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Abstract

Early detection of COVID-19 based on chest CT will enable timely
treatment of patients and help control the spread of the disease. With
rapid spreading of COVID-19 in many countries, however, CT volumes of
suspicious patients are increasing at a speed much faster than the avail-
ability of human experts. Here, we propose an artificial intelligence (AI)
system for fast COVID-19 diagnosis with an accuracy comparable to ex-
perienced radiologists. A large dataset was constructed by collecting 970
CT volumes of 496 patients with confirmed COVID-19 and 260 negative
cases from three hospitals in Wuhan, China, and 1,125 negative cases from
two publicly available chest CT datasets. Trained using only 312 cases,
our diagnosis system, which is based on deep convolutional neural net-
work, is able to achieve an accuracy of 94.98%, an area under the receiver
operating characteristic curve (AUC) of 97.91%, a sensitivity of 94.06%,
and a specificity of 95.47% on an independent external verification dataset
of 1,255 cases. In a reader study involving five radiologists, only one ra-
diologist is slightly more accurate than the AI system. The AI system is
two orders of magnitude faster than radiologists and the code is available
at https : //github.com/ChenWWWeixiang/diagnosis_covid19.
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1 Introduction
The new coronavirus disease, now known as COVID-19[1], was first detected
in Wuhan, China, in December 2019. Outbreaks have now occurred in more
than 166 countries. It has infected more than 210,000 people worldwide, killed
more than 8,000 and is still spreading rapidly. The World Health Organization
(WHO) officially announced that this is a global pandemic.

It is important to diagnosis COVID-19 as quick and accurate as possible
for controlling the spread of the disease and treating patients. Even though
reverse transcription-polymerase chain reaction (RT-PCR) is still ground truth
of COVID-19 diagnosis, the sensitivity of RT-PCR is not high enough for low
viral load present in test specimens or laboratory error[2], and kits of RT-PCR
are in short of supply in many areas[3]. By contrast, chest CT can show early
lesions in the lung and, if diagnosed by experienced radiologists, can achieve
high sensitivity[4]. In addition, CT scans are widely available and economic. At
present, the diagnosis of chest CT depends on the radiologists, which has some
problems. Firstly, chest CT contains hundreds of slices, which takes a long time
to diagnose. Secondly, COVID-19, as a new lung disease, has similar manifesta-
tions with various types of pneumonia4. Radiologists need to accumulate a lot
of CT diagnostic experience to achieve a high diagnostic performance. In some
outbreak areas, many suspected patients are in urgent need of diagnosis and
proper treatment, and many CT scans are performed every day. There is an
urgent shortage of radiologists with high diagnosis performance for COVID-19.

Artificial intelligence (AI) may be the unique preparation to take up this
challenge. Powered by large labeled datasets[5] and modern GPUs, AI, espe-
cially deep learning technique[6], has achieved excellent performance in several
computer vision tasks such as image classification[7] and object detection[8].
Recent research shows that AI algorithms can even achieve or exceed the per-
formance of human experts in certain medical image diagnosis tasks[9-13]. The
AI diagnosis algorithm also has the advantages of high efficiency, high repeata-
bility and easy large-scale deployment. The current outbreak of COVID-19 is
worldwide, and the shortage of specialist radiologists threatens the availability
and adequacy of screening services for COVID-19 in affected areas. By de-
ploying AI diagnosis algorithms, suspicious patients everywhere, especially in
developing countries, will have equal access to right diagnosis, timely treatment
and isolation.

As a very recent disease, we have not yet found AI studies for COVID-
19 diagnosis in peer-reviewed publications, but a few reports about COVID-
19 diagnosis algorithms based on chest CT in preprint form[14, 15]. Wang
et al.[14] describe a COVID-19 diagnosis system with specificity of 67% and
sensitivity of 74% on 216 slices extracted from CT volumes of patients (the
whole dataset consists of 44 positive and 55 negative cases, but split strategy of
dataset is unclear). Chen et al.[15] describe a COVID-19 diagnosis system with
a performance comparable to that of an expert radiologist, however the system
is validated based on a quite small dataset with only 19 confirmed COVID-19
patients and only one radiologist is compared. Clearly, the development and
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rigorous testing of COVID-19 diagnosis algorithms remains an open topic.
In this study, we used clinically representative large-scale datasets from three

