The Effects of "Fangcang, Huoshenshan, and Leishenshan" Hospitals and Temperature on the Mortality of COVID-19

Yuwen Cai^{ab1}, Tianlun Huang^{a1}, Xin Liu^a, Gaosi Xu^{a*}

^aDepartment of Nephrology, the Second Affiliated Hospital of Nanchang University, China

^bGrade 2016, the Second Clinical Medical College of Nanchang University, Jiangxi, China

¹Yuwen Cai and Tianlun Huang contributed equally to this work

* Correspondence should to Professor Gaosi Xu (Ph.D. & M.D.); Department of Nephrology, the

Second Affiliated Hospital of Nanchang University, China; Zip Code: 330006; Address: No. 1, Minde

Road, Donghu District, Nanchang, P.R. China; E-mail: gaosixu@163.com; Tel: +86(0)791 86312770,

Fax: +86(0)791 86312770

Running title: makeshift hospital and temperature on mortality of COVID-19

Total words: 1602 words, not including abstract and references

Abstract

Background: In December 2019, a novel coronavirus disease (COVID-19) broke out in Wuhan, China,

however, the factors affecting the mortality remain unclear.

Methods: A cross-sectional study based on 32 days (from January 21, 2020 to February 21, 2020) of

data that were shared by China National Health Commission and China Weather Net. We compared the

difference in the growth rate of confirmed cases and the mortality of confirmed cases and severe cases

before and after "Fangcang, Huoshenshan, and Leishenshan" makeshift hospitals (MSHs) were put into

use. We also studied whether air temperature (AT) could affect the above outcomes of COVID-19

patients.

Results: Mann-Whitney U test was performed to compare the difference in mortality before and after

the use of makeshift hospitals. Eight day after the use of makeshift hospitals, the mortality of

confirmed cases was significantly decreased both in Wuhan (U = 1, P < .001) and Hubei (U = 0, P

< .001), while in non-Hubei regions, as a contrast, the mortality of confirmed cases remained

unchanged (U = 40, P = .139). However, the decrease in the mortality in non-Hubei regions also

became significant until sixteen days after the use of makeshift hospitals (U = 73, P = .039). Mortality

of confirmed cases was also found to be significantly correlated with temperature both in Wuhan (r

= .441, P = .012) and Hubei (r = .440, P = .012) by performing Spearman's analysis.

Conclusions: Our findings indicated that both the use of makeshift hospitals and the rise of

temperature were beneficial to the survival of COVID-19 patients. Subsequent studies are suggested to

further explore other factors that may affect the mortality of COVID-19, so that this epidemic can be

better contained.

Keywords: COVID-19, mortality, makeshift hospitals, air temperature

Introduction

In early December 2019, a novel coronavirus disease (COVID-19, previously known as 2019-nCoV) induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) broke out in Wuhan, China.^{1,2} This newly discovered coronavirus had been confirmed to have human-to-human transmissibility³ and has now spread across the country.⁴ However, the mortality caused by COVID-19 had been reported to be unbalanced in different regions.⁴ Briefly speaking, the mortality in Wuhan city was generally higher than that in other cities, and the mortality in Hubei Province was generally higher than that in other provinces. The specific reason needed to be investigated so that we can better contain the epidemic.

Wuhan as the source of the epidemic, was under great pressure of treatment despite the assistance received from all over the country. Many patients in Wuhan were unable to see a doctor, could not be hospitalized previously. The medical resources consumed by rescuing such patients would then further compress the treatment space of other patients. Such a vicious circle induced by inappropriate resource allocation might be one of the reasons for the high mortality in Wuhan. In addition, by reviewing the outbreak of severe acute respiratory syndrome (SARS) in Guangdong in 2003, we could find that the SARS epidemic gradually subsided with the warming of the weather, and was basically controlled until the warm April and May. Therefore, we assume that different temperatures in different regions might also contributed to the unbalanced mortality.

Up to February 5, 2020, the first three Fangcang, Huoshenshan, and Leishenshan makeshift hospitals (MSHs) had been put into use in Wuhan.⁵ The Fangcang hospitals, which belong to field mobile

medical systems, are composed of a number of movable cabins. They have multiple functions such as

emergency treatment, surgical disposal, clinical examination and so on. In case of any public health

emergency, the cabins can rush to the scene as soon as possible, and then in situ expand to a class II

hospital.⁶ In the present study, we aim to research whether these MSHs could reduce the mortality

induced by COVID-19. In addition, we also studied whether the air temperature (AT) could improve

the survival of COVID-19 patients.

