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Socio-economic and environmental patterns behind
H1N1 spreading in Sweden

András Bóta, Martin Holmberg, Lauren Gardner, and Martin Rosvall,

Abstract—The first influenza pandemic in our century started
in 2009, spreading from Mexico to the rest of the world, infecting
a noticeable fraction of the world population. The outbreak
reached Europe in late April, and eventually, almost all countries
had confirmed H1N1 cases. On 6 May, Swedish authorities
reported the first confirmed influenza case. By the time the
pandemic ended, more than 10 thousand people were infected
in the country. In this paper, we aim to discover critical socio-
economic, travel, and environmental factors contributing to the
spreading of H1N1 in Sweden covering six years between 2009
and 2015, focusing on 1. the onset and 2. the peak of the epidemic
phase in each municipality.

We apply the Generalized Inverse Infection Method (GIIM)
to identify these factors. GIIM represents an epidemic spreading
process on a network of nodes corresponding to geographical
objects, connected by links indicating travel routes, and trans-
mission probabilities assigned to the links guiding the infection
process. The GIIM method uses observations on a real-life
outbreak as a training dataset to estimate these probabilities
and construct a simulated outbreak matching the training data
as close as possible.

Our results show that the influenza outbreaks considered in
this study are mainly driven by the largest population centers
in the country. Also, changes in temperature have a noticeable
effect. Other socio-economic factors contribute only moderately
to the epidemic peak and have a negligible effect on the epidemic
onset. We also demonstrate that by training our model on the
2009 outbreak, we can predict the timing of the epidemic onset
in the following five seasons with good accuracy.

The model proposed in this paper provides a real-time decision
support tool advising on resource allocation and surveillance.
Furthermore, while this study only considers H1N1 outbreaks,
the model can be adapted to other influenza strains or diseases
with a similar transmission mechanism.

I. INTRODUCTION

A novel pandemic emerged in Mexico during the spring of
2009, caused by a recombined influenza strain derived from
circulating swine influenza strains. It spread quickly to other
continents, and struck Europe with a spring/summer wave,
affecting several countries. The rate of transmission subsided
as the summer progressed but accelerated again during the
autumn season, this time in all European countries. The spread
followed a west to east progression, a typical pattern for
seasonal influenza [24].

The first cases in Sweden appeared late in April, and
local transmission followed, mainly in the major cities. In
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late September-early October, a nationwide outbreak started,
peaking in November. From mid-May, the Swedish institute
for infectious disease control required mandatory reporting of
individual cases, which later changed to hospitalized patients
supplemented by laboratory notification of positive samples
[25]. WHO declared the end of the pandemic on 10 Au-
gust 2010. However, the mandatory reporting of the H1N1
pandemic strain continued in Sweden during the following
five seasons, providing a detailed and thorough collection of
epidemic data on a fine spatial resolution.

The spatial component of many infectious diseases is crucial
for the understanding of epidemic transmission. Recent years
have seen a surge in the use of mathematical models to
describe the geographic transmission of infectious diseases
[6], [19]. Specifically, with the increasing availability of geo-
tagged epidemiological data, the 2009 A(H1N1) pandemic
influenza has been studied using spatially explicit models.
For example, studies in the US have revealed human mobil-
ity patterns as important mechanisms for influenza epidemic
transmission [7], [10], [14]. A previous geographic study of
the pandemic spread over Sweden indicated a progression from
the north to the south during the year 2009 [21]. However, the
significant risk factors that drive the influenza dynamics in
Sweden have not been studied in detail.

Meteorological factors associated with the rate of influenza
transmission among individuals include precipitation, humid-
ity, temperature, and sun radiation[5], [18], [8]. However,
uncertainties in the data remain, and meteorological drivers
may play more significant roles in some geographic regions
than others. The role of population size and density in cities
is also known to affect the dynamics of influenza transmission
and the weight of environmental factors [8]. Apart from the
importance of schoolchildren for influenza transmission [27],
socio-economic factors important for influenza spread remain
sparsely studied [16]. Moreover, the relative contributions of
multiple risk factors that drive the spread of influenza are
poorly understood, underlining the need for new methods and
models to manage the increasing volume of spatio-temporal
disease data and socio-economic and environmental metadata
coupled to these data.

In this paper, we seek to uncover the critical socio-
economic, travel, and environmental factors behind H1N1
outbreaks in Sweden, covering six years between 2009 and
2015. We will focus on two properties of the outbreaks: the
start and the peak of the epidemic phase. We aim to identify
the relationship between the timing of these events and the
above factors available for each of the 290 municipalities of
Sweden. We also explore the predictive capabilities of our
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approach by using the 2009 pandemic to train our model and
measuring its performance on data from the following years.