centers in Wuhan and two publicly available chest CT datasets to develop and
evaluate an AI system for the diagnosis of COVID-19. We compared the diag-
nostic performance of this system with that of five radiologists in a reader study
of 200 cases, and the results showed the performance of this system is compa-
rable to that of experienced radiologists in designated hospitals for COVID-19
in major epidemic areas. In addition, based on prediction score on every slice,
we located the lesion areas in COVID-19 patients and statically analyzed le-
sion position in different subsets. We traced the specific phenotypic basis of
the diagnosis output from the system on the original CT images through an
interpretation network and apply radiomics analysis of the attentional region
to understand the imaging characteristics of COVID-19. Figure 1 a shows the
overall flow of the study.

2 Results

2.1 Datasets for System Development and Evaluation
We developed and evaluated a deep learning based COVID-19 diagnosis system,
using multi-center data, which includes 756 subjects (496 COVID-19 positives
and 260 negatives) collected in Wuhan Union Hospital, Western Campus of
Wuhan Union Hospital, and Jianghan Mobile Cabin Hospital in Wuhan, the
major epidemic area in China (detailed information is in Table 1). Two interna-
tional public databases, LIDC-IDRI (1,012 subjects available)[16] and ILD-HUG
(113 subjects available)[17] are also included as negative cases to help develop
and evaluate our AI system. Negatives from the three centers in Wuhan are
healthy people and ones from public databases are healthy or suffer from other
lung diseases.

All CT data was divided into four independent parts with no overlapping
subjects, a 312 subjects training cohort, a 104 subjects internal validation co-
hort, an external test cohort consist of 1,255 subjects, and a reader study cohort
with 200 subjects (detailly described in Methods). Due to some positive subjects
have multi-stage CTs and different stage CTs of one subject might be similar,
the subset division was performed on subjects to make sure all multi-stage CTs
of the same subject are in a same subset.

2.2 Construction of the AI System for COVID-19 Diag-
nosis

We propose a deep-learning based AI system for COVID-19 diagnosis, which
directly takes CT data as input, performs lung segmentation, COVID-19 di-
agnosis and abnormal slices locating. In addition, we hope that the diagnosis
results of AI system can be quantitatively explained in the original image to
alleviate the drawback of deep neural networks as a black box. The system con-
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Figure 1: Workflows of the whole study and the proposed AI system. a. Workflow of
the whole study. b. Construction and usage of the AI system.
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Table 1: Characteristics of patients from Wuhan Union hospital, Western Campus of
Wuhan Union Hospital, Jianghan Mobile Cabin Hospital.

sists of five key components (Figure 1 a), (1) a 2D convolutional neural network
(CNN) model for segmenting the lung, (2) a COVID-19 diagnosis model, (3) an
abnormal slices locating block to locate abnormal slices in positive cases, (4) a
network visualization module for interpreting the attentional region of deep net-
works, and (5) an image phenotype analysis module for explaining the features
of the attentional region.

The workflow of deep-learning based diagnosis model is shown in Figure 1 b.
CT cases were firstly divided to different cohorts and extracted to slices since
our model takes 2D slices as input. Then after slice level training, our model
can accurately predict whether the input slices come from COVID-19 subjects.
With a top-k average block, our model finally fused slice results into case level
diagnosis. The model was implemented in 2D not only because 2D network was
easily to train with more training samples, but also because slice-level scores
can be used for abnormal slice locating. We fine-tuned our diagnosis model
on a training dataset consisting of normal and abnormal slices from COVID-19
positive cases and obtained the abnormal slice locating model. Other parts of
our system are described in Methods.

2.3 Performances of AI System
The trained AI system was evaluated on the external test cohort. We used the
receiver operating characteristic (ROC) curves (in Figure 2 a) to evaluate the
diagnostic accuracy of the proposed AI system. The PR curves of evaluating
the prediction accuracy were also illustrated in Figure 7 a.

On the external test cohort, the ROC curve showed AUC of 0.9791, sensi-
tivity of 0.9406, and specificity of 0.9547. In the open data set LIDC-IDRI and
ILD-HUG, the false positive rates of AI system were 3.12% and 11.85%, and
the system showed good generalization ability (Figure 7 c).

