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Abstract 

Single cell genomics enables characterization of disease specific cell states, while improvements in mass 

spectrometry workflows bring the clinical use of body fluid proteomics within reach. The correspondence of 

cell state changes in diseased organs to peripheral protein signatures is currently unknown. Here, we 

leverage single cell RNA-seq and proteomic analysis of large pulmonary fibrosis patient cohorts to identify 

disease specific changes on the cellular level and their corresponding reflection in body fluid proteomes. We 

discovered and validated transcriptional changes in 45 cell types across three patient cohorts that translated 

into distinct changes in the bronchoalveolar lavage fluid and plasma proteome. These protein signatures 

correlated with diagnosis, lung function, smoking and injury status. Specifically, the altered expression of a 

novel marker of lung health, CRTAC1, in alveolar epithelium is robustly reflected in patient plasma. Our 

findings have direct implications for future non-invasive prediction and monitoring of pathological cell state 

changes in patient organs. 

------------------------------------------------------------------------------------------------------------------------------------ 
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Main 

The accumulation and persistence of scar tissue in fibrotic diseases such as pulmonary fibrosis, liver cirrhosis 

and cardiovascular disease is among the most severe clinical issues, causing an estimated 45% of all deaths 

in the developed world1. Interstitial lung diseases (ILD) are a heterogeneous group of diseases ultimately 

leading to pulmonary fibrosis, destruction of the lung parenchyma and respiratory failure. Several potential 

risk factors have been identified, including genetic predisposition2, smoking3, infections (e.g. viruses)4,  

aging5, and autoimmunity6,7.  Addressing the heterogeneity of ILD entities, disease progression and 

prognosis, and the currently unpredictable occurrence of acute exacerbations of disease, require new 

molecular approaches for personalized patient monitoring. 

The recent surge of innovation in single cell genomics enables an entirely novel cell type specific viewpoint 

on pathological changes in disease. Based on these new technologies, the Human Cell Atlas project aims at 

building a comprehensive reference map of all human cells as a basis for understanding fundamental human 

biological processes and diagnosing, monitoring, and treating disease8. This includes recent international 

efforts towards building a human Lung Cell Atlas in health and disease9. A first draft of the cellular 

composition of mouse and human lung has been established10–14, and several recent single cell profiling 

studies reported cellular and molecular changes associated with pulmonary fibrosis15–18. However, this 

nascent draft of a human Lung Cell Atlas currently lacks extension into the complexity of the proteome layer.  

As disease trajectories in ILD patients are often highly variable, protein signatures in patient body fluids 

promise improved personalized treatment and longitudinal monitoring of patients19,20. The transcriptomic 

and proteomic changes in endstage ILD patient lung tissue have been resolved using microarrays, RNA-

sequencing and mass spectrometry6,21,22. Furthermore, first gene and protein expression signatures in ILD 

bronchoalveolar lavage (BAL), which is obtained during bronchoscopy have been analyzed23,24. However, it is 
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unclear which cellular and molecular processes in the lung correspond to these biomarker signatures, 

representing a tissue or fluid average which does not resolve cellular composition and disease specific cell 

states.  

In this work, we explore the idea that protein signatures found in bronchoalveolar lavage and plasma, both 

of which are accessible for longitudinal monitoring of patients, can be used to predict pathological cell state 

changes in the lung. We (1) derived cell state changes in human lung fibrosis at cellular resolution and (2) 

integrated our data with two independent but complementary datasets to establish robust differential gene 

expression analysis for all major cell types of the human lung and assess reproducibility across patient 

cohorts. We also used (3) state of the art mass spectrometry workflows to quantify the bronchoalveolar 

lavage and plasma proteome compositions in patients from several independent large-scale ILD cohorts. A 

(4) multi-modal analysis strategy enabled integration of cell state descriptions on single cell level with 

transcriptomic tissue bulk measurements, the lavage and plasma proteomes, and associated clinical meta-

data. Our analysis dissects human lung fibrosis at the single cell level, defining robust differential gene 

expression profiles across multiple studies for ILD. Using machine learning, we show that fluid proteome 

signatures are predictive of specific cell state changes in the lung and discover protein biomarker signatures 

associated with diagnosis, lung function, and smoking and injury status.  

