to 

term neonates.  

Methods 

Study Cohort 

Residual extracts from the Danish newborn screening program during the period from March 

to June 2016 were selected for this study. A total of 148 newborns (62 girls) were sampled at 

48-72h of age, with gestational ages from 28 to 42 weeks (n = 8-10 each) (Supplementary 

Table 1). The study was conducted in accordance with the Declaration of Helsinki and the 

protocol complies with the Danish Ethical Committee law by not being a health research 

project (§2,1) but a method development study not requiring an ethical approval (27). 

 

Metabolomic Profiling 

All samples (including blank and pooled quality control samples) were submitted to untargeted 

metabolomic profiling using liquid chromatography tandem mass spectrometry (LC-MS/MS) 

at Statens Serum Institut, Copenhagen, Denmark between July 6, 2016 and July 14, 2016. Raw 

data files were preprocessed using MZmine (version 2.40.1) (28). A detailed description of 

LC-MS/MS as well as preprocessing parameters can be found in the Supplementary Methods.  

 

Statistical Analyses 

Overall variation in the metabolome related to gestational age was assessed using a principal 

coordinates analysis (PCoA) plot with the Bray-Curtis dissimilarity. A Permutational 

Multivariate Analysis of Variance (PERMANOVA) (29) model was fitted to the Bray-Curtis 

distance matrix to assess the variation in the metabolome explained by gestational age. To 

predict gestational age from the neonatal metabolome, we used a tenfold cross-validation (CV) 
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implementation of the least absolute shrinkage and selection operator method (LASSO), 

including comparing its performance to a Ridge regression such as described in Wilmanski and 

co-workers (20). Metabolite richness and α-diversity was assessed using the mean number of 

metabolites and Shannon Index, respectively, measured per sample and stratified by categories 

of prematurity and gestational age. Subsequently, a Kruskal-Wallis test was used to compare 

mean metabolite richness and α-diversity per prematurity category, whereas correlation 

between metabolite richness and gestational age was evaluated using Kendall’s Tau (30).      

Univariate correlation at the individual metabolite level was assessed using Kendall’s Tau and 

P values were adjusted for multiple hypothesis testing using the false discovery rate (FDR) 

method (31). Hypergeometric testing was used to identify chemically structurally related 

molecular families overrepresented with metabolites that had a statistically significant 

correlation with gestational age. Additional information is provided in the Supplementary 

Methods. All statistical analyses were performed in R 3.6.1 (32) or Python 3.7 (33). All Jupyter 

notebooks used for statistical analysis are publicly available at: 

https://github.com/madeleineernst/Prematurity_SupplementaryMaterial.  

 

Metabolite Identification 

Aggregated MZmine preprocessed MS/MS fragmentation spectra were submitted to feature-

based mass spectral molecular networking through the Global Natural Products Social 

Molecular Networking Platform (GNPS) (24,34,35) and searched against all GNPS spectral 

libraries. To further enhance chemical structural information within the network, substructure 

information was incorporated using the GNPS MS2LDA workflow (https: //ccms-

ucsd.github.io/GNPSDocumentation/ms2lda/) (23). Information from in silico structure 

annotations from Network Annotation Propagation (25) and Dereplicator (36) were 

incorporated using the GNPS MolNetEnhancer workflow (https://ccms-

ucsd.github.io/GNPSDocumentation/molnetenhancer/) (26) with chemical class annotations 

retrieved from the ClassyFire chemical ontology (37). A detailed description of all workflow 

parameters can be found in the Supplementary Methods. Mass spectral molecular network data, 

data from MS2LDA unsupervised substructure discovery and in silico structure annotation are 

available upon request.  
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Results 

A total of 6053 metabolites (mass spectral features with unique MS/MS fragmentation patterns) 

were measured. Using a combination of metabolome mining tools, including mass spectral 

molecular networking (GNPS), unsupervised substructure discovery (MS2LDA) and in silico 

annotation through the MolNetEnhancer workflow (26), chemical structural information at the 

chemical class level, corresponding to a level 3 metabolite identification according to the 

Metabolomics Standard Initiative’s reporting standards (38) could be retrieved for nearly 60% 

(4176) of the detected metabolites (Supplementary Figure 1).  

 

Principal coordinates analysis (PCoA) and permutational analysis of variance demonstrated 

that 3.7% of the variation in the metabolomics data could be explained by gestational age 

(PERMANOVA, P < 0.05, Adonis R2 = 0.037) with strongest separation observed along 

principal coordinate (PCo) 4 (Figure 1a).  