The AI system shows good performances and it can be used with different
diagnosis thresholds according to different policies or prior probabilities. The
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Figure 2: Performance evaluations of AI system for COVID-19 diagnosis in External
Test Cohorts. a. ROC curves of COVID-19 diagnosis on external test cohort. b.
Performances of the AI system and five readers in COVID-19 diagnosis on reader
study cohort. c. ROC curve for abnormal slice locating. This result was test on 12
COVID-19 positives cases from internal validation cohort which have manual lesion
segmentation. d. Metrics of proposed AI system for different cohorts and tasks. e.
Discrepancies between the AI system and human readers. L) M) Two COVID-19
cases identified by the AI system but missed by all five readers. R) A COVID-19 case
identified by a reader but missed by the AI system. (The yellow circles denote possible
lesion area)
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sensitivity of our system is about 84.76% when specificity is 99.5%, and specifici-
ty is 80.02% when sensitivity is 97%. Besides, because patients in our external
test cohort have multi-stage CT volumes, some of the stages of positive sub-
jects might be in the recovery state whose CT may have no abnormalities but
are still regarded as positive in experiments. Figure 2 a shows the results after
roughly filtering out these cases by only keeping the maximum predicted value
of multi-stage CTs in the same patient, in which the specificity is about 96.74%
at sensitivity of 97%. The decision curve analysis (DCA) for the AI system are
presented in Figure 7 b, which indicated that the AI system adds benefit than
the "diagnose all" or "diagnose none" strategies when the threshold is within a
wide range 1.82-97.6% in COVID-19.

Abnormal slice locating results are showed in Figure 2 c, d. The slice locating
block took in COVID-19 positive cases and predicted where abnormal slices are
with AUC of 96.35%, specificity of 90.08% and sensitivity of 82.19%.

2.4 Comparison of AI System to Radiologists
We conducted a reader study with five board-certified radiologists (Average of
8 years clinical experience, range 5-11 years, Table 2 a). These radiologists
interpreted 200 CT volumes in reader study cohort. All readers were asked to
read independently without other information about patients.

The AI system performs slightly better than the average of five radiologists.
The ROC curve had AUC of 0. 9805, sensitivity of 0. 9470, and specificity of 0.
9139 on the cohort of reader study (Figure 2 b, d). In 46% (6/13) of cases, when
the AI system missed, the radiologist also missed (Table 2 b), indicating that
the diagnosis of these missed cases is challenging. Among the five readers, one
reader performed better than the AI system, one reader performed worse, and
the rest three have similar performance as the AI system at different operating
points. Performance of the AI system in COVID-19 diagnosis compared to five
readers is shown in Figure 2 b and Table 2 c.

The left, middle of Figure 2 e shows two COVID-19 cases that all five radiol-
ogists missed but were correctly identified by the AI system. It is hard to notice
the evidence of COVID-19 in these two cases, but AI system can still identify
them. It shows that the AI system may capture the information of subtle and
continuous changes in slices and make a comprehensive judgment. The right
of Figure 2 e shows an example that was detected by all five radiologists but
missed by the AI system. These cases show that the AI system and human
readers are potentially complementary.

2.5 Subset Analysis
For an in-depth understanding of the AI system and characteristics of different
populations with COVID-19, we evaluated the AI system on subsets of the
external test cohort divided by gender, age and number of CT scans. Figure 3
a shows the ROC curves of these three subsets. To understand the cause for
different diagnosis performances, we analyzed the abnormal slice locating results
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Table 2: Reader study statistics and results. a. Experience levels of the five radiologists
involved in the reader study. b. Comparison of diagnostic error between AI systems
and human readers. Notes: wrongs of any of five readers means any one or more readers
were wrong, while corrects means no any of five readers were wrong. c. Comparison
of diagnostic performances between AI system and every human reader.

in different subsets (Figure 3 b, c). We found that the different performances of
different subsets were highly correlated to the number of abnormal slices, which
means smaller lesion with fewer abnormal slices are more difficult to diagnose
(Figure 3 c,Figure 4 b). Together with the position of abnormal slices and
the voxel numbers of lungs (Figure 4 a), we concluded that reason for worse
performance between 20 and 40 years old might be that younger people may
have smaller lesions and less abnormal slices, while the worse performance on
women might come from the smaller lungs and lesions.