 

Results 

An integrated single cell atlas of human lung fibrosis 

To analyze transcriptional changes in lung fibrosis at cellular resolution, we obtained whole lung parenchyma 

single cell suspensions using non-fibrotic control tissues from 11 donors and endstage lung fibrosis tissues 

from three ILD patients. Dimension reduction was used to visualize a data manifold representing the gene 

expression space of 41,888 single cells (Fig. 1a, b; control, n=11; ILD, n=3)(Fig. S1a, b). We generated subsets 

of the whole lung parenchyma datasets for COL1A2+ stromal cells (Fig. 1c and Fig. S1c-e), EPCAM+ epithelial 

cells (Fig. 1d and Fig. S1f-h), CLDN5+ endothelial cells (Fig. 1e and Fig. S1i-k), and CD45+ leukocytes (Fig. 1f 

and Fig. S1l-n). From these subsets we derived cluster identities (Fig. S1; Table S1) that were manually 

annotated using previously established single cell signatures in the human lung10,11. We observed some 

clusters that were mainly present in fibrosis and therefore termed them as `activated´ cell type identities 

(Fig. 1b, Fig. S1). The final annotation revealed 45 cell type identities, characterized by unique marker gene 

expression profiles (Fig. 1g-j) that were to some extent preserved in endstage fibrosis.  

To increase statistical power and validate our results, we integrated our dataset with two large publicly 

available single cell RNA-seq datasets (Fig. 2a, b; Reyfman et al17 - Chicago cohort: ILD n=9, controls n=8; 

Habermann et al15 - Nashville cohort: ILD n=20, controls n=10). We generated a data manifold  (as described 

in methods) that represents gene expression profiles of 233.638 single cells from 63 human individuals (ILD 

n=32, controls n=31). Cell type identities were then annotated manually as described above (Fig. 2c; Table 

S2). Next, we performed differential gene expression analysis between endstage lung fibrosis and control 

donors integrating all three study cohorts stratified by cell types as described in methods (see Table S3 for a 

full list of differential gene expression for health status stratified by cell type). Gene expression changes in 

disease were more similar within the epithelial, mesenchymal and leukocyte lineages (Fig. 2d), and showed 

very good agreement between the three independent patient cohorts (Fig. 2e-h). 
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Figure 1. Single cell analysis of human lung parenchyma in health and disease reveals 45 distinct cell type identities 

and their marker genes. (a, b) Dimension reduced single cell transcriptomic data is visualized through Uniform 

Manifold Approximation and Projection (UMAP). The color code illustrates the disease status (a) and cell type identity 

(b). (c-f) The indicated marker genes were used to select clusters for subsetting into stromal cells (c), epithelial cells (d), 

endothelial cells (e), and leukocytes (f). (g-j) The heatmaps show the relative gene expression levels for the indicated 

marker genes for the indicated stromal (g), epithelial (h), endothelial (i), and leukocyte (j) cell types. 

To leverage the power of bulk RNA-seq data archived in public databases, we used our ILD single cell atlas to 

determine possible cell type frequency changes in such datasets. A recent study used quantitative microCT 

imaging and tissue histology on biopsies to stratify lung tissue of idiopathic pulmonary fibrosis (IPF) patients 

into different stages marked by increasing extent of fibrotic remodeling (lower alveolar surface density and 

higher collagen content)22. Thus, the RNA-seq profiles of these staged patient samples presumably depict 

disease progression within patients. We calculated enrichment of our cell state signatures across the three 

stages of IPF progression and surprisingly found significant changes of many cell types already in early stage 

IPF 1 (Fig. 2i). This included the myofibroblast signature that was clearly upregulated early in progression. 