We use a network model to define the paths of disease
spreading between the municipalities. In this model, each
municipality defines a node, and municipalities are connected
if there is significant travel between them based on a travel
survey covering multiple years. We use the Generalized In-
verse Infection Model (GIIM) [2], [3], [9] to establish the
relationship between the properties of the outbreak and several
socio-economic, travel, and environmental indicators. GIIM is
a network-based optimization method that seeks to estimate
the transmission risk between geographical areas by a risk
function of known attributes. The risk function assigns a
weight to each attribute representing their relative contribu-
tion. The method estimates the parameters of this function
through iterative refinement by repeatedly running a simulated
infection process. An error function measuring the difference
between the output of the simulated process and an observed
real-life outbreak guides the optimization process, which GIIM
solves with a Fully Informed Particle Swarm Optimization
Method [11].

According to our results, the most critical factor that guides
the spread of H1N1 in the municipalities of Sweden is
population size, followed by temperature. GIIM also estimates
the likelihood of disease spreading between the municipalities,
and the importation and exportation risks for all municipalities.
More importantly, we can use the risk factors, their assigned
weights, and the attribute function to simulate an outbreak at
any given period, allowing us to predict the timing of epidemic
events in future seasons. By training our model on data from
the 2009 pandemic, we can predict the timing of the above
epidemic events in later seasons with good accuracy.

II. DATA

Our analysis covers Sweden on the geographical level
of its 290 municipalities. Almost all the data sources are
domestic, and are available either on the municipality level
(only the cities of Stockholm and Gothenburg comprise more
than one municipality), or the DeSo (demographic statistical
areas) [17] level, a subdivision of the municipality level.
The only exception is the weather-station based climate data,
which we have converted from specific geographic coordinates
to the municipality level. Because Sweden covers a large
geographical area with significant variance in features, climate,
and population, the selected indicators may vary significantly.

A. Maps and geographical data

We constructed the maps of Sweden and its municipalities
from open-source shapefiles obtained from [17] using the
QGIS software [23].

B. Travel Data

Travel patterns in the Swedish population have been
recorded since the mid-1990s by interviewing representative
selections of several thousand 6-84-year-old inhabitants. As
part of this study, we obtained complete questionnaire data

for the years 2011-16 [26]. The data contains posts on the
commuting habits of individuals on a daily level with partial
and whole trips and the geographic origin and target of the
travels at the DeSo level. Since DeSos are subdivisions of
municipalities, we converted them to the municipality level.
The survey contains additional information, including the age
and income of participants and the means of travel. However,
we omitted this information from the analysis because we
gathered more detailed information from the Swedish statisti-
cal bureau.

Since this study considers the years from 2009 to 2015,
we have used the 2011-2016 period to define the travel
patterns for all parts of the analysis, including the years
2009 and 2010. We have no reason to assume that travel
patterns changed significantly between the years 2009 and
2016. Furthermore, while the sample size of the survey is
adequate to calculate general statistics, it is too sparse to
construct a travel network with temporal dynamics, even on
a yearly level. Instead, we constructed an aggregated static
network containing all feasible routes of infection. To partially
compensate for the inadequacies of the survey, we made sure
that the travel network represents all air and rail travel routes
and connects all neighboring municipalities. The sparsity of
the travel survey also prevents us from reliably measuring the
frequency of travel between the municipalities. To include at
least one travel-related variable, we selected node degree –
the number of travel routes connecting a municipality to other
municipalities – to signal the importance of a municipality in
the travel network of Sweden.

C. Epidemiological data

Our data set consists of all laboratory-verified cases of
A(H1N1)pdm between May 2009 and December 2015, ex-
tracted from the SmiNet register of notifiable diseases, held
by the Public Health Agency of Sweden. While the number
of flu cases is regularly underreported, the SmiNet database
contains 16000 records, which is a reasonably large sample
compared to other notifiable diseases. Due to confidentiality
reasons, cases are anonymized, and addresses are aggregated
at the DeSo level together with the date of diagnosis, age, and
gender. To make sure the addresses represent the habitation
at the time of diagnosis, the register was cross-referenced
at Statistics Sweden (SCB) with a historical address register
before anonymization. We obtained ethical approval for the
data acquisition.

