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Abstract 29 

Background: To control the spread of Corona Virus Disease (COVID-19), 30 

screening large numbers of suspected cases for appropriate quarantine and 31 

treatment is a priority. Pathogenic laboratory testing is the diagnostic gold standard 32 

but it is time consuming with significant false negative results. Fast and accurate 33 

diagnostic methods are urgently needed to combat the disease. Based on 34 

COVID-19 radiographical changes in CT images, we aimed to develop a deep 35 

learning method that could extract COVID-19’s graphical features in order to provide 36 

a clinical diagnosis ahead of the pathogenic test, thus saving critical time for 37 

disease control.  38 

Methods and Findings: We collected 1,065CT images of pathogen-confirmed 39 

COVID-19 cases (325 images) along with those previously diagnosed with typical 40 

viral pneumonia (740 images). We modified the Inception transfer-learning model 41 

to establish the algorithm, followed by internal and external validation. The internal 42 

validation achieved a total accuracy of 89.5% with specificity of 0.88 and sensitivity 43 

of 0.87. The external testing dataset showed a total accuracy of 79.3% with 44 

specificity of 0.83 and sensitivity of 0.67. In addition, in 54 COVID-19 images that 45 

first two nucleic acid test results were negative, 46 were predicted as COVID-19 46 

positive by the algorithm, with the accuracy of 85.2%. 47 

Conclusion: These results demonstrate the proof-of-principle for using 48 

artificial intelligence to extract radiological features for timely and accurate 49 

COVID-19 diagnosis.   50 

Keywords: COVID-19, Computed Tomography, Artificial Intelligence, Deep 51 
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Learning, Diagnosis 52 

 Short Title: AI to screen for COVID-19  53 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 30, 2020. ; https://doi.org/10.1101/2020.02.14.20023028doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.14.20023028


4 
 

Introduction 54 

The outbreak of atypical and person-to-person transmissible pneumonia 55 

caused by the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2, 56 

also known as 2019-nCov) has caused a global alarm. There have been more 57 

than 500,000 confirmed cases of the Corona Virus Disease (COVID-19) in the 58 

world, as of March 26, 2020. According to the WHO, 16-21% of people with the 59 

virus in China have become severely ill with a 2-3% mortality rate. With the 60 

most recent estimated viral reproduction number (R0), the average number of 61 

other people that an infected individual will transmit the virus to in a completely 62 

non-immune population, stands at about 3.77 [1] , indicating that a rapid 63 

spread of the disease is imminent. It is crucial to identify infected individuals as 64 

early as possible for quarantine and treatment procedures.  65 

The diagnosis of COVID-19 relies on the following criteria: clinical 66 

symptoms, epidemiological history and positive CT images, as well as positive 67 

pathogenic testing. The clinical characteristics of COVID-19 include respiratory 68 

symptoms, fever, cough, dyspna, and pneumonia [3-6]. However, these 69 

symptoms are nonspecific, as there are isolated cases where, for example, in 70 

an asymptomatic infected family a chest CT scan revealed pneumonia and the 71 

pathogenic test for the virus came back positive. Once someone is identified 72 

as a PUI (person under investigation), lower respiratory specimens, such as 73 

bronchoalveolar lavage, tracheal aspirate or sputum, will be collected for 74 

pathogenic testing. This laboratory technology is based on real-time RT-PCR 75 
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and sequencing of nucleic acid from the virus [7,8]. Since the beginning of the 76 

outbreak, the efficiency of nucleic acid testing has been dependent on several 77 

rate-limiting factors, including availability and quantity of the testing kits in the 78 

affected area. More importantly, the quality, stability and reproducibility of the 79 

detection kits are questionable. The impact of methodology, disease stages, 80 

specimen collection methods, nucleic acid extraction methods, and the 81 

amplification system are all determinant factors for the accuracy of test results. 82 