Methods

Data collection and mortality calculation

From January 21 to February 21, the number of each day's total confirmed cases, severe cases and new

deaths in Wuhan city, Hubei Province and non-Hubei regions were collected by two authors

independently. All the above data were available on the official website of National Health

Commission of the people's Republic of China (http://www.nhc.gov.cn/). Growth rate of confirmed

cases was calculated by dividing the new confirmed cases by the total confirmed cases on the previous

day. Each day's mortality was calculated by dividing the number of new deaths by the average number

of confirmed cases on that day and the previous day, and mortality of severe patients was calculated by

the number of severe cases. Each day's AT were collected from China Weather Net

(http://www.weather.com.cn/), and Hubei's AT was represented by that of its capital city (Wuhan). Any

inconsistencies were resolved through discussion, or a third author would decide.

Statistical analysis

The data of each region was divided into group A (after the hospitals were built) and group B (before

the hospitals were built). Since the sample size was small (less than 50), the normality of data was determined using Shapiro–Wilk test, and P value > .05 was considered as normally distributed. If the outcomes of two groups were both normally distributed, Student's t test would be performed to compare the difference between groups, and if the outcomes of at least one group was skewed distribution, Mann-Whitney U test would be performed instead. We compared data of eight days, sixteen days after the use of MSHs, respectively, with the data of sixteen days before the use of MSHs. As for the correlation analysis, if the AT and the corresponding outcome were both normally distributed, Pearson correlation analysis would be performed to investigate their correlation, otherwise, Spearman's correlation analysis would be performed instead. SPSS 26.0 statistical software (IBM, New York, USA) was used for statistical data processing, and GraphPad Prism 8.3 (GraphPad Software Inc., New York, USA) was applied for plotting graphs. All tests were two-sided, and P value < .05 was considered as significant.

Results

Mortality difference before and after the use of MSHs

As shown in table 1, for each outcome, at least one group was skew distribution (P < .05), so Mann-Whitney U test was performed to compare the difference between groups. The results eight days after the use of MSHs are shown in figure 1. The growth rate of confirmed cases was significantly decreased both in Wuhan (U = 27, P = .023) and Hubei (U = 23, P = .012), but in non-Hubei regions, as a contrast, changes were also significant (U = 3, P < .001). The mortality of confirmed cases was significantly decreased both in Wuhan (U = 1, P < .001) and Hubei (U = 0, P < .001), while in non-Hubei regions, as a contrast, the mortality of confirmed cases remained unchanged (U = 40, P < .001).

= .139). Similarly, the mortality of severe cases was significantly decreased in Hubei (U = 0, P < .001), while in non-Hubei regions, the change was not significant (U = 33, P = .056).

Figure 2 shows the results of sixteen days after the use of MSHs. Results of the growth rate of confirmed cases was basically consistent with that of the first eight days. Changes in the mortality of confirmed cases were significant both in Wuhan (U = 1, P < .001) and Hubei (U = 0, P < .001), but not like the results of the first eight days, changes in non-Hubei regions became significant (U = 73, P = .038). Similarly, changes in the mortality of severe cases in Hubei were significant (U = 0, P < .001), while in non-Hubei regions, changes also became significant (U = 66, P = .019) this time.

Correlation between AT and outcomes

Except AT, all outcomes were skew distribution as shown in table 2. Therefore, Spearman's analysis was used to investigate their correlation among AT, and the results are shown in figure 3. For the growth rate of confirmed cases, it was not significantly related to AT no matter in Wuhan (P = .730) or in Hubei (P = .062). But for the mortality of confirmed cases, its correlation between AT was considered to be significant both in Wuhan (r = .441, P = .012) and Hubei (r = .440, P = .012). The mortality of severe patients was also found to be significantly related to AT (r = .421, P = .016).

Discussion

Our study found that after eight days of the use of MSHs, the mortality of COVID-19 patients in Wuhan and Hubei was significantly decreased, while as a contrast, the change in non-Hubei regions was not significant. This preliminarily verified that these MSHs were beneficial to the survival of COVID-19 patients. Later, after another eight days, the difference of mortality between the pre and

post use of MSHs was still significant in Wuhan and Hubei. However, not like the results of the first eight days, the difference in non-Hubei regions became significant. The accumulation of treatment experience of medical staff might be one of the reasons. In addition, according to the trade-off hypothesis, a pathogen must multiply within the host to ensure transmission, while simultaneously maintaining opportunities for transmission by avoiding host morbidity or death. That's to say, coronavirus with weak virulence was more likely to spread than that with strong virulence, which might explain why the mortality in non-Hubei regions also decreased over time. However, empirical evidence remains scarce and the truth needs to be investigated.