Part of the patients in the database have multi-stage CTs. We compared
the diagnostic performance of stage I and stage II and fusion of stage I, II in
the external test cohort (Figure 3 a, b, d). The experiment suggested that
the performance of the AI system is independent of the progress of the disease
because of no significant differences between performances of different stages.
The statistical results also showed that fusion of stage I and II could slightly
improve the performance of diagnosis, in which the fusion method we adopted is
to simply average the scores of two stages. We did not test more complex fusion
methods which may overestimate the performance since each negative case has
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Figure 3: Statistics on different subsets of positive subjects in the external test cohort.
a. ROC curves of the diagnosis system on different subsets. b. Normalized histograms
of the number of abnormal slices in different subsets. c. Subject numbers, sensitivities
(with prediction threshold of 0.5), and average numbers of abnormal slices of different
subsets. d. Diagnosis performances for each of the two stages and their fusion.
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only one CT.

Figure 4: Statics on subset analysis. a. Averaged number of voxels of lung along axis
direction. b. Averaged score in different position along axis direction for different
subsets.

2.6 Interpreting the AI System
After proper training of the deep network, Guided gradient-weighted Class Ac-
tivation Mapping (Guided Grad-CAM)[18] was exploited to explain the "black
box" system and extract attentional areas which is connected to the back end of
the diagnostic model. Figure 5 shows some representative cases for the visual-
ization of Guided Grad-CAM to determine the attentional regions. The original
CT slices are in the first column. The second column is the result of pseudo-color
display of the feature map. The third column is the gradient map in the region
of attention. We found that the spatial distribution of the attentional region,
morphology and the texture within it are consistent with the characteristics of
COVID-19 as reported in previous manual diagnosis studies[4,19].

In order to further verify our conjecture, we performed radiomics[20] feature
extraction on these attentional regions, and obtained a total of 752-dimensional
imaging features. The Least Absolute Shrinkage and Selection Algorithm (LAS-
SO) were used to find the most discriminative features (Figure 6). A total of 15
features were finally chosen whose absolute values of coefficients are higher than
10-3. The cluster-heatmap and heat map of correlation coefficient matrix be-
fore and after LASSO show that LASSO filtered out redundant and unimportant
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Figure 5: Visualization of Guided Grad-CAM. Notes: Three representative cases for
the visualization of AI diagnosis. From left to right: Original CT image; Coarse-
resolution attentional regions overlaid on CT image; High-resolution attentional re-
gions with fine granularity.

features and the remaining features have better identification ability and lower
correlation (Figure 9, Figure 10). The selected 15 features were used to explain
the imaging characteristics in CT (Feature Analysis in Method). The extracted
features show more separable statistical distribution between lesion and normal
regions (Figure 6 b). We extracted three additional features for the attentional
regions, distance feature, 2-D margin fractal dimension, and 3-D grayscale mesh
fractal dimension (Figure 8). According to previous literature[21] on the patho-
genesis and morphology of COVID-19, we believe that there may be a statistical
rule in the pathogenesis (see Feature Analysis section in Methods).

3 Discussion
In this study, we developed an AI system for diagnosis of COVID-19. The sys-
tem showed good sensitivity (94.06%), specificity (95.47%) and AUC (97.91%)
in external test cohort. Furthermore, in the reader study, the diagnostic accura-
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Figure 6: Coefficients and Distribution of LASSO selected features. a. Coefficients of
the 15 selected features. b. Feature distribution for 2 classes. The solid lines mean
averaged value and dotted lines mean value with one standard deviation. Value has
been normalized to Normal distribution for easier visualization and comparison. c. T-
test results of all 15 features and the weighted sum score in distinguishing abnormal and
normal lungs. Notes: The score was computed by summing up 15 features weighted
with their coefficients.
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cy of the AI system was comparable to that of experienced radiologists from the
outbreak center, who achieved higher sensitivity (94.70%), specificity (91.39%)
and AUC (98.05%). Among the five professional readers in the radiology de-
partment, only one was able to produce a higher diagnostic accuracy than the
AI system.