 

The LASSO model suggested that a total of 93 metabolites were strongly predictive of 

gestational age, explaining an average of 37% of the variance (mean out-of-sample R2 = 0.37, 

Pearson’s r = 0.70, P = 1.2 x 10-22 for metabolome-predicted gestational age versus observed, 

ultrasound-guided gestational age) (Figure 1b, Supplementary Results). Out of these 93 

metabolites, six could be matched to GNPS library spectra, including pyroglutamylvaline, 1-

hexadecylpyridinium, serine, ophthalmic acid, N1-acetylspermine and spermidine. Four 

unannotated metabolites were selected in all tenfold cross-validation (CV) models and were 

the most influential in predicting gestational age, whereas 93 metabolites were retained by at 

least one model. No chemical structural information could be retrieved for the four metabolites 

selected in all tenfold cross-validation models. However, by comparing mass spectral 

fragmentation spectra to data in the public domain (39), we found that one of the four 

metabolites was previously found in human sputum samples of patients with cystic fibrosis 

undergoing antibiotic treatment, fecal samples of children and the surface of a tomato plant. 

This suggests that the unknown structure is likely of (anti)-microbial nature. 

 

Mean metabolite richness was found to vary significantly with different categories of 

prematurity (Kruskal-Wallis, P < 0.05), with higher numbers of metabolites observed for very 

preterm versus term neonates (Figure 1c). Furthermore, mean metabolite richness was found 

to correlate significantly with gestational age (Kendall’s Tau = -0.2, P < 0.05) with more 
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metabolites observed in neonates born at 28 weeks of gestation (Supplementary Figure 2). 

Within sample metabolite diversity (Shannon Index) on the other hand was not found to vary 

significantly with different categories of prematurity (Kruskal-Wallis, P = 0.15) 

(Supplementary Figure 3).  

 

In the univariate analyses, 744 metabolites (~12%) were found to significantly correlate with 

gestational age (FDR-adjusted P < 0.05, Supplementary Figure 4). Out of these 744 

metabolites, 100 could be chemically structurally annotated through GNPS library matching, 

manual or in silico annotation propagation throughout the mass spectral molecular network, 

including amino acids, carbohydrates (sugars), dipeptides, lipids (carnitines, bile acids and 

phospholipid catabolites), nucleotides, polyamines (N1-acetylspermine, spermine, spermidine 

and structural analogues) and xenobiotics (caffeine, antibiotic-derived metabolites including 

penicillamine disulfide and cefuroxime as well as compounds related to chlorhexidine, a 

common disinfectant) (Supplementary Data 3). Out of the ten amino acids significantly 

correlating with gestational age, nine were found to possibly be related through the histidine, 

tryptophan or phenylalanine and tyrosine metabolic pathways (40–43), respectively 

(Supplementary Data 3, Figure 2). Six amino acids or catabolites were found to correlate 

positively with gestational age (cis-urocanate, glutamine, glutamic acid, histidine, kynurenine, 

serine), whereas four were found to correlate negatively with gestational age (imidazole 

propionate, kynurenic acid, phenylacetylglutamine, quinaldic acid). Betaine and 

phosphatidylcholine were found to be possibly biosynthetically related through the 

phospholipid catabolism, with betaine increasing and phosphatidylcholine decreasing with 

gestational age. All peptides, most carnitine and chlorhexidine structural analogues were found 

to increase with gestational age, whereas antibiotics, caffeine, bile acids (except for hyocholic 

acid), most nucleotide structural analogues, polyamines, and sugars were found to decrease 

with gestational age.  

 

A total of 17 molecular families, comprising 230 metabolites were found to be significantly 

overrepresented (P < 0.01) with metabolites correlating with gestational age (non-FDR-

adjusted P < 0.01) by hypergeometric testing (Figure 3). Chemical structural annotation could 

be retrieved for 6 molecular families (152 metabolites) and revealed that carnitine families 

mostly correlated positively with gestational age, whereas nucleotide, bile acid and spermine-

related families correlated negatively with gestational age (Supplementary Figures 5 to 9). A 

family of structural analogues of penicillamine, likely a degradation product of penicillin, was 
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found to correlate negatively with gestational age while structural analogues of chlorhexidine, 

a common disinfectant, were found to correlate positively with gestational age. Three 

metabolites (two nucleotides and spermidine) were identified by all three statistical approaches 

to be significantly associated with gestational age (Figure 1d). 

Discussion 

There is currently limited knowledge on the metabolomic status of preterm neonates and a 

deeper understanding hereof will help further elucidate the complex pathophysiology of 

prematurity. 

 

In this methodological study, the new tools deployed on untargeted metabolomics data from 

newborn dried blood spots were demonstrated to have great potential to address future research 

questions. While a number of studies have assessed variation of a few selected metabolites 

with gestational age (e.g. (44,45)), this is the first study assessing metabolome-wide changes 

related to prematurity in dried blood spots from newborn screening (4).  