Other cell signatures, such as the plasma cells, showed a gradual increase from IPF1 to IPF3, while for 

instance the increase in ciliated cell frequency was observed only from IPF stage 2 onwards (Fig. 2j). 
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Figure 2. Multi-cohort single cell data reveals transcriptional changes in >40 cell types and altered cell type 

frequencies in disease progression. (a-c) Dimension reduced single cell transcriptomic data is visualized through 

Uniform Manifold Approximation and Projection (UMAP). The color code illustrates the patient cohort (a) disease status 

(b) and cell type identity (c). (d) Differential gene expression between endstage lung disease patients and controls 

across cohorts was compared for the indicated cell identities. The color code illustrates similarities of gene expression 

changes calculated by Pearson correlation of the t-value coefficient, which represents differences in likelihood of 

detection for any gene between health and disease. (e) The heatmap illustrates the top 79 genes differentially 

expressed in the indicated cell identities. (f-h) The box plots illustrate differences in mRNA detection for the indicated 

genes between tissues from control donors and fibrosis patients in f) alveolar epithelial cells, (g) fibroblasts, and (h) 
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macrophages. (i) The heatmap shows changes of our cell type signatures in published bulk RNA-seq data (GEO 

GSE124685) across different histopathological stages that represent increasing extent of fibrosis from stage 1-3, as 

determined by quantitative micro-CT imaging and tissue histology
22

. (j) The heatmaps show z-scores for the individual 

marker genes of the indicated cell types across IPF stages and controls.  

In summary, we generated an integrated and consistent lung cell atlas across three independent patient 

cohorts. Differential gene expression in lung fibrosis was robustly replicated and validated across cohorts 

and thus will serve as a powerful resource to investigators studying ILD pathogenesis and progression, e.g. 

for the dissecting of bulk RNA-seq profiles as demonstrated. 

 

Human lung bronchoalveolar lavage fluid proteomes reflect changes in disease activity  

Transcriptional changes are not always correlated with protein abundance, in particular if proteins are 

secreted12. Some of the cell state changes described by our single cell analysis may be reflected in the 

proteomic composition of the luminal epithelial lining fluid (ELF) of the lung, which is accessible for sampling 

during bronchoscopic examination of patients. Here, we used state of the art mass spectrometry for in depth 

analysis of ELF proteins sampled from cell free bronchoalveloar lavage fluid (BALF) of a large ILD and non-ILD 

patient cohort (Fig. 3a). We have measured BALF proteomes from eight groups of patients that were 

diagnosed with different forms of ILD (Fig. 3b), including patients with idiopathic pulmonary fibrosis (IPF, 

n=16), hypersensitivity pneumonitis (HP/EAA, n=8), cryptogenic organizing pneumonia (COP, n=11), 

idiopathic non-specific interstitial pneumonia (NSIP, n=10), smoking associated respiratory bronchiolitis ILD 

(RB-ILD, n=3), Sarcoidosis (n=22), unclassifiable ILDs (other ILDs, n=25), and also included non-ILD controls 

(non-ILD, n=29) (see supplementary Table S4 for clinical features of the ILD cohort). Of note, the majority of 

lavage fluids from patients in this cohort was collected during evaluation of initial diagnosis of ILD, and thus 

rather represents early disease. From 124 patients (95 ILD and 29 non-ILD) that passed quality control 

criteria, we quantified a median number of 835 proteins per individual patient, resulting in a total of 1513 

unique proteins that were quantified in at least 20 patients (Fig. 3b and Table S5). This is a very good depth 

of analysis given that BALF is difficult to analyze by mass spectrometry because of the high dynamic range of 

protein copy numbers present. 

To better define the proteins that are true constituents of the ELF (rather than tissue leakage proteins), we 

made a quantitative comparison of BALF content and total tissue proteomes from 11 end-stage ILD tissue 

biopsies6. Proteins detected in both tissue and fluid proteomes were scored as either a `tissue leakage´ 

protein or true `epithelial lining fluid´ protein based on their enrichments in the respective compartments 

(Fig. S2a). Indeed, proteins specific for secretory epithelial cells such as Club and AT2 cells had a significantly 

higher ELF enrichment score as proteins specific to non-secretory AT1 cells. Similarly, we found that secreted 

proteins had a higher score than transmembrane proteins and cytoplasmic proteins (Fig. S2b). A Fisher´s 

exact test showed that 285 proteins with high coefficient of variation (CV) across patients (Fig. S2c) were 

significantly enriched for gene annotations such as `secreted´, `plasma lipoprotein´, `antimicrobial´, 