Consequently, the epidemiological data contains the num-
ber of daily reported cases at the DeSo level, which we
converted to the municipality level. Since the available data
covers an extended period from 2009 to 2015, we partitioned
the case counts into six separate outbreaks corresponding to
the 2009/2010, 2010/2011, 2011/2012, 2012/2013, 2013/2014,
and 2014/2015 flu seasons. The size and timing of the out-
breaks show considerable differences. The 09/10 swine flu
pandemic covered a significant part of the year 2009 and lasted
into the first weeks of 2010. In contrast, the 11/12 season saw
almost no flu cases. Figure 2/B shows the number of new cases
in 2009 from week 37 to 50 in a few selected municipalities.
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D. Socio-economic data

One of the main goals of this paper is to establish a
relationship between socio-economic factors and epidemic
spreading. Since this study only considers the country of
Sweden, high-quality data is readily available from Statistics
Sweden [22], the organization responsible for coordinating
the system for the official statistics in the country. Based on
available statistics and previous studies [9], [27], [16], [8], we
selected: 1. The average household income as an economic
indicator. 2. The average number of children younger than 21
years per household to indicate family size. 3. The number of
people receiving social aid to represent poverty in a region. 4.
Population size and population density as the number of people
per sq. km of land area. All the above statistics are available
at the municipality level. Figure 1 shows the geographical
distribution of population size and the average number of
children per household.

Both population density and population size have been used
before to model epidemic spreading [8]. In a geographical
setting population density is preferred due to its independence
from inequalities in the size of geographical areas. In contrast,
using population size can be misleading if differences are more
than minimal. However, the fine geographical resolution of
the municipalities of Sweden and the lack of huge population
centers (except for Stockholm and Gothenburg) allows us to
use population size as a variable. We experimented with both
density and size in our study. We found that density only has a
small contribution to the timing of the epidemic events, while
population size is a significant factor. Therefore, we chose to
include population size.

E. Climate data

Even though the exact mechanisms are unknown, the rela-
tionship between environmental temperature and humidity and
seasonal influenza is well established in the literature [20], [5],
[18], [8]. As such, it is one of the key factors used in this study.
Due to Sweden’s geographical position and the effect of the
Gulf Stream, the country’s climate ranges from an oceanic
climate in the far south to a subarctic climate in the far north,
while central Sweden has humid continental climate.

We obtained detailed climate data from the European Cli-
mate Assessment Dataset [15]. This database contains daily
meteorological station observations covering Europe. Of the
elements available in the database, we included mean tem-
perature and relative humidity as factors in this study. Using
the geographical coordinates of the weather stations and the
shapefiles of Sweden and its municipalities, we assigned
each weather station to its municipality, then averaged the
readings inside municipalities in case there were multiple
stations assigned to them. If a municipality did not have an
assigned meteorological station, we used an average of the
values from neighboring municipalities. We show the averaged
mean temperatures of a few select municipalities in Figure 2/C.

III. METHOD

We use the Generalized Inverse Infection Model (GIIM) [3]
to identify the relationship between the H1N1 outbreaks and

the socio-economic and climate factors. The GIIM method is
a network optimization tool for infection processes, which has
been successfully applied to real-world problems [4], including
the modeling of the geographical spread and transmission of
Zika in the Americas [9]. GIIM brings a novel approach to
epidemic modeling because instead of merely simulating an
outbreak, the method estimates the parameters and properties
of an infection process using observations from an actual
outbreak.

The GIIM method uses a network to represent the geo-
graphical areas involved in the outbreak as nodes, and al-
lows the assignment of multiple attributes to the nodes and
links of the network. The method also relies on observations
from an actual outbreak with weekly case counts reported in
geographical areas. In practice, GIIM uses single properties
of the epidemic curve, such as the maximum case count or
the onset of the outbreak. GIIM uses an iterative refinement
approach to reconstruct the outbreak from the network and its
assigned attributes by matching the properties of a simulated
outbreak to the observed properties of the actual outbreak, i.e.
by minimizing the error between the estimated and observed
data. The method identifies the transmission risks on the links
of the network defined as a function of the known attributes,
and returns the parameters of this transmission risk function.

A. Inputs
The GIIM method requires three inputs: an underlying

network structure, attributes assigned to the nodes and edges
of the network, and a set of observations on a real-life
transmission process. The underlying network structure in this
study represents the municipalities of Sweden. We denote
graph G as G(V,E), where VG is a set containing all the
vertices of the graph, while EG contains all the edges of the
graph. We denote the edges of G as eu,v ∈ EG with u as the
tail and v as the head of the edge, where u and v are nodes
of the network and edge eu,v links node u to v. The nodes
of the network represent the 290 municipalities of Sweden,
and we define the edges of the network based on the travel
survey introduced in the data section. The survey contains
travel information for all participants indicating the source
and target municipalities of their travels between 2011 and
2016. We created a directed edge between two municipalities
A and B if at least one individual traveled from A to B.
To ensure that we represented all feasible travel paths in the
network, we connected all neighboring municipalities. In this
way, the edges of the network indicate significant recorded
travel between the pair of municipalities they connect. We
denote this network GS and illustrate it in Figure 2/A.