Conservative estimates of the detection rate of nucleic acid are low (between 83 

30-50%) [7,8,9], and tests need to be repeated several times in many cases 84 

before they can be confirmed.  85 

Radiological imaging is also a major diagnostic tool for COVID-19. The 86 

majority of COVID-19 cases have similar features on CT images including 87 

ground-glass opacities in the early stage and pulmonary consolidation in the 88 

late stage. There is also sometimes a rounded morphology and a peripheral 89 

lung distribution [6,10]. Although typical CT images may help early screening 90 

of suspected cases, the images of various viral pneumonias are similar and 91 

they overlap with other infectious and inflammatory lung diseases. Therefore, it 92 

is difficult for radiologists to distinguish COVID-19 from other viral pneumonias. 93 

Artificial Intelligence involving medical imaging deep-learning systems has 94 

been developed in image feature extraction, including shape and spatial 95 

relation features. Specifically, Convolutional Neural Network (CNN) has been 96 

proven in feature extraction and learning. CNN was used to enhance low-light 97 
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images from high-speed video endoscopy with the limited training data being 98 

just 55 videos [11]. Also, CNN has been applied to identify the nature of 99 

pulmonary nodules via CT images, the diagnosis of pediatric pneumonia via 100 

chest X-ray images, automated precising and labeling of polyps during 101 

colonoscopic videos, cystoscopic image recognition extraction from videos 102 

[12-15].  103 

There are a number of features for identifying viral pathogens on the basis 104 

of imaging patterns, which are associated with their specific pathogenesis [16]. 105 

The hallmarks of COVID-19 are bilateral distribution of patchy shadows and 106 

ground glass opacity in early stages。 As the disease progresses, multiple 107 

ground glass and infiltrates in both lungs will appear [3]. Theses features are 108 

quite similar to typical viral pneumonia with only slight differences, which are 109 

difficult to be distinguished by radiologists. Based on this, we believed that 110 

CNN might help us identify unique features that might be difficult for visual 111 

recognition.  112 

Hence, the purpose of our study was to evaluate the diagnostic 113 

performance of a deep learning algorithm using CT images to screen for 114 

COVID-19 during the influenza season. To test this notion, we retrospectively 115 

enrolled 1,065 CT images of pathogen-confirmed COVID-19 cases along with 116 

previously diagnosed typical viral pneumonia. Our results reported below 117 

demonstrate the proof-of-principle using the deep learning method to extract 118 

radiological graphical features for COVID-19 diagnosis.  119 
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Methods and Materials 120 

Retrospective collection of datasets. 121 

We retrospectively collected CT images from 259 patients, in which the 122 

cohort includes 180 cases of typical viral pneumonia and the other 79 cases 123 

from three hospitals with confirmed nucleic acid testing of SARS-COV-2. In 124 

addition, we enrolled additional 15 COVID cases, in which first two nucleic acid 125 

tests were negative at initial diagnoses. Hospitals providing the images were 126 

Xi’an Jiaotong University First Affiliated Hospital (Center 1), Nanchang 127 

University First Hospital (Center 2) and Xi’an No.8 Hospital of Xi’an Medical 128 

College (Center 3). All CT images were de-identified before sending for 129 

analysis. This study is in compliance with the Institutional Review Board of 130 

each participating institutes. Informed consent was exempted by the IRB 131 

because of the retrospective nature of this study. 132 

Delineation of ROIs 133 

To establish a binary model for distinguishing COVID-19 and typical 134 

pneumonia, we drew the Region Of Interest (ROI) as input images for the 135 

training cohort and validation cohorts. We sketched the ROI from CT images 136 

based on features of COVID-19, such as small patchy shadows and interstitial 137 

changes in the early stage, multiple ground glass and infiltrates in both lungs in 138 

the progression stage, and delineated the ROIs on the CT images of other 139 

typical viral pneumonia such as pseudocavity, enlarged lymphnodes and 140 

multifocal GGO as the control. The ROIs were divided into three cohorts: one 141 
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training cohort (n=320 from Center 1), one internal validation cohort (n=455 142 

from Center 1) and one external validation cohort (n=290 from Center 2 and 3). 143 