Our study also found that the rise of AT could significantly reduce the mortality of both common and severe patients. According to a previous study, the first occurred deaths were mainly elderly people who had comorbidities or surgery history before admission. Acute or chronic cold exposure, however, could elicit bad effects on the respiratory system. Pulmonary mechanics would be compromised by bronchoconstriction, airway congestion, secretions and decreased mucociliary clearance. It has also been reported that cold exposure was coincided with hormonal changes, which might directly or indirectly alter the immune system. The above factors would worsen the underlying medical conditions of elderly people, and this might explain why a warm weather could reduce the mortality of COVID-19 patients.

When it comes to the transmissibility of coronavirus, an *in vitro* study of transmissible gastroenteritis virus and mouse hepatitis virus found that at higher temperatures, these coronaviruses survived for a shorter time on the surfaces of stainless steel. A case-crossover analysis performed in Saudi Arabia also found that primary Middle East Respiratory Syndrome were more likely to occur when condition was relatively cold and dry. However, our results seemed to be inconsistent with these previous

studies, as no significant correlation between AT and the growth rate of confirmed cases in Wuhan was

found. One of the potential reasons was that the current AT was not high enough to exert a significant

impact on SARS-CoV-2. As the AT gets higher, subsequent studies are necessary to further validate our

results. But considering the new cases in tropical areas such as Singapore and Malaysia, 16 it seems that

temperature alone would not completely control this epidemic.

Conclusions

The use of MSHs was found to have significantly improved the survival of COVID-19 patients.

Although the rise of AT could not directly weaken the infectivity of COVID-19, it could significantly

improve the prognosis of patients potentially through ways like improving the respiratory tract.

Author contributions

Yuwen Cai and Tianlun Huang made substantial contributions to conception and design, acquisition of

data and analysis and interpretation of data. Xin Liu drafted the article; Gaosi Xu revised it critically

for important intellectual content. All authors approved the final manuscript and agreed to be

accountable for all aspects of the work.

Conflict of Interest Disclosures

We declare no competing interests.

Funding/Support

This study was supported by the National Natural Science Foundation of China (grant 81970583 to

Prof. Xu), and the Nature Science Foundation of Jiangxi Province (grant 20181BAB205016 to Prof. Xu).

Role of the Funder/Sponsor

The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

References

- 1. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. [published on February 03, 2020]. *Nature*. doi:10.1038/s41586-020-2008-3
- Gorbalenya AE, Baker SC, Baric RS, et al. Severe acute respiratory syndrome-related coronavirus – The species and its viruses, a statement of the Coronavirus Study Group. Preprint. Posted online February 11, 2020. bioRxiv 937862. doi:10.1101/2020.02.07.937862
- 3. Chan JF-W, Yuan S, Kok K-H, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. *The Lancet*. 2020;395(10223):514-523. doi:10.1016/s0140-6736(20)30154-9
- 4. Novel Coronavirus Pneumonia Emergency Response Epidemiology T. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. *Zhonghua Liu Xing Bing Xue Za Zhi.* 2020;41(2):145-151. doi:10.3760/cma.j.issn.0254-6450.2020.02.003
- China Central Television. Makeshift hospitals start to accept patients in China's Wuhan.
 Published February 06, 2020. Accessed February 22, 2020.
 http://english.cctv.com/2020/02/06/ARTIxIHp9AN2fAStmOl5jYeE200206.shtml
- 6. Bai S, Yu B-G, Zhang Y-Z, et al. Challenges of Treating Adenovirus Infection: Application of a Deployable Rapid-Assembly Shelter Hospital. *Disaster Med Public Health Prep.* 2018;12(1):109-114. doi:10.1017/dmp.2016.187
- 7. Mishra P, Pandey CM, Singh U, Gupta A, Sahu C, Keshri A. Descriptive statistics and normality tests for statistical data. *Ann Card Anaesth*. 2019;22(1):67-72. doi:10.4103/aca.ACA_157_18
- 8. Parab S, Bhalerao S. Choosing statistical test. *Int J Ayurveda Res.* 2010;1(3):187-191. doi:10.4103/0974-7788.72494
- 9. Schober P, Boer C, Schwarte LA. Correlation Coefficients: Appropriate Use and Interpretation.