Attributes: We represent the previously defined socio-
economic, travel, and climate factors as attributes assigned
to the nodes of the network. All attributes are real values
normalized between zero and one. We used the following
attributes:

1) Ct
u the incidence of new flu cases reported at munici-

pality u in week t.
2) Du the degree of node u. Lacking more accurate travel

indicators, we used this value to represent the impor-
tance of a municipality in the travel network of Sweden.
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Fig. 1. Geographical distribution of population size and the average number of children per household of the municipalities of Sweden.

3) T t
v the mean temperature measured in municipality v in

week t.
4) Ht

v the absolute humidity measured in municipality v in
week t.

5) Pv the population size of municipality v.
6) Iv the average income per household in municipality v.
7) Sv the number of people receiving social aid in munic-

ipality v.
8) Kv the number of children under 18 years of age per

household in municipality v.
Attributes marked with a time index t are dynamic. As such,

their values change in time depending on the week of the
outbreak. We build our model based on the 2009 flu pandemic.
Therefore, all dynamic attributes refer to the 2009/2010 season
unless noted otherwise. We only use data from the 2010-
2015 period in the last part of our analysis, when we test
the predictive ability of our model.

Attribute function: To reconstruct the observed outbreak
using the network and its attributes, GIIM repeatedly runs
a simulated infection process. The infection process requires
transmission probabilities (also called edge infection proba-
bilities) wt

uv ∈ [0, 1], e(u, v) ∈ EGS
assigned to the edges of

the network. The flexibility of the GIIM model allows us to
define these values as a function of known attributes, and in
this paper we define the functions with the attributes listed
above.

wt
uv = A+αCt

u+βDu+γT
t
v+δH

t
v+ζPv+ηIv+θSv+κKv

(1)
The variables in equation (1) cover the attributes listed

previously, and the optimization algorithm of GIIM estimates
the coefficients of these functions.

Reference outbreak: The GIIM method seeks to estimate
the parameters of an existing outbreak. Reference observations
provide information about this outbreak: a set of vectors, each
containing an indicator value on the state of the infection
process at all nodes. Multiple vectors provide information at
different time periods of the process. While observations can
take different forms [3], here we define them as a set of binary
vectors covering a selected set of weeks from each of the
yearly outbreaks covered in this study. Each binary vector
corresponds to a week, and a value of 1 indicates that the
epidemic peak or onset already happened, while a 0 indicates
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Fig. 2. A. The travel network of Sweden. B. The number of new cases in from epidemic week 37 to 50 in the municipalities listed on the right side. C. The
average mean temperature from week 37 to 50 in the municipalities listed on the right side.

Season Start week End week
2009-2010 2009 week 37 2009 week 50
2010-2011 2010 week 50 2011 week 10
2011-2012 2011 week 51 2012 week 09
2012-2013 2012 week 51 2013 week 10
2013-2014 2013 week 49 2014 week 11
2014-2015 2015 week 5 2015 week 14

TABLE I
THE START AND END WEEK OF EACH EPIDEMIC SEASON.

that it has not happened yet. The week of the peak or onset
has a value of 1. We aim to estimate two different parameters
of the outbreak: 1. the timing of the epidemic peak, i.e. the
week with the highest number of newly infected cases and 2.
the timing of the epidemic onset, the week when the number
of newly infected cases increases significantly compared to the
previous period.

The timing of the epidemic seasons varies depending on
the year. Table 1 lists the weeks in each season when there
was a significant number of flu cases. We used these weeks to
construct the reference observations. The 2009-2010 season
had flu cases all over the year, but we focus on the fall of
2009, where the largest portion of the outbreak took place.

B. Infection Model

As part of its optimization process, GIIM relies on the
repeated evaluation of a simulated infection process. In this
study, we adopt the SI compartmental infection model defined
for networks [3], [12], which was successfully used in a similar
study [9]. Part of the more general SEIR infection model
family, the SI model only has two states: susceptible (S) and
infected (I), representing infectious nodes, which continuously
try to infect their healthy neighbors, and susceptible nodes
prone to infection. Each node of the network has a state
during the process, which may change over time. We assign
edge infection probabilities wt

uv ∈ [0, 1] to all edges of the
network. The t time index indicates that these probabilities
may change their values depending on the discrete time scale
of the process. However, wt

e is strictly an input of the model
and does not depend on the spreading process in any way.
The infection process is iterative and takes place in a finite
number of discrete time steps. In each iteration, a node may
change its state depending on the state of its neighbors and the
edge infection probabilities assigned to the edges connecting
it to them. Nodes may change their states from susceptible to
infected, but infected nodes stay infected until the end of the
process. The total number of discrete time steps the process
takes is limited to the number of weeks with reported new flu
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cases.
As in [3], [9], we define the SI infection model using a

