Stability of SARS-CoV-2 in different environmental conditions

Alex W.H. Chin, Julie T.S. Chu, Mahen R.A. Perera, Kenrie P.Y. Hui, Hui-Ling Yen, Michael C.W. Chan, Malik Peiris, Leo L.M. Poon*

School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.

* Corresponding authors:
 • Leo Poon, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. E-mail: llmpoon@hku.hk

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
To the Editor,

SARS-CoV-2 has been spreading globally\(^1\). We previously reported the detection of SARS-CoV-2 in stools and respiratory secretions\(^2\). The importance of indirect contacts for the spread of COVID-19 is not clear. Here, we report the stability of SARS-CoV-2 in different environmental conditions.

We determined the residual infectivity of SARS-CoV-2 at different temperature. The virus diluted by virus transport medium (VTM; final concentration: \(\sim 6.7 \text{log TCID}_{50}/\text{mL}\)) was incubated for up to 14 days (Table A). The virus was highly stable for an extended period at 4\(^\circ\)C. There was only a 0.6-log unit reduction of virus titre at the end of incubation. A 3-log unit reduction of TCID\(_{50}\) was observed after a 7-day incubation at 22\(^\circ\)C (Room temperature, RT) and no infectious virus could be detected on Day 14. A 3-log unit reduction of TCID\(_{50}\) could be detected after a 1-day incubation at 37\(^\circ\)C and no infectious virus could be detected thereafter. No infectious virus could be detected after a 30-minute incubation at 56\(^\circ\)C or a 5-minute incubation at 70\(^\circ\)C.

We further investigated the stability of this virus on different surfaces at RT. In brief, a 5-\(\mu\)L droplet of virus culture (\(\sim 7.8 \text{log unit of TCID}_{50}/\text{mL}\)) was pipetted on a small surface (Table B; \(\sim 1 \text{cm}^2\) per piece). The inoculated objects were retrieved at various time points and each object was then immediately soaked with 200 \(\mu\)L of VTM for 30 minutes at RT to elute the virus. For printing and tissue papers, no infectious virus could be recovered from these surfaces after a 3-hour incubation. No infectious virus from treated cloth and stainless steel could be recovered on Days 2 and 7, respectively. Strikingly, a significant level of infectious virus could still be detected on the outer layer of a surgical mask on Day 7 (\(\sim 0.1\%\) of the original inoculum), indicating SARS-CoV-2 is extremely stable on this surface. Representative negative eluents recovered from each surface were tested positive by RT-PCR\(^3\) (\(N=39\); data not shown).

We also tested the virucidal effects of disinfectants by adding 15 \(\mu\)L of SARS-CoV-2 culture (\(\sim 7.8 \text{log unit of TCID}_{50}/\text{mL}\)) to 135 \(\mu\)L of various disinfectants at working concentration (Table C). With the exception of a 5-min incubation with hand soap, no infectious virus could be detected after a 5-minute incubation at RT.
Overall, SARS-CoV-2 can be highly stable in a favourable environment, but it is also susceptible to standard disinfection methods.

We declare that we have no competing interests. This work was supported by NIADI, NIH (USA) (contract HHSN272201400006C).

References:

Table. Stability of SARS-CoV-2 at different environmental conditions.