 

We found that the metabolome of 2-3-day-old neonates is highly reflective of gestational age. 

Using statistical modeling, univariate correlation analysis at the individual metabolite level and 

hypergeometric testing at the molecular family level we found that 93, 744 and 17 molecular 

families (constituting 230 metabolites), respectively, were significantly associated with 

gestational age.  

 

On average only 2-5% of metabolites can be chemically structurally annotated in untargeted 

LC-MS/MS based metabolomics studies (46). Using a combination of different computational 

metabolomics tools, we were able to retrieve chemical structural information at a broad level 

for nearly 60% of the data collected, thus representing a major advance in biochemical 

interpretation. Furthermore, evaluating changes at the level of chemically structurally related 

molecular families (rather than individual metabolites) through hypergeometric testing is a 

novel approach, which allows to understand metabolic changes of groups of metabolites 

changing consistently but modestly across samples. This approach increases the chance for 

novel discoveries and a potentially better understanding of pathobiological processes as these 

metabolites would be missed in univariate approaches. 
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We identified amino-acid-derived metabolites, dipeptides, polyamines, nucleotides, lipids (bile 

acids, phosphatidylcholine-derived compounds), sugars, and treatment-related compounds 

such as penicillamine disulfide, cefuroxime and caffeine as significantly correlating with 

gestational age. Similarly, LASSO regression identified dipeptides, polyamines, antimicrobial 

compounds and an amino acid (serine) as most influential in predicting gestational age. 

Hypergeometric testing at the molecular family level additionally revealed that carnitine, bile 

acid, polyamine, nucleotide, penicillamine disulfide and chlorhexidine molecular families are 

most strongly associated with gestational age.  

 

Although these metabolites may have a diverse range of biological functions and implications 

in a number of cellular processes, several have previously been reported to be implicated by 

the gut microbiome (amino and bile acids, carnitines, phosphatidylcholine derived 

compounds), involved in gut maturation (polyamines) or affecting gut microbial composition 

(antibiotics, diet-derived nucleotides) (40–43,47–51) (Figure 2, Supplementary Data 3, 

Supplementary Discussion).  

 

In very recent studies, some of the microbiome-derived metabolites identified in our study have 

been shown to be associated with a diverse range of pathophysiologies related to preterm birth  

(Figure 2, Supplementary Data 3). There is a well-established increased risk for early- and also 

late-term complications to being born prematurely, so we can intuitively assume that risk 

biomarkers may be present in early life samples in prematurely born children. In our study, we 

identified increased relative amounts of several microbial catabolites in preterm children that 

have been linked to well-known late-term complications of prematurity, such as 

phenylacetylglutamine (associated with increased risk for cardiovascular disease (40,52,53)) 

or imidazole propionate (associated with type 2 diabetes (42,54)). Similarly, we found that 

kynurenic acid, a catabolite of tryptophan metabolism, is negatively correlated with gestational 

age, with higher relative abundances observed in preterm infants. Gut microbiota were shown 

to play an important role in tryptophan metabolism (41,47) and high levels of kynurenic acid 

in the central nervous system have been associated with schizophrenia and cognitive 

impairment (55). Although this was a methodological study and not designed to establish a 

direct causal or pathophysiological link between a specific marker and a later occurring 

complication, we may speculate that the observed difference in the neonatal metabolome may 

reflect an increased risk of early- or late-term complications on an individual level. 
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Common clinical practice such as antibiotics use seem furthermore reflected in the neonatal 

metabolome and significantly related to gestational age. Antibiotic-related metabolites 

(penicillamine disulfide and cefuroxime) and caffeine correlated negatively with gestational 

age, which reflects that preterm neonates are at increased risk of infection and often require 

broad-spectrum antibiotics from birth onwards (7). Caffeine is the most commonly used 

medication for treatment of apnea of prematurity (56). Antibiotics are known to have profound 

effects on gut microbial communities, and modified metabolic activity of the antibiotic-altered 

gut microbiome has been shown to result in decreased fecal levels of dipeptides and increased 

levels of primary bile acids and sugar alcohols in mice (51). In agreement with this finding, we 

here observed decreased blood levels of dipeptides and increased levels of primary bile acids 

and sugars, which could possibly result from an increased antibiotic use in prematurely born 

children. Similarly, gestational-age-dependent differential abundance of nucleotides among 

others may be reflective of differential feeding patterns. Preterm neonates are often fed 

parenterally, while term neonates are more likely to be breastfed.  

 

Overall, we found more metabolites in preterm neonates when compared to term neonates. 

Within sample metabolite diversity on the other hand was not found to differ significantly 

across different categories of prematurity. Increased metabolite richness in preterm neonates 

could be reflective of increased medication in prematurely born children. Alternatively, it is 

known that intestinal permeability is higher in preterm compared to term neonates (57). 