graph G(V,E) with edge infection probabilities wt
uv assigned

to all of its edges and the initial set of infected nodes A0. The
rest of the nodes are in the susceptible state at the beginning
of the process. Let At ⊆ VG be the set of infected nodes in
iteration t. In each iteration t each infected node u ∈ At tries
to infect all its susceptible neighbors v ∈ VG \ At depending
on the edge infection probability wt

uv of the edge connecting
them. If the attempt is successful, v joins the set of infected
nodes in the following iteration. If more than one node is
trying to infect v in the same iteration, the attempts are made
independently of each other in an arbitrary order within the
same iteration. The process terminates naturally if all nodes
reachable from the initially infected nodes with nonzero edge
infection probabilities adopt the infected state, or when there
are no more reported new flu cases.

The above process defines a single instance of an outbreak.
Instead of binary values, GIIM requires for each node the
likelihood of being in an infectious state for all time steps.
Therefore, we ran the process 5000 times and counted the
number of instances when the nodes of the network were
infected [13], [1]. When we refer to the output of the infection
model, we refer to the estimated likelihood values as opposed
to the binary outputs of a single instance.

C. The GIIM Method

The GIIM method [3] defines the problem of estimating
edge infection probabilities as an optimization task. Its inputs
include a network, several attributes on the nodes and the
edges of the network, and a set of reference observations of an
actual outbreak. GIIM provides an estimation of the observed
outbreak by simulating one. Apart from the result of the
simulation (which may be more detailed than the original), its
output provides an assignment of edge infection probabilities
and the relative importance of the attributes according to
equation (1).

To define GIIM’s inputs, let ~ot denote a vector containing
observations on an infection process. Let ~ot assign a value to
all v ∈ VG. Let t ∈ T denote a discrete time stamp indicating
the week in which the observation was taken, and T be the set
of all time stamps. Let O denote the set of all observations
~ot ∈ O for all t ∈ T . Let I denote the SI infection model
introduced in the previous subsection, and WG : EG 7→ [0, 1]
be the initially unknown assignment of edge weights to the
edges of the graph. Finally, let Inf be a procedure, which
makes observations on infection process I at sample times T ,
taking place on graph G with assigned edge weights we ∈
W, e ∈ E(G). We denote Inf as O = Inf(G,W, I, T ).
General Inverse Infection Model: Given an unweighted
graph G, infection model I, the set of sample times T ,
and reference observations O = Inf(G,W, I, T ), we seek
the edge infection probability assignment W ′ such that the
difference between O and O′ = Inf(G,W ′, I, T ) is minimal.

In this study the set of reference observations O contains
binary vectors indicating the timing of the epidemic onset

Algorithm 1 Generalized Inverse Infection Model
1: Inputs: G, I, T , O, a
2: Choose initial edge infection probability assignment W ′

3: repeat
4: Compute O′ = Inf(G,W ′, I, T )
5: Compute d(O,O′)
6: if d(O,O′) ≤ a then
7: return W ′

8: else
9: Choose new W ′ according to the PSO search

strategy.
10: end if

and peak, while the observations O′ generated by running the
infection model I are real-valued. To compute the difference
between O and O′, we employ ROC evaluation. We pairwise
compare vectors ~ot ∈ O and ~o′t ∈ O′ for all t ∈ T , calculating
the AUC value for each pair and averaging over all pairs.
The GIIM method uses an iterative refinement algorithm to
solve the optimization task above. Starting from an initially
random edge weight assignment, GIIM simulates an outbreak
and compares the output with reference observations. Then it
updates the edge weight assignments and repeats the process.
The search algorithm uses the Fully Informed Particle Swarm
Optimization method [11], a multi-agent iterative optimization
algorithm, which was previously shown to perform well with
GIIM [3], [9]. Algorithm 1 [9] summarizes the iterative GIIM
algorithm.

Estimating individual edges is difficult due to the size of
most networks. To avoid this problem, GIIM defines the edge
weights as a function of known attributes on the nodes or edges
of the graph. This way, the goal of the optimization task is
to find the coefficients of this function. It is also possible to
define dynamic attributes or edge weights, indicating that their
value changes in time. In practice, this means that the value of
the edge weight or attribute is a function of t, a discrete time
stamp corresponding to the actual iteration of the infection
model.