For a ROI, it is sized approximately from 395*223 to 636*533 pixels.  144 

Overview of the proposed architecture 145 

Our systematic pipeline for the prediction architecture is depicted in Figure 146 

1. The architecture consists of three main processes: 1) Pre-processing of 147 

input images; 2) Feature extraction of ROI images and training; and 3) 148 

Classification with fully connected network and prediction of multiple classifiers. 149 

We built a transfer learning neural network based on the Inception network. 150 

The entire neural network can be roughly divided into two parts: the first part 151 

used a pre-trained inception network to convert image data into 152 

one-dimensional feature vectors, and the second part used a fully connected 153 

network and the main role is for classification prediction. ROI images from 154 

each case were preprocessed and inputted into the model for training. The 155 

number of various types of pictures in the training set is equal, with a total 156 

number of 320. The remaining CT pictures of each case were used for internal 157 

validation. The model training was iterated 15,000 times with a step size of 158 

0.01.  159 

 160 
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161 

Figure 1.  ROI images extraction and Deep Learning (DL) algorithm 162 

framework. ROI images were extracted by the CV model and then trained 163 

using a modified Inception network to extract features. The full connection 164 

layer then makes a classification and prediction. 165 

Image preprocessing and feature extraction. 166 

Based on the signs of characteristic of pneumonia, ROI images were 167 

defined inflammatory lesions and extracted by our computer vision (CV) model 168 

following the steps. 1) Convert the image to grayscale. 2) Binarize grayscale. 169 

Because using the OSTU’s method directly may cause the threshold selection 170 

failure in the case of multi-peaks, the selection of the binarization threshold in 171 

this paper was based on the statistics of all pixel frequency histograms of the 172 

gray color values Vmin (80) and Vmax (200). The minimum frequency in the 173 

selection interval is threshold, and the interval of frequency statistics is five. 3) 174 

Background area filling. Using the flood filling method to expand the image by 175 

1 black pixel, and fill the black pixels near the border with white. 4) Reverse 176 

color, find all the contour areas of the image, and keep the two largest contour 177 

areas as the two lung areas. 5) Take the smallest bounding rectangle of the 178 

lung area as the ROI frame and crop the original image to obtain the ROI 179 
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images. The delineated ROIs were obtained for classification model building.  180 

We modified the typical Inception network, and fine-tuned the modified 181 

Inception (M-Inception) model with pre-trained weights. During the training 182 

phase, the original Inception part was not trained, and we only trained the 183 

modified part. The architecture of M-Inception is shown in Table 1. The 184 

difference between Inception and M-Inception in classification lies in the last 185 

fully-connected layers. We reduced the dimension of features before it was 186 

sent to the final classification layer. The training dataset made up of all those 187 

patches aforementioned. The Inception network is shown in Table 1. 188 

Table 1. The architecture of M-Inception 189 

Inception 

part 

Layer Patch size/stride or remarks 

conv 3×3/2 

conv 3×3/1 

conv padded 3×3/1 

pool 3×3/2 

onv 3×3/1 

conv 3×3/2 

conv 3×3/1 

Inception 3x, 5x, 2x 

pool 8x8 

linear logits 
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softmax classifier 

Modified 

part 

Fc1  
         

            
           

  

Fc2  
         

            
         

  

 190 

Prediction. 191 

After generating the features, the final step was to classify the pneumonia 192 

based on those features. Ensembling of classifiers was used to improve the 193 

classification accuracy. In this study, we adopted end-to-end learning to make 194 

the model convergence.  195 

Performance evaluation metrics. 196 

We compared the classification performance using Accuracy, Sensitivity, 197 

Specificity, Area Under Curve (AUC), Positive predictive value (PPV), Negative 198 

predictive value (NPV), F1 score and Youden Index. TP and TN represent the 199 

number of true positive or true negative samples. FP and FN mean the number 200 

of false positive or false negative samples. Sensitivity measures the ratio of 201 

positives that are correctly discriminated. Specificity measures the ratio of 202 