 Anesth Analg. 2018;126(5):1763-1768. doi:10.1213/ANE.0000000000002864
- 10. Blanquart F, Grabowski MK, Herbeck J, et al. A transmission-virulence evolutionary trade-off

- explains attenuation of HIV-1 in Uganda. eLife. 2016;5:e20492. doi:10.7554/eLife.20492
- 11. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. *Lancet*. 2020;395(10223):507-513. doi:10.1016/S0140-6736(20)30211-7
- 12. Giesbrecht GG. The respiratory system in a cold environment. *Aviat Space Environ Med*. 1995;66(9):890-902. https://pubmed.ncbi.nlm.nih.gov/7487830
- van der Lans AAJJ, Boon MR, Haks MC, et al. Cold acclimation affects immune composition in skeletal muscle of healthy lean subjects. *Physiol Rep.* 2015;3(7):e12394. doi:10.14814/phy2.12394
- 14. Casanova LM, Jeon S, Rutala WA, Weber DJ, Sobsey MD. Effects of air temperature and relative humidity on coronavirus survival on surfaces. *Appl Environ Microbiol*. 2010;76(9):2712-2717. doi:10.1128/AEM.02291-09
- 15. Gardner EG, Kelton D, Poljak Z, Van Kerkhove M, von Dobschuetz S, Greer AL. A case-crossover analysis of the impact of weather on primary cases of Middle East respiratory syndrome. *BMC Infect Dis.* 2019;19(1):113-113. doi:10.1186/s12879-019-3729-5
- World Health Organization. Coronavirus disease 2019 (COVID-19), Situation Report 32. Published February 22, 2020. Accessed February 23, 2020. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200221-sitrep-32-covid-19.pdf?sfvrsn=4802d089_2

Figure legends

Figure 1: Comparisons between eight days after the use of MSHs and sixteen days before the use of

MSHs. (A): comparisons of the growth rate of confirmed cases in Wuhan, Hubei, and non-Hubei

regions. (B): comparisons of the mortality of confirmed cases in Wuhan, Hubei, and non-Hubei regions.

(C): comparisons of the mortality of severe patients in Wuhan, Hubei, and non-Hubei regions. Before:

before the use of MSHs. After: after the use of the use of MSHs.

Figure 2: Comparisons between sixteen days after the use of MSHs and sixteen days before the use of

MSHs. (A): comparisons of the growth rate of confirmed cases in Wuhan, Hubei, and non-Hubei

regions. (B): comparisons of the mortality of confirmed cases in Wuhan, Hubei, and non-Hubei regions.

(C): comparisons of the mortality of severe patients in Wuhan, Hubei, and non-Hubei regions. Before:

before the use of MSHs. After: after the use of the use of MSHs.

Figure 3: Correlation between temperature and outcomes. (A): correlation between air temperature and

the growth rate of confirmed cases in Wuhan. (B): correlation between air temperature and the growth

rate of confirmed cases in Hubei. (C): correlation between air temperature and the mortality of

confirmed cases in Wuhan. (D): correlation between air temperature and the mortality of confirmed

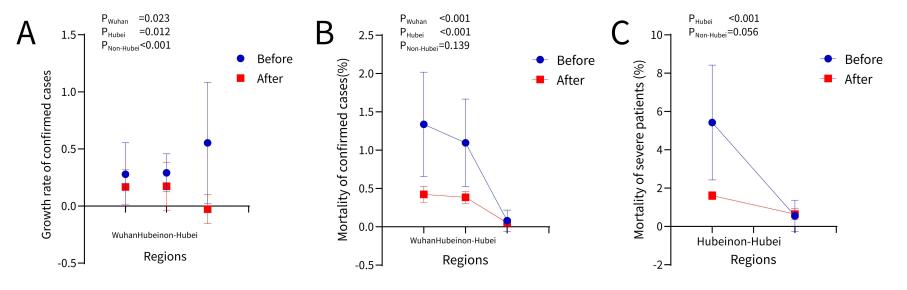
cases in Hubei. (E): correlation between air temperature and the mortality of severe cases in Hubei.

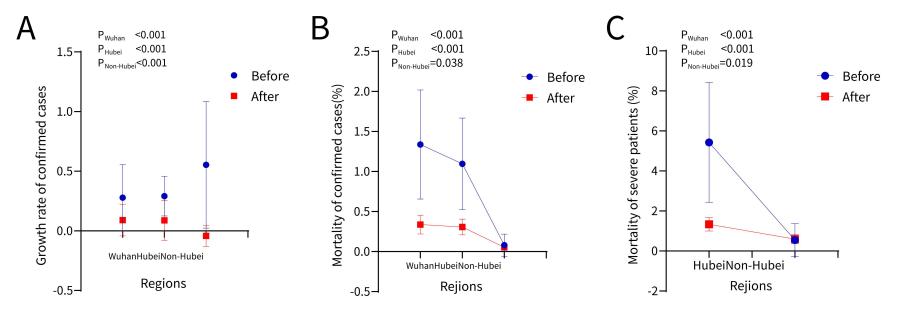
Before: before the use of MSHs. After: after the use of the use of MSHs.