This automatic, high-precision, non-invasive diagnostic system was develope-
d to provide clinicians with easy-to-use tools. Given the chest CT of a suspected
patient as input, the AI system can automatically output the diagnosis result.
In the reader study, the average reading time of radiologists was 6.5 min, while
that of AI system was 2.73 s, which can significantly improve the productivity
of radiologists. Meanwhile, we found that 71% (15/21) of errors made by ra-
diologists could be corrected by AI system. It means that AI system can be
used as an effective secondary reader to provide reference suggestions when the
radiologist is not sure about the case or when multiple radiologists are inconsis-
tent. In general, AI can be adapted to different requirements. According to the
highly sensitive settings, it can screen out suspicious patients for confirmation
by doctors; In accordance with the highly specific settings, it can warn possible
diagnosis errors made by the doctor; or an optimal threshold value is chosen
according to the prior probability of infectious diseases and the local prevention
and control strategy.

To further understand the performance of the AI system, we evaluated it on
subsets divided by gender, age and number of CT scans. In the subsets divided
by gender, the diagnostic performance of men was higher than that of women.
We noticed an obvious difference in the size of lungs and lesions between men and
women. This is consistent with the conclusion of Xiong et al.[22] that women
have higher antiviral immunity than men, leading to a longer incubation period
of COVID-19. In the subsets divided by age, the disease developed rapidly in
the elderly patients and the CT findings were more obvious than young patients.
This suggests that different thresholds should be adopted according to gender
and age. The results on the subsets divided by the number of CT scans showed
that diagnosis results by the AI system have little correlation with the stages of
CT scans. These observations may provide decision-making references for the
diagnosis of COVID-19 in different populations.

Further, we provided a visual explanation of the system’s decision by per-
forming a radiomics analysis to obtain diagnostically relevant phenotypic char-
acteristics of the attentional regions that are fully traceable on the original CT
image. This is important for an in-depth study of pulmonary imaging findings
in patients with COVID-19. For the AI system, by visualizing the diagnostic
results of 200 subjects from the reader study cohort and comparing them with
human reader in the reader study, together with the subsequent radiomics anal-
ysis, we were able to perform detailed imaging phenotype analysis on the diag-
nosis of COVID-19, and subsequently make pathophysiological and anatomical
speculations on the viral infection process (see Feature Analysis in Methods).

There are still some drawbacks and future works of this research. First,
collecting more data on other types of viral pneumonias or lung lesions can
help improve its specificity further. Second, based on many chest CTs with
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detailed labelled lesions, a semantic segmentation algorithm can be trained to
locate the outline of the lesion more accurately than Guided Grad-GAM, and
distinguish the detailed category of the lesion. Overall, the proposed AI system
has been comprehensively validated on large dataset with diagnosis performance
comparable to human experts in diagnosing COVID-19. Unlike classical black-
box deep learning approaches, by visualizing AI system and applying radiomics
analysis, it can decode effective representation of COVID-19 on CT imaging,
and potentially lead to the discovery of new biomarkers. Radiologists could
perform an individualized diagnosis of COVID-19 with the AI system, adding
new driving force for fighting the global spread of outbreak.

4 Methods

4.1 Development and Validation Datasets
Under insitutional review board (IRB) approval , data used in our experiments
come from three centers in Wuhan, which are Wuhan Union hospital, Western
Campus of Wuhan Union Hospital, and Jianghan Mobile Cabin Hospital, and
two public databases, LIDC-IDRI of the American National Cancer Institute
(NCI), and ILD-HUG data of University Hospitals of Geneva.

The datasets from the three centers in Wuhan contain both positive (con-
firmed COVID-19) and negative cases. Database collected from Jianghan Mobile
Cabin Hospital in Wuhan includes chest CT volumes of patients with confirmed
COVID-19 from February 5th, 2020 to February 29th, 2020. Chest CT volumes
from Wuhan Union hospital, Western Campus of Wuhan Union Hospital are
collected from January 11th, 2020 to February 29th, 2020. Data from three
centers contain 756 subjects, of which 496 were positives and 260 negatives.
Some positive subjects have multi-stage CTs, so that datasets from three cen-
ters consist of 710 CT volumes of positive cases and 260 CT volumes of negative
cases. Stage I means the first chest CT of a patient, and the intervals to stages
II are 4-10 days.