Increased metabolite richness could thus also be reflective of increased intestinal permeability. 

The constant within sample metabolite diversity across different categories of prematurity 

would be in agreement with this hypothesis (more versus more diverse metabolites). 

 

Our data reveals that metabolomic profiling of neonatal dried blood spots in combination with 

recently developed computational metabolome mining methods offers a powerful tool for 

monitoring gestational-age-dependent metabolic maturation in preterm neonates. Many of the 

metabolites here identified as significantly related to gestational age have previously been 

described to be related to the gut microbiome and short- as well as long-term health 

complications related to preterm birth. This finding is suggestive that catabolites of microbial 

metabolism are detectable in the neonatal blood as early as 2-3 days of life, and may play an 

important role in gestational-age-dependent metabolic maturation. 
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Limitations 

This study draws strength from being based on a large cohort of 148 samples, which currently 

is considered a large-scale study within the metabolomics field. Furthermore, the samples 

retrieved from the biobank were collected prospectively as part of the National Newborn 

Screening Program and therefore no systematic inclusion bias is likely to have influenced the 

study. Although we detected a large diversity of metabolites, metabolites extracted and 

detected in our study are inherently reflective of metabolites targeted during neonatal screening 

of inborn diseases. Similarly, only a limited number of metadata was available in this 

methodological study. We did not have access to data on future health outcomes, therefore our 

hypotheses regarding the role of the observed differences in metabolomics profiles of preterm 

versus term newborns are only speculative. A multi-omics approach and extensive prospective 

sampling would be needed to answer this question. Also, more samples would allow for more 

statistical power, whereas an independent test and training data set would allow for 

generalization of the findings outside of this study.  

Conclusions 

Our data demonstrates that the neonatal metabolome is strongly reflective of gestational age. 

Many metabolites here found to be significantly associated with gestational age have 

previously been related to the gut microbiome or maturation and short- as well as long-term 

complications of preterm birth. This finding is suggestive that catabolites of microbial 

metabolism are detectable in the neonatal blood as early as 2-3 days of life, and may play an 

important role in gestational-age-dependent metabolic maturation. We show that metabolomic 

profiling of neonatal dried blood spots in combination with recently developed computational 

metabolome mining methods offers a powerful tool for monitoring metabolic maturation in 

preterm neonates. Further studies will be needed to establish direct causal or 

pathophysiological links between marker metabolites and later occurring disorders related to 

preterm birth. 
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Figure 1. a. Principal coordinates analysis using the Bray-Curtis distance metric. 3.7% of the 

variation in the data is explained by gestational age (PERMANOVA, P < 0.05, Adonis R2 = 

0.037). b. Metabolome-predicted gestational age versus observed, ultrasound-guided 

gestational age. Mean R2 across ten cross-validations, Pearson’s correlation coefficient and P-

value are shown. c. Box plots for number of mass spectral features stratified across different 

prematurity categories. Significant differences were found across mean number of mass 

spectral features per prematurity category (very preterm: 28-23 weeks; near term: 33-36 weeks; 

term: 37-40 weeks; late term: 41-42 weeks) (Kruskal-Wallis, P < 0.05). d. Venn diagram 

illustrating overlapping metabolites significantly associated with gestational age by univariate 

correlation analysis, hypergeometric testing at the molecular family level and LASSO 

regression.  
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Figure 2. Schematic representation of amino acid and phospholipid catabolism pathways in 

the gut with metabolites significantly correlating with gestational age highlighted. Molecules 

highlighted in red are positively correlated with gestational age, whereas molecules highlighted 

in blue are negatively correlated with gestational age (Kendall’s Tau, false-discovery-rate-

adjusted P < 0.05). Molecules more abundant in preterm neonates (negative correlation with 

gestational age), have previously been associated with health complications related to 

prematurity, such as cardiovascular diseases, diabetes and cognitive impairment, and in three 

out of four cases may be mediated through gut microbiota.  
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Figure 3. Molecular families significantly overrepresented in metabolites correlating with 

gestational age (P < 0.01) identified through hypergeometric testing. Node colors represent 

correlation with gestational age (Kendall’s Tau). Metabolites for which chemical structural 

annotation could be retrieved are indicated with grey shadowing. The thickness of the lines 

connecting the nodes represents tandem mass spectral similarity, implying high chemical 

structural similarity. Nodes with bold black borders indicate GNPS spectral library hits. 

Carnitines, bile acids, nucleotides and spermine were previously reported to be implicated in 

the maturation of the gastrointestinal tract or being affected by the gut microbiome. 

Penicillamine could be reflective of antibiotics use and chlorhexidine, a common skin 

disinfectant reflective of different sampling strategies across term and preterm neonates. 
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