negatives that are correctly discriminated. AUC is an index to measure the 203 

performance of the classifier. NPV was used to evaluate the algorithm for 204 

screening, and PPV was the probability of getting a disease when the 205 

diagnostic index is positive. Youden Index was the determining exponent of the 206 

optimal bound. F1 score was a measure of the accuracy of a binary model. 207 
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Additionally, performance was evaluated with F-measure (F1) to compare the 208 

similarity and diversity of performance. Kappa value measures the agreement 209 

between the CNN model prediction and the clinical report.  210 

211 
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Results 212 

Algorithm development. 213 

In order to develop a deep learning algorithm for the identification of viral 214 

pneumonia images, we initially enrolled 259 patients, in which the cohort 215 

includes 180 cases of typical viral pneumonia that were diagnosed previously 216 

before the COVID-19 outbreak. These patients are termed COVID-19 negative 217 

in the cohort. The other 79 cases were from the three hospitals with confirmed 218 

nucleic acid testing of SARS-COV-2, therefore termed COVID-19 positive. Two 219 

radiologists were asked to review the images and sketched 1,065 220 

representative images (740 for COVID-19 negative and 325 for COVID-19 221 

positive) for analysis (Figure 2 is shown as an example). These images were 222 

randomly divided into a training set and a validation set. The model training 223 

was iterated for 15,000 times with a step size of 0.01. The training loss curve is 224 

shown in Figure 3A.  320 images (160 images from COVID-19 negative and 225 

160 images from COVID-19 positive) were obtained to construct the model. To 226 

test the stability and generalization of the model,455 images (COVID-19 227 

ngegative 360 images and COVID-19 positive 95 images) were obtained for 228 

internal validation from Center 1 and 290 images (COVID-19 negative 220 229 

images and COVID-19 positive 70 images) were obtained from Center 2 and 3 230 

for external validation. The model training was also iterated for 15,000 times 231 

with a step size of 0.01. The training loss curve is shown in Figure 3B. 232 
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 233 

 234 

Figure 2. An example of COVID-19 pneumonia features. The blue arrow 235 

points to ground-glass opacity, and the yellow arrow points to the pleural 236 

indentation sign. 237 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 30, 2020. ; https://doi.org/10.1101/2020.02.14.20023028doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.14.20023028


15 
 

 238 

Figure 3. Training loss curves of the models on internal (A) and external (B) 239 

validation. The loss curve tends to be stable after descending, indicating that 240 

the training process converges 241 

Deep learning performance. 242 

The deep learning algorithm yielded an AUC of 0.93 (95% CI, 0.90 to 0.96) 243 

on the internal validation and 0.81 (95% CI, 0.71 to 0.84) on the external 244 

validation based on the number of CT images (Figure 4). Using the maximized 245 

Youden index threshold probability, the sensitivity was 0.88 and 0.83, 246 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 30, 2020. ; https://doi.org/10.1101/2020.02.14.20023028doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.14.20023028


16 
 

specificity 0.87 and 0.67, the accuracy 89.5% and 79.3%, the negative 247 

prediction values 0.95 and 0.90, the Youden indexes 0.75 and 0.48, and the F1 248 

scores were 0.77 and 0.63 for the internal and external datasets, respectively 249 

(Table 2). The kappa values were 0.69 and 0.48 for internal and external 250 

validation, indicating that prediction of COVID-19 from the CNN model is a 251 

highly consistent with pathogenic testing results. We also performed an 252 

external validation based on each patient’s multiple images. The accuracy was 253 

82.5%, with the sensitivity 0.75, the specificity 0.86, the PPV 0.69, the NPV 254 

0.89, and the kappa value 0.59.  255 
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 256 

Figure 4. Receiver operating characteristic plots for COVID-19 identification 257 

for the deep learning (Inception) algorithm. A) Internal Validation. B) External 258 

Validation. 259 

 260 
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Table 2. Deep learning Algorithm Performance 261 

Performance Metric Internal External 

AUC（95%CI） 0.93(0.86 to 0.94) 0.81(0.71 to 0.84) 