Two public databases contain only negative cases since these data were col-
lected before COVID-19 outbreak. The Lung Image Database Consortium Im-
age collection (LIDC-IDRI) is a collaboration between seven academic centers
and eight medical imaging companies initiated by the national cancer institute
(NCI) in the United States. This database contains 1,012 subjects[16]. ILD-
HUG is an international public dataset on interstitial lung diseases (ILDs) built
at the University Hospitals of Geneva (HUG). The dataset contains 113 chest
CTs (reported to have 128 but only 113 available) with three-dimensional an-
notated regions of pathological lung lesions[17]. Most of the cases taken from
these two public datasets are abnormal cases and some of which are similar in
CTs as COVID-19.

All CT data was divided into four independent parts with no overlapping
subjects:

• Training cohort: 312 subjects were assigned to the training cohort, includ-
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ing 147 positive and 75 negative cases from three centers in Wuhan, and
75 cases from LIDC-IDRI and 15 cases from ILD-HUG). This cohort was
used to train parameters of model.

• Internal validation cohort: 104 subjects were assigned to the internal val-
idation cohort, including 49 positive and 25 negative cases from three
centers in Wuhan, and 25 cases from LIDC-IDRI and 5 cases from ILD-
HUG. This cohort was used to validate the performances and turn super-
parameters of model.

• External test cohort: There were 183 positive and 116 negative cases from
three centers in Wuhan, 873 cases from LIDC-IDRI and 83 cases from
ILD-HUG. To test performances for different genders and ages, we used
this cohort excluded data of public databases. To test the performances
of different stage, we used 123 patients with 2 stages and all the negative
cases collected in Wuhan in this cohort. This cohort was used to evaluate
and analyze performances of AI system.

• Reader study cohort: 200 subjects (117 positive and 44 negative cases
from three centers in Wuhan, and 39 cases from LIDC-IDRI database)
were assigned to the reader study cohort. This cohort was used to compare
diagnosis results with human radiologists.

4.2 Overview of Our AI System
The proposed AI system takes as input a whole CT volume and outputs COVID-
19 diagnosis along with abnormal slices (if diagnosed as positive). The whole
system consists of five parts: lung segmentation block, COVID-19 classification
network, abnormal slice locating block for COVID-19 positives, AI system in-
terpreting block using Guided Grad-CAM, and feature analysis block. The first
four blocks are deep-learning based blocks and the last one is traditional feature
extraction block.

4.3 Development and Training of Deep Learning Blocks
The lung segmentation block is implemented based on Deeplab v1[23], which
is a 2D semantic segmentation network. All CTs are in 3D, so we trained and
tested the segmentation model slice by slice. The training slices were extracted
from chest CTs in the training cohort and annotations of lung segmentation were
obtained manually. The segmentation results were used as masks to determined
lung areas, and they were concatenated to the raw CT slices as a different chan-
nel before feeding into the next block. We used this input-with-mask method
to improve diagnosis results which has better performance according to experi-
ments.

Our COVID-19 diagnosis block is a 2D classification deep network whose
backbone is ResNet152[24], a deep network with 152 convolutional, pooling
or fully-connected layers. The parameters of ResNet152 are pretrained on a
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Figure 7: Extend Performances of proposed AI system. a. PR curves was employed to
assess the AI system performance of COVID-19 diagnosis. b. Decision curve analyses
(DCA) of AI system in independent external test set for COVID-19 diagnosis. c.
Errors count in external public databases in external test cohort.

huge dataset ImageNet7 for better and faster convergence. We tested a 3D
classification network but this 2D scheme showed much better performance.
The input of classification model is lung-masked slices, which means the input
slices including training, internal validation and external test cohort, have been
segment by segmentation model to get lung masks. The outputs of classification
model are two scores respectively representing confidence levels of being normal
and COVID-19 affected. Loss function of this block is cross entropy. The block
was trained using 2D slices with batch size 32 for 100 epochs which costed
about 5 hours under learning rate 10-5. Slices for training this block were
extracted from training cohort, and the extraction process is detailed explained
in supplementary methods. Since the predictions are based on 2D slices, an extra
step is done to get a volume-level prediction. Because one volume is COVID-19
positive when any one of its slices is COVID-19 positive, we averaged the top 3
highest scores of all slices of a volume as the volume score. As a result, though
training and validation were done on slice level, the block can take the whole
CT volumes (with the whole lung segmentation volumes) and output a single
prediction on volume level.