`nucleosome´, `intermediate filament´ and `extracellular matrix´ (Table S6), indicating that these categories 

are regulated across patient groups. Principal component analysis revealed clusters of patients with 

heterogeneous diagnosis that were either significantly enriched in complement, coagulation proteins and 

plasma lipid transport proteins, or showed higher levels of antimicrobial proteins and histones, pointing 

towards the involvement of an inflammatory response driven by neutrophil extracellular traps (NETs) in 

these patients (Fig. S2d, e). Correlation analysis of the protein expression profiles revealed that in fact many 
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proteins were co-expressed across patients, revealing co-regulated protein modules that were enriched for 

distinct signatures, including macrophage specific proteins such as the Scavenger receptor cysteine-rich type 

1 protein M130 (CD163) and the Complement C1q subcomponent subunit C (C1QC), wound healing factors, 

such as the ECM proteins Tenascin-C, Fibronectin, Collagen type 6 and Periostin, as well as lipid transport, 

complement and coagulation proteins such as Apolipoprotein B-100 and Complement component C7, or 

antimicrobial defense and neutrophil chemotaxis factors, including granulocyte specific proteins such as 

S100-A8, S100-A9, Cathelicidin antimicrobial peptide (CAMP) and Myeloperoxidase (MPO) (Fig. S2f). 

To identify associations of these protein signatures with clinical parameters we performed correlation 

analysis with 33 individual clinical measurements per patient, including various lung function parameters and 

plasma LDH (Table S7 and Fig. S3). We identified biomarker signatures by Pearson correlation of the clinical 

parameters with proteins that were quantified in BALF in at least 20 patients (Table S2), revealing highly 

significant correlations of distinct sets sets of proteins with several lung function parameters, including 

Diffusing Capacity For Carbon Monoxide (DLCO) (Fig. 3c), or plasma levels for lactate dehydrogenase (pLDH) 

(Fig. 3d). LDH in blood plasma is routinely measured in the clinic as a biomarker for ongoing tissue damage. 

Most proteins that we found increased in BALF of patients with high pLDH were also associated with lower 

lung function (Fig. S4a), and top outliers remained significant after accounting for patient age (Fig. S4b-e). 

For instance, the cartilage acidic protein 1 (CRTAC1) showed very robust negative correlation (Fig. 3e), while 

the ECM protein Fibulin-1 (FBLN1) was positively correlated to pLDH (Fig. 3f). In total, we identified 72 

proteins with significant correlation (<10% FDR) with at least one clinical parameter. Hierarchical clustering 

identified two main clusters of proteins based on correlations with lung function, demographics, laboratory 

values and cytospin results (Fig. 3g).  

Because LDH is released during tissue damage and transpires to the blood, its levels in blood plasma are 

clinically used as a marker of common injuries and diseases such as heart failure. We hypothesized that BALF 

proteins with correlation to pLDH in human patients represent a lung injury signature. A comparison of the 

human pLDH signature with BALF proteomes from mice after bleomycin injury revealed similar outlier 

proteins across species including the injury marker Tenascin-C (Fig. S4f). Using 1D annotation enrichment 

analysis (see methods), we confirmed that the pLDH correlation revealed protein changes in human patient 

BALF proteomes that were highly similar to the ones that can be observed upon a defined acute lung injury 

in the bleomycin mouse model (Fig. S4g). 

In summary, we analyzed BALF proteomes from 124 patients and correlated protein expression with an 

extensive set of clinical parameters, which represents, to the best of our knowledge, the most 

comprehensive characterization of human pulmonary epithelial lining fluid composition so far. We identified 

co-regulated protein modules that were associated with patients lung function and current injury status, 

suggesting that some of these protein signatures could be used to monitor acute or subclinical exacerbations 

of ILD patients. 
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Figure 3. Human lung bronchoalveolar lavage fluid proteome changes correlate with clinical parameters. (a) 

Proteomics workflow. (b) The boxplots show the number of proteins quantified (y-axis) across various diagnoses (x-

axis). The mean and 10-90 percentiles are shown. (c, d) The volcano plot shows Pearson correlation values (x-axis) and 

the –log10 p-value (y-axis) for BALF protein abundance and (c) DLCO and (d) plasma LDH (pLDH) values, respectively. (e, 

f) The scatter plots show (e) the negative correlation of CRTAC1 abundance in BALF (MS-intensity) with plasma LDH 

levels, and (f) the positive correlation of FBLN1 abundance in BALF (MS-intensity) with plasma LDH levels. (g)  The 

Pearson correlation values for 72 significantly regulated proteins (<10% FDR) with indicated clinical parameters were 

grouped by hierarchical clustering into protein negatively and positively correlated with lung function (red and blue font 

respectively for negative and positive associations). 