Accuracy, % 89.5 79.3 

Sensitivity 0.88 0.83 

Specificity 0.87 0.67 

PPV 0.71 0.55 

NPV 0.95 0.90 

Kappa 0.69 0.48 

Yoden index 0.75 0.50 

F1 scoreǂ  0.77 0.63 

 Measures the agreement between the CNN model prediction and the clinical 262 

diagnosis. ǂMeasures the accuracy of the CNN model. 263 

 264 

Comparison of AI with radiologist prediction. 265 

At the same time, we asked two skilled radiologists to assess the 745 266 

images for a prediction. Radiologist 1 achieved the accuracy of 55.8% with 267 

sensitivity of 0.71 and specificity of 0.51, and Radiologist 2 achieved a similar 268 

accuracy of 55.4% with sensitivity of 0.73 and specificity of 0.50 (Table 3). 269 

These results indicates that it is difficult for radiologists to make prediction of 270 

COVID-19 with eye recognition, further showing the advantage of the 271 

algorithm we developed. 272 

 273 

 274 

 275 
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Table 3. Performance metrics for the CNN model versus skilled 276 

radiologists. 277 

 278 

Performanc

e Metric Internal 

External  

(Based on 

ROI) 

External 

(Based on 

patients) R1 R2 

Accuracy, % 89.5 79.3 82.5 55.8 55.4 

Sensitivity 0.88 0.83 0.75 0.71 0.73 

Specificity 0.87 0.67 0.86 0.51 0.5 

PPV 0.71 0.55 0.69 0.29 0.29 

NPV 0.95 0.90 0.89 0.86 0.86 

F1 score 0.77 0.63 0.72 0.41 0.42 

Kappa 0.69 0.48 0.59 0.15 0.15 

Yoden index 0.75 0.50 0.61 0.22 0.23 

 279 

Prediction of COVID-19 on CT images from pathogenic negative 280 

patients. 281 

Because high false negative results were frequently reported from nucleic 282 

acid testing, we aimed to test whether the algorithm could detect COVID-19 283 

when the pathogenic test came negative. To achieve this goal, we enrolled 284 

additional 15 COVID-19 cases, in which initial two nucleic acid tests came 285 

negative and for the third test they became positive. These CT results were 286 

taken on the same day of the nucleic acid tests (Figure 5). Interestingly, we 287 

found that, 46 out of the 54 images when nucleic acid test results were 288 

negative were predicted as COVID-19 positive by the algorithm, with the 289 

accuracy of 85.2%. These results indicate that the algorithm has high value 290 

serving as a screening method for COVID-19. 291 
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 292 

Figure 5. Representative images from a COVID-19 patient with two negatively 293 

reported nucleic acid tests at earlier stages and one final positively reported 294 

test at a later stage. On the left, only one inflammatory lesion (blue arrow) can 295 

be seen near diaphragm. In the middle, lesions (yellow arrows) were found in 296 

two levels of images. On the right, the images were taken on the ninth day 297 

after admission. The inflammation continued to progress, extending to both 298 

lungs (red arrows), and the nucleic acid test became positive. 299 

  300 
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Discussion 301 

Timely diagnosis and triaging of PUIs are crucial for the control of 302 

emerging infectious diseases such as the current COVID-19. Due to the 303 

limitation of nucleic acid -based laboratory testing, there is an urgent need to 304 