To measure the performance of classification model, AUC and some other
metrics are computed on both internal validation and external test cohort. The
metrics of internal validation cohort is computed on slice-level because the train-
ing is on slice-level and turning of super-parameters will be easier if validation is
also done on slice-level. While metrics for external test cohort and reader study
cohort are on case level, consistent with clinical application.
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Block to locate abnormal slices is in the same structure of diagnosis block
but trained especially on COVID-19 positive cases whose lesions have been
marked manually. We used 28 cases with slice-level annotations in training
cohort to train the block and the rest 12 cases in internal validation cohort with
annotations to test performances of locating.

We used Guided Grad-CAM to obtain attentional regions as our system
interpreting block. Guided Grad-CAM has the advantage that it not only gen-
erates a heat map to locate the relevant area, but also produces a coarse local-
ization map highlighting the important regions in the image for predicting the
result. Generally, the features used for classification judgment can be found,
such as edges and spots in specific areas. Guided Grad-CAM is important be-
cause the areas it focused on are a secondary output of our system together
with diagnosis result, giving more detailed diagnosis suggestions. Also, the at-
tentional regions were used in latter feature extraction and analysis to get more
detailed information about lesion areas. We extracted region of attention by
binarizing output of Grad-CAM and then some morphological operations were
done on binarization map.

All the deep learning blocks were implemented using PyTorch[25].

4.4 Features Extraction
Features were extracted in the attentional region determined by Guided Grad-
CAM. We also extracted the same feature in normal lung in controlled cases
for comparison. Due to no valid lesions attentional region for controlled cases
is computed by Guided Grad-CAM, we used the shape of attentional region of
COVID-19 cases and randomly choose positions within lung area as the atten-
tional regions of controlled cases. We did not use shape features because the
shape of attentional regions between COVID-19 and controlled cases are the
same.

We extracted radiomics features which are widely used in lesion diagnosis
these years. These features are composed of different image transforms and
feature matrix calculations. We adopted three image transforms: original im-
age, transformed image by Laplacian of Gaussian (LoG) operator, and trans-
formed image by wavelet. For each image after the operation of a transform,
six series of features are extracted, including first order features, Gray Level
Co-occurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), Gray
Level Run Length Matrix (GLRLM), Neighboring Gray Tone Difference Matrix
(NGTDM), Gray Level Dependence Matrix (GLDM). Radiomics analysis was
performed using python version 3.6 and the "pyradiomics" package[26]. We de-
signed three other features which are distance feature and fractal features of 2D
contour and 3D gray level mesh of attentional region. The distance feature was
defined as the distance between the center of gravity of the region of interest
(obtained by the classification network after Grad-GAM) and the edge of the
lung (obtained by the edge of the lung automatically segmentation results). Be-
sides, 2D contour fractal dimension and 3D grayscale mesh fractal dimension of
the attentional region was extracted. The fractal dimension describes the de-
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Figure 8: Distribution of Features. a. Distances from the center of attention area to
lungs margin. b. Margin Fractal Dimension of Attention Area. c. Gray Level Mesh
Fractal Dimension of Attention Area.

gree of curvature of the curve and surface. These three extra features were only
extracted from the CT images of COVID-19 patients and were not analyzed
and compared on the controlled cases. LASSO logistic regression model, heat
map of cluster and correlation coefficient matrix were used to extract, select
and verify the radiological features of the attentional region in the original CT
images, which can interpret AI system. LASSO analysis was performed using
python version 3.6 and the "scikit-learn" package.

4.5 Features Analysis
First, we located the distribution of the attentional region traced by the AI
system, which mainly consisted of the subpleural distribution, the fragmentary
distribution of patchy based on the secondary lobules, and the diffuse distri-
bution of the fusing above two. The distances feature shows that the centers
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Figure 9: Cluster Heatmap of features. a. 752 radiomics features before LASSO. b.
Cluster heatmap of 15 radiomics features after LASSO. Note: In label column, red
means COVID-19 positives while blue means negatives.