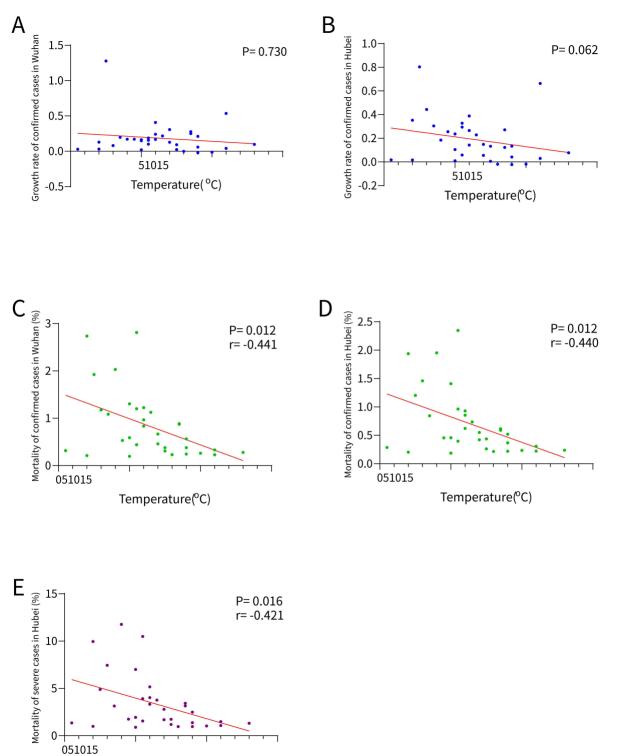
Table 1: Tests of normality and selection of statistical methods for comparison analyses

			Shapiro-	Wilk	
	Group	Statistic	df	P value ^a	Selected statistical methods
GRW	After	0.683	16	0.000	Mann-Whitney U test
	Before	0.525	16	0.000	
MCW	After	0.919	16	0.163	Mann-Whitney U test
	Before	0.838	16	0.009	
GRH	After	0.610	16	0.000	Mann-Whitney U test
	Before	0.808	16	0.004	
MCH	After	0.873	16	0.030	Mann-Whitney U test
	Before	0.867	16	0.024	
MSH	After	0.933	16	0.275	Mann-Whitney U test
	Before	0.827	16	0.006	
GRNH	After	0.894	16	0.063	Mann-Whitney U test
	Before	0.789	16	0.002	
MCNH	After	0.899	16	0.076	Mann-Whitney U test
	Before	0.648	16	0.000	
MSNH	After	0.837	16	0.009	Mann-Whitney U test
	Before	0.708	16	0.000	

^a P > .05 was considered as normally distributed.


Abbreviations: df, degree of Freedom; GRW, growth rate of confirmed cases in Wuhan; After, after the MSHs were built; Before: before the MSHs were built; MCW: mortality of confirmed cases in Wuhan; GRH: growth rate of confirmed cases in Hubei; MCH: mortality of confirmed cases in Hubei; MSH: mortality of severe cases in Hubei; GRNH: growth rate of confirmed cases in non-Hubei regions; MCNH: mortality of confirmed cases in non-Hubei regions; MSNH: mortality of severe cases in non-Hubei regions.


Table 2: Tests of normality and selection of statistical methods for correlation analyses


	Shapiro-Wilk			
	Statistic	df	P value ^a	Selected statistical methods
AT	0.990	32	0.987	
GRW	0.638	32	0.000	Spearman's correlation analysis
GRH	0.870	32	0.001	Spearman's correlation analysis
MCW	0.812	32	0.000	Spearman's correlation analysis
MCH	0.810	32	0.000	Spearman's correlation analysis
MSH	0.780	32	0.000	Spearman's correlation analysis

Abbreviations: df, degree of Freedom; AT, air temperature; GRW, growth rate of confirmed cases in Wuhan; GRH, growth rate of confirmed cases in Hubei; MCW, mortality of confirmed cases in Wuhan; MCH, mortality of confirmed cases in Hubei; MSH, mortality of severe cases in Wuhan.

^a P > .05 was considered as normally distributed.

Temperature(°C)