The general form of the edge function can be written as
wt

e = g(f1(a
t
1(e), ~c1), f2(a

t
2(e), ~c2), . . . , f`(a

t
`(e), ~c`), ~cg) for

all e ∈ EGA
, where ati(e) represents the i-th attribute on edge

e ∈ EG at iteration t of the infection process, ` denotes the
number of available attributes, f1, . . . , f` and g are functions
and ~c1, . . . , ~c`, ~cg are coefficients of functions f1, . . . , f`, g.
This formulation is easy to implement and allows us to assign
different functions to different attributes, while the role of
function g is to aggregate and normalize the results of the
individual attribute functions to ensure they fall between 0
and 1. The value wt

e denotes the edge weights and C the set
of all coefficient vectors.

Using the function-based alternative greatly simplifies the
optimization task, reducing the number of values we have
to estimate from |W | = |EG| to |C|. However, its main
advantage is that instead of providing a single individual value
for each edge, it allows us to explore the relationship between
the factors potentially related to the outbreak and the outbreak
itself. Equation (1) defines the edge functions used in this
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study. We trim the weighted sums above 1 and below 0 by
taking wt

e =MAX(0,MIN(1,
∑`

i=1 f(a
t
i(e), ci)+ cg))). To

reduce the solution space of the PSO method and to make
the results of individual test runs comparable, we bound all
parameters between −0.5 and 0.5, except A, which we bound
between −1 and 1.

IV. RESULTS AND DISCUSSION

We start our analysis by studying the spreading of H1N1
in the autumn of 2009, weeks 37–50 for the epidemic onset
and 39–50 for the peak, corresponding to a period from mid-
September to mid-December. We model the outbreak on a
weekly basis and set up the input files of GIIM as described in
the Inputs section, To partially account for the summer wave of
infections in 2009, we select the municipalities of Stockholm,
Malmo and Gothenburg as infected in the starting week of
the analysis, as these municipalities contained most infected
individuals during the summer wave. We use the attribute
function defined in equation (1) with the socio-economic,
travel and environmental indicators introduced in the Inputs
section. To compensate for the stochastic nature of the model,
we ran the algorithm 20 times with the same set of inputs and
computed the mean and variance of the results.

A. Model accuracy

We evaluated the accuracy of our model by independently
computing the ROC AUC value for each week of the esti-
mation process, 14 weeks for the onset estimation and 12
weeks for the peak estimation. The averaged AUC value for

onset estimation was 0.875, indicating a good fit of our model,
while the averaged AUC value of peak estimation was 0.817,
which indicates a moderately accurate fit. Figure 3 shows
individual AUC values for all weeks for both objectives of
the estimation. The estimation is easy during the first weeks
due to the small number of positive examples. In the majority
of the municipalities, the fall H1N1 outbreak started and
peaked in weeks 42–45, where the accuracy of the estimation
process drops. Onset estimation accuracy around 0.82 for these
critical weeks indicates some uncertainty in the exact timing
of the onset, but most estimates indicate good accuracy. Peak
estimation is significantly less accurate, around and below 0.7
for two weeks, and stabilizing around 0.78 for the rest of the
weeks. In summary, while epidemic peaks are more difficult
to estimate, onset estimation has good accuracy for the entire
observation period except for slight uncertainty around the
most eventful weeks (Figure 3).

B. Risk factors

To evaluate the relative contributions of the travel, socio-
economic, and climate factors on the timing of the epidemic
onset and peak in the municipalities of Sweden, we experi-
mented with multiple combinations and functions of them. We
found that equation (1) provides the best fit to our reference
outbreak. Figure 4 shows the mean and standard deviation of
the coefficients assigned to the risk factors, while equations
2 and 3 show the attribute function with the mean of the
estimated coefficients for epidemic onset and peak estimation
respectively.

wt
uv = −0.111 + 0.323Ct

u + 0.17Du − 0.1T t
v − 0.006Ht

v + 0.493Pv − 0.01Iv − 0.013Sv + 0.045Kv (2)

wt
uv = 0.028 + 0.239Ct

u + 0.193Du − 0.346T t
v + 0.032Ht

v + 0.495Pv − 0.038Iv − 0.058Sv + 0.107Kv (3)

The weights in equations 2 and 3 represent the relative con-
tribution of each risk factor to the transmission risk between
the municipalities. The standard deviation of the coefficients
across test runs is small except for node degree in onset
estimation. More importantly, the relative importance of the
risk factors remains robust.

The coefficients for onset and peak estimation show some
similarities, but there are differences. The most significant
factor in the timing of the epidemic onset and peak is the
population size of the municipalities, indicating that the dis-
ease reaches and peaks in large population centers first and
then spreads to the countryside. Accordingly, node degree,
representing the importance of a municipality in the travel
network of Sweden, receives a moderately positive coefficient.
A significant factor in onset estimation is the incidence of
H1N1 cases in the municipality on the source of the links. The
same coefficient gets a much smaller weight in peak estimation
since the virus is already present in the target municipality.
This phenomenon highlights the difference between estimation
goals.