A) Temperature*

<table>
<thead>
<tr>
<th>Time</th>
<th>4°C Mean ±SD</th>
<th>Room Temp (22°C) Mean ±SD</th>
<th>37°C Mean ±SD</th>
<th>56°C Mean ±SD</th>
<th>70°C Mean ±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 min</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>6.65 ±0.10</td>
<td>5.34 ±0.17</td>
</tr>
<tr>
<td>5 mins</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>4.62 ±0.44</td>
<td>U</td>
</tr>
<tr>
<td>10 mins</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>3.84 ±0.32</td>
<td>U</td>
</tr>
<tr>
<td>30 mins</td>
<td>6.51 ±0.27</td>
<td>6.52 ±0.28</td>
<td>6.57 ±0.17</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>1 hr</td>
<td>6.57 ±0.32</td>
<td>6.33 ±0.21</td>
<td>6.76 ±0.05</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>3 hrs</td>
<td>6.66 ±0.16</td>
<td>6.68 ±0.46</td>
<td>6.36 ±0.19</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>6 hrs</td>
<td>6.67 ±0.04</td>
<td>6.54 ±0.32</td>
<td>5.99 ±0.26</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>12 hrs</td>
<td>6.58 ±0.21</td>
<td>6.23 ±0.05</td>
<td>5.28 ±0.23</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>1 day</td>
<td>6.72 ±0.13</td>
<td>6.26 ±0.05</td>
<td>3.23 ±0.05</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>2 days</td>
<td>6.42 ±0.37</td>
<td>5.83 ±0.28</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>4 days</td>
<td>6.32 ±0.27</td>
<td>4.99 ±0.18</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>7 days</td>
<td>6.65 ±0.05</td>
<td>3.48 ±0.24</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>14 days</td>
<td>6.04 ±0.18</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

B) Surface*

<table>
<thead>
<tr>
<th>Time</th>
<th>Printing paper Mean ±SD</th>
<th>Tissue paper Mean ±SD</th>
<th>Cloth Mean ±SD</th>
<th>Stainless steel Mean ±SD</th>
<th>Surgical mask (Outer layer) Mean ±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 min</td>
<td>4.76 ±0.10</td>
<td>5.48 ±0.10</td>
<td>4.84 ±0.17</td>
<td>5.80 ±0.02</td>
<td>5.78 ±0.10</td>
</tr>
<tr>
<td>30 mins</td>
<td>2.18 ±0.05</td>
<td>2.19 ±0.17</td>
<td>2.84 ±0.24</td>
<td>5.23 ±0.05</td>
<td>5.75 ±0.08</td>
</tr>
<tr>
<td>3 hrs</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>2.21* ±0</td>
<td>5.09 ±0.04</td>
</tr>
<tr>
<td>6 hrs</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>2.25 ±0.08</td>
<td>5.24 ±0.08</td>
</tr>
<tr>
<td>1 day</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>2.07* ±0</td>
<td>4.85 ±0.20</td>
</tr>
<tr>
<td>2 days</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>4.44 ±0.20</td>
</tr>
<tr>
<td>4 days</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>3.26 ±0.10</td>
</tr>
<tr>
<td>7 days</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>2.79 ±0.46</td>
</tr>
</tbody>
</table>

C) Disinfectant*

<table>
<thead>
<tr>
<th>Disinfectant (Working concentration)</th>
<th>Virus titre (Log TCID<sub>50</sub>/mL) at different time point</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 mins</td>
</tr>
<tr>
<td>Household bleach (1:49)</td>
<td>U</td>
</tr>
<tr>
<td>Household bleach (1:99)</td>
<td>U</td>
</tr>
<tr>
<td>Hand soap solution (1:49)</td>
<td>3.6*</td>
</tr>
<tr>
<td>Ethanol (70%)</td>
<td>U</td>
</tr>
<tr>
<td>Povidone-iodine (7.5%)</td>
<td>U</td>
</tr>
<tr>
<td>Chloroxylol (0.05%)</td>
<td>U</td>
</tr>
<tr>
<td>Chlorhexidone (0.05%)</td>
<td>U</td>
</tr>
<tr>
<td>Benzalkonium chloride (0.1%)</td>
<td>U</td>
</tr>
</tbody>
</table>

* All the virus titres were titrated using Vero-E6 cell. All experimental studies were done in three independent triplicates. Detection limit of a typical TCID₅₀ assay is 100 TCID₅₀/mL, except reactions containing hand soap/chloroxylol (detection limit: 10³ TCID₅₀/mL) or reactions containing povidone-iodine/chlorhexidin/benzalkonium chloride; detection limit: 10⁴ TCID₅₀/mL) because of their cytotoxicity effects. N.D.: not done, U: undetectable.

* Only one of the triplicate reactions was positive in the TCID₅₀ assay.