Figure 10: Correlation heat map. a. Before LASSO. b. After LASSO.
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of attentional region are generally 0-20 pixels (2.5 mm/pixel) from the pleu-
ra (Figure 8 a), which is consistent with anatomical findings on COVID-19.
The SARS-Cov2 is small (60-140 nm in diameter), and when inhaled through
the airways, it mainly invades the deep bronchioles, causes inflammation of the
bronchioles and their surroundings to damage alveolar[27,28]. Also, from the
pathophysiology and etiology[29-31], the SARS-Cov2 mainly invades the bron-
chioles and lung parenchyma. Lesions tend to occur in the lower and peripheral
areas of the lung with abundant capillaries and lymphatics. These areas have
well-established immune system and well-developed pulmonary lobules, leading
to a strong inflammatory response[32,33]. Secondly, fractal dimensions of most
regional contour are between 1.95-2.00, shows a tortuous outline and conforms
to the diffuse description, which corresponds to the fact that most of the cas-
es in the dataset are at early or developmental stage. A few distributions are
between 1.87-1.89, the overall contour of attentional regions are smoother or
sub-parts are flat and narrow. The appearance of partial flatness at the bound-
ary of the attentional region is a sign of consolidation, indicating the lesion is
in the mend. Finally, we obtained some findings on the texture (homogeneity
and heterogeneity) of the attentional regions that features for normal and lesion
regions show different distributions (Figure 6 b, c).

According to all the extracted features, we can describe in depth the rela-
tionship between the medical findings and typical patterns. I) Halo pattern and
anti-halo pattern were easily formed in the attentional regions. The halo pattern
was speculated to be that the lesions (mainly the central node of the lobular)
infiltrated into the surrounding interstitium and developed the aggregation of
inflammatory cells in the interstitium. Anti-halo pattern is of the center of the
ground glass shadow, almost completely surrounding by the high-density con-
solidation. The appearance of this sign may be that the inflammatory repair is
dominated by the edge, leading to the formation of a band shadow tending to
consolidation at the edge, while the central repair is relatively slow. II) The at-
tentional region presents pleural parallel signs. The formation mechanism was
speculated as follows: when the SARS-Cov2 invaded the interstitium around
the alveoli, the lymphatic return direction was subpleural and interlobular sep-
ta, and diffused into pleural side and bilateral interlobular septum[34]. Because
of the limitation of the pleura at the distal end, the lymph can only cling to the
pleura and spread along the reticular structure of the interlobular septal margin
on both sides. In addition, the fusion of the subpleural lesions results in the
long axis of the lesions parallel to the pleura. III) Vascular thickening was found
in the attentional region, which was consistent with the rules of inflammation
production, inflammatory stimulation, increased vascular permeability, telang-
iectasia, further pulmonary artery thickening[33,35]. IV) The fine mesh feature
of large area develops in the attentional region. The SARS-Cov2 mainly in-
vades the interstitium in the lobules, so it appears as confluent fine mesh (crazy
paving). V) The density of the ground-glass opacity (GGO) in the attentional
regions increases, transforming to consolidation, the consolidation edges are flat
or contracted, and fiber strands appear. These are all signs of disease outcome.
In addition, when multiple regions of attention are recognized in the lungs of
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some cases, the conditions of some regions will be improved, and that of other
regions is lagging. The phenomenon of fluctuation is caused by unsynchronized
development of lesions.

4.6 Reader Study
For this study, data from three centers was used, and negative data from public
database is added, after which the reader study cohort statistically consisted of
58.5% positive cases and 41.5% negative cases. All the five readers are profes-
sional radiologists in the radiology department of Wuhan Union Hospital, who
have rich clinical diagnosis experience and is in the center of the epidemic area
with the most patients in this outbreak in China. They have all read over four-
hundred CTs of COVID-19 in the past three months. Five radiologists had an
average of 8 years of clinical experience in the imaging diagnosis of pulmonary
diseases, as detailed in Table 2 a.

Readers can choose any window of gray value and zoom in or out when
reading CT volumes using Slicer 4.10.2 software while our system used fixed
size recased images (224 x 224 x 35) with fixed gray value window (-1200, 700)
for all volumes.
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