Although the relationship is not direct, environmental fac-
tors such as temperature, play a critical role in the appearance
of influenza. According to our model, the mean temperature
contributes slightly to the onset of the disease with a small
negative coefficient. At the same time, the temperature is the
second most significant risk factor to peak estimation, where it
has a large negative weight. This result implies that instead of
heralding the beginning of the flu season, a drop in temperature
greatly aggravates the effect of a current outbreak, driving it
to peak intensity. We also included humidity in our model, but
in both estimations, it only provides a small contribution to
the spreading risk.

Perhaps due to the relative homogeneity of a single country,
we found that the effect of the socio-economic variables on the
transmission risk between municipalities to be minimal. The
average number of school-age children per household, which
is a well-known risk factor [27], showed the most significant
influence. Like mean temperature, it contributes more to the
timing of epidemic peaks than to the start of an outbreak, and
even for peaks, it only has a low-moderate coefficient. The
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Fig. 3. Model accuracy (ROC AUC) for all weeks of the observation period. A. Onset estimation. B. Peak Estimation.

Fig. 4. Mean and standard deviation of the coefficients assigned to the risk factors by GIIM. A. Onset estimation. B. Peak Estimation.

influence of income is close to zero in both estimation types,
whereas the number of people receiving social aid adds a small
negative contribution to peak estimation.

We conclude that different factors contribute to the onset
and peak of H1N1 outbreaks in the municipalities of Sweden
during the 2009 flu pandemic. The timing of the epidemic
onset is mainly influenced by population size, the position of
the municipality in the travel network and the number of cases
in neighboring municipalities. This result is in line with the
spreading mechanism of more traditional agent-based models
where the outbreak travels from region to region after infecting
a certain amount of people locally, favoring population centers.
Temperature has a small negative effect, while school-aged
children have a small positive effect. In contrast, apart from
population size, the timing of the peak highly depends on mean
temperature, and other socio-economic factors such as school-
aged children and social aid have a more pronounced effect
too. This result implies that the timing of the peak depends
more on local risk factors, as opposed to the more network-
oriented spreading of the epidemic onset.

C. Exportation, importation and route level risk

The edge infection or transmission probabilities between the
municipalities of Sweden are among the outputs of GIIM. In

addition, it is possible to define a node-based import and export
risk weight by aggregating the edge-based risk values on the
in- and out-edges of each node. This value is also known as
node strength. It is important to note, that these values are not
probabilities, but risk indicators of importing or exporting the
disease from or to a municipality. They represent a relative
weight that allows us to rank the municipalities.

Figure 5/A shows the geographical distribution of expor-
tation risk at week 41, and Figure 6/A illustrates the time-
dependent exportation risk values for some of the highest risk
municipalities in onset estimation (for a complete ranking, see
the supplementary material). Large population centers appear
at the top of the list. While Gothenburg and Stockholm remain
at the top, Malmö only stays in the top 20 exporters during the
initial weeks, with its relevance decreasing even more later in
the outbreak. Other larger cities include Linköping, Jönköping,
and Uppsala, although except for Uppsala, their relevance
fades in time. Several of the larger cities of northern Sweden,
such as Skellefteå, Umeå, and Östersund, are top exporters
until mid-November, partially confirming the observations in
[21].

Figure 5/B shows the geographical distribution of im-
portation risk at week 41, while Figure 6/B illustrates the
time-dependent importation risk values for some high-risk
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Fig. 5. Geographical distribution of exportation (A) and importation (B) risk at week 41 in onset estimation.

municipalities in onset estimation (for a complete ranking,
see the supplementary material). This ranking is more static
than the export ranking, with large population centers re-
maining high risk until the end of the outbreak. These cities
include Linköping, Jönköping, Norrköping, Uppsala, Örebro
and Västerås, together with a few northern municipalities such
as Umeå, Luleå and Sundsvall. In contrast to the export risk
ranking, Stockholm county and Västra Götaland are not top-
import municipalities.

Due to a large number of edges in the graph, it is difficult to
highlight the individual links most important to the outbreak.
Figure 6/E shows some of these links. For example, early
in the outbreak, links connecting to Uppsala appear most
prominently among links to Umeå, Linköping, Örebro and
Västerås. This pattern remains until the end of the outbreak.

Starting from mid-October, links connecting the municipalities
of Northern Sweden appear at the top of the edge-based risk
ranking and stay there for several weeks until mid-November.
At the end of our observation period, links connecting larger
population centers in South and Central Sweden dominate the
top of the ranking.