look for fast alternative methods that can be used by front-line health care 305 

personals for quickly and accurately diagnosing the disease {Rao, 2020 #67}. 306 

In the present study, we have developed an AI program by analyzing 307 

representative CT images using a deep learning method. This is a 308 

retrospective, multicohort, diagnostic study using our modified Inception 309 

migration neuro network, which has achieved an overall 89.5% accuracy. 310 

Moreover, the high performance of the deep learning model we developed in 311 

this study was tested using external samples with 79.3% accuracy. More 312 

importantly, as a screening method, our model achieved a relative high 313 

sensitivity, 0.88 and 0.83 on internal and external datasets, respectively. 314 

Furthermore, the model achieved a performance on the patient level, with the 315 

accuracy of 82.5%. During current COVID-19 global pandemics, this CNN 316 

model can potentially serve as a powerful tool for COVID-19 screening.  317 

It is important to note that our model aims to distinguish between 318 

COVID-19 and other typical viral pneumonia, both of which have similar 319 

radiologic characteristics. We compared the performance of our model with 320 

that of two skilled radiologists, and our model has shown much higher 321 

accuracy and sensitivity. These findings have demonstrated the 322 
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proof-of-principle that deep learning can extract CT image features of 323 

COVID-19 for diagnostic purposes. Using the supercomputer system, the time 324 

for each case takes only about 10 seconds, and it can be performed remotely 325 

via a shared public platform. Therefore, further developing this system can 326 

significantly shorten the diagnosis time for disease screening, especially at the 327 

time when many places have nucleic acid test shortage. Our study represents 328 

the first study to apply artificial intelligence technologies to CT images for 329 

effectively screening for COVID-19. 330 

The gold standard for COVID-19 diagnosis has been nucleic acid based 331 

detection for the existence of specific sequences of the SARS-COV-2 gene. 332 

While we still value the importance of nucleic acid detection in the diagnosis of 333 

SARS-COV-2 infection, we must also note that the high number of false 334 

negatives due to several factors such as methodological disadvantages, 335 

disease stages, and methods for specimen collection might delay diagnosis 336 

and disease control. Recent data have suggested that the accuracy of nucleic 337 

acid testing is only about 30-50% [6,7,8]. Using CT imaging feature extraction, 338 

we are able to achieve above 89.5% accuracy, significantly outplaying nucleic 339 

acid testing. More interestingly, testing CT images from COVID-19 patients 340 

when initial pathogenic testing came negative, our model has achieved the 341 

accuracy of 85.2% for correctly predicting COVID-19. According to a study 342 

authored by Xia L et al, 75% patients with negative RT-PCR results had 343 

positive CT findings [17]. The study also recommended that chest CT as a 344 
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primary tool for the current COVID-19 detection in affected areas.  345 

Deep learning methods have been used to solve data-rich biology and 346 

medicine. A large number of labeled data is required for training [18]. Although 347 

we are satisfied with the initial results, we believe that with more CT images 348 

included in the training, we will achieve higher accuracy. Therefore, further 349 

optimizing and testing this system is warranted. To achieve this, we have 350 

generated a webpage that licensed healthcare personnel can access to upload 351 

CT images for testing and validation. The webpage information is as following: 352 

https://ai.nscc-tj.cn/thai/deploy/public/pneumonia_ct.  353 

There are some limitations to our study. Although DL has been used to 354 

represent and learn predictable relationships in many diverse forms of data, 355 

and it holds promise for applications in precision medicine, many factors such 356 

as low signal to noise and complex data integration have challenged the DL 357 

efficacy [19]. CT images represent a difficult classification task due to the 358 

relatively large number of variable objects, specifically the imaged areas 359 

outside the lungs that are irrelevant to the diagnosis of pneumonia [12]. In 360 

addition, the training data set is relatively small. The performance of this 361 

system is expected to increase when the training volume is increased. It 362 

should also be noted that, the features of the CT images we analyzed were 363 

from patients with severe lung lesions at later stages of disease development. 364 

Although we have enrolled 15 cases of COVID patients for assessing the value 365 

of the algorithm for early diagnosis, larger numbers of database to associate 366 
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this with the disease progress and all pathologic stages of COVID-19 is 367 

necessary to optimize the diagnostic system. 368 

In future, we intend to link hierarchical features of CT images to features of 369 

other factors such as genetic, epidemiological and clinical information for 370 

multi-modeling analysis for an enhanced diagnosis. The artificial intelligence 371 

system developed in our study should significantly contribute to COVID-19 372 

disease control by reducing the number of PUIs for timely quarantine and 373 

treatment. 374 
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