Our observations on the timing of the epidemic onset
of H1N1 in the fall of 2009 follow a loose geographical
pattern. Following the smaller summer wave of infections,
the disease stays in the largest cities of the country, and
from September begins slowly spreading to the other larger
population centers of South and Central Sweden and a few
cities in Northern Sweden. A massive burst of the outbreak
happens in mid-October, reaching the countryside in South
and Central Sweden and moving north along the coast of the
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Fig. 6. A. Exportation risk values of select municipalities in onset estimation. B. Importation risk values of select municipalities in onset estimation. C.
Transmission probabilities of select links in onset estimation.

Gulf of Bothnia infecting the larger population centers on its
way. After peaking in most of the country in early and mid-
November, the outbreak first dies in the north and finally in
the largest cities where it began.

D. Model predictability

To estimate parameters of future H1N1 outbreaks in Swe-
den, we focus on the timing on the epidemic peak and
the epidemic onset in the flu outbreak in epidemic seasons
10/11, 12/13, 13/14, 14/15. We omitted season 11/12 from
our analysis due to the small number of H1N1 cases in the
country in this season, possibly an effect of the extensive mass
vaccination with a pandemic vaccine during 2009. We set up
the reference observations for our four target seasons in the
same way as for the 09/10 season (for observation periods of
these seasons, see Table 1). We also updated our dynamic input
attributes to correspond to the actual temperature and humidity
values in the same time periods. Finally, we defined the
infection sources for each of the target seasons and estimation
types by selecting the three municipalities with the earliest
onset and peak, respectively.

We used the estimated function coefficients for the 09/10
season as defined in equations (2) and (3) and the corre-
sponding inputs to run an instance of the infection model
for each of our four target seasons. We compared this output
with the reference observations for each of the target seasons

Fig. 7. Predictive accuracy in onset and peak estimation for epidemic seasons
10/11, 12/13, 13/14, 14/15.

by computing the ROC AUC metric. There are considerable
differences between the predictive abilities of the two esti-
mation types (Figures 7 and 8). Onset estimation performs
significantly better than peak estimation. The average AUC
values for all successive seasons stay close or even exceed the
accuracy we have seen in the 2009 pandemic in onset esti-
mation. The individual AUC values present a similar picture,
although the trends inside epidemic seasons differ somewhat
from those we have seen on Figure 3, with accuracy slowly
decreasing as the outbreak progresses but stabilizing well
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above 0.8. In contrast, peak estimation performs much worse
during most seasons compared with the 2009 pandemic. As in
onset estimation, the more detailed results show a decreasing
trend, but here stabilizing near 0.7, showing poor accuracy for
peak estimation in the successive seasons.

The predictive accuracy is greater in the 13/14 and 14/15
seasons than in the first two. While the weakening immunity
granted to the population by the 09/10 pandemic may explain
this trend, our results do not provide conclusive evidence to
confirm this hypothesis.

We conclude that the onset prediction accuracy of the model
is good, close to or even exceeding the accuracy of the 2009
pandemic itself. Predicting the timing of the epidemic peak is
a much more difficult task for our model. Our results indicate
that time of onset is more associated with structural factors,
while peak time is more associated with environmental factors,
making it more variable over seasons and thus less predictable.
The predictive ability of both types of estimations improve in
later seasons, and one possible explanation for this trend is the
presence of immunity to the disease. Taking this factor into
account in future work may improve the performance of our
model.

V. CONCLUSION

According to our findings, the spreading of H1N1 in Swe-
den was mainly driven by large population centers and the
presence and size of outbreaks in neighboring municipalities.
We find notable differences in the other risk factors con-
tributing to the epidemic onset and peak. Confirming existing
observations [6], [9] travel affects the spreading process, but
it is less important than other factors. However, this might
be the the result of the relatively small geographical scope of
the study and the well-developed infrastructure of the country.
According to our results, mean temperature plays a critical
role in the timing of the epidemic peak, while it contributes
only slightly to the onset of the outbreak. This result supports
the narrative that meteorological factors aggravate existing
outbreaks, driving them to a higher intensity. The only other
socio-economic indicator that contributes noticeably to our
model is the number of children per household, confirming the
observations in [27]. However, like temperature, this indicator
influences the epidemic peak much more than the onset of the
outbreak. The effect of the rest of the socio-economic factors,
income and social aid, is close to zero, likely because Sweden
has one of the lowest income inequalities in the world.

We also showed, that while our model is constructed based
on the 2009 pandemic, we can make accurate predictions on
the timing of the selected epidemic events in the following
seasons. Therefore, the model proposed in this paper can
be used as a real-time decision support tool advising on
resource allocation and surveillance. Furthermore, while our
study only considers H1N1 spreading, it can be adapted to
model other influenza strains or respiratory infections with a
similar transmission mechanism.
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