 

Correspondence of fluid proteins with transcriptional changes in specific cell types 

Next, we aimed to explain quantitative changes in BALF protein signatures with the cell state changes 

analyzed by single cell RNA-seq. We first deconvoluted the diagnosis specific protein biomarker signatures in 

the BALF proteomes and evaluated the relative contribution of cell types/states. Mean intensity z-scores of 

proteins across different diagnostic groups were tested for enrichment of cell type specific transcriptional 

signatures (Fig. 4a).  

Markers of several pro-fibrogenic cell types including fibroblast subsets, pericytes, plasma cells and 

mesothelial cells were strongly increased in protein measurements of COP, NSIP, HP/EAA, and IPF compared 

to non-ILD controls, confirming the power of BALF proteomics to correctly score fibrogenic remodeling in the 
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patients. Interestingly, RB-ILD and Sarcoidosis samples were similar to non-ILD controls for this signature, 

which is consistent with their distinct histopathology that does not involve strong interstitial fibrosis. While 

RB-ILD protein analysis featured very strong enrichment for proteins specific to airway basal, ciliated and 

goblet cells, the same airway protein signature was depleted in patients with COP, NSIP and HP/EAA but not 

IPF (Fig. 4a).   

 

Figure 4. Protein signatures in BALF predict lung function decline and the corresponding cellular changes. (a) The 

heatmap shows relative contribution of cell types to the diagnosis specific protein biomarker signatures in epithelial 

lining fluid (ELF). (b) The heatmap shows relative contribution of cell types to the association of protein biomarker 

signatures in ELF with the indicated clinical parameters. (c, d) Empirical cumulative density plots show the distribution 

of correlation coefficients for (c) Myofibroblast markers (red points) with DLCO and (d) Plasma cell markers (red points) 

with % alveolar macrophages in BAL and the background proteins (black line). (e) The Pearson correlation of protein 

features in ELF was used to train a random forest algorithm. Training data was used on transcriptional signatures in 

single cell RNA-seq data to correctly predict reduced lung function in endstage lung fibrosis compared to control 

donors. (f) Box plots show predicted lung function changes (DLCO%) in the three single cell cell RNA-seq cohorts.  (g) 
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Top protein features in the random forest training data are shown with their relative gene expression changes in the 

different indicated cell types, illustrating cell type specific changes in lung fibrosis for these BALF biomarkers.  

Similarly, we found strong associations of cell type/state signatures with the Pearson correlation of most 

clinical parameters with the protein measurements (Fig. 4b). For instance, the myofibroblast specific 

proteins quantified in patient BALF tended to be negatively correlated with lung function (DLCO) (Fig. 4c), 

and the number of alveolar macrophages in BAL cytospins tended to be negatively correlated with proteins 

(mostly antibodies) secreted by plasma cells into the ELF (Fig. 4c). Thus, deconvolution of protein 

measurements with cell type/state signatures revealed diagnosis and disease state specific biomarker 

fingerprints. 

To test if we could successfully transfer information from the proteomics modality into the scRNAseq data 

modality we applied machine learning. A random forest was trained on the protein quantification data to 

predict lung function (DLCO) using a set of protein features which 1) showed high correlation with lung 

function (DLCO) and 2) and had the corresponding transcript detected in the scRNAseq data. Next, the 

trained model was applied to in silico bulk scRNAseq data with mRNA expression mapped to proteins (Fig. 

4d), which then correctly predicted the direction of lung function changes in the three single cell RNA-seq 

cohorts (Fig. 4e). Indeed, the most important protein features of the random forest model appeared to be 

regulated in a cell type specific manner at the mRNA level (Fig. 4g).  

In summary, our cross-modality analysis serves as proof of concept that cell state and frequency changes in 

diseased organs can transpire into predictive body fluid protein signatures that can be analyzed by mass 

spectrometry with high precision. 

 

Smoking induces highly persistent cell state changes in the lung 

It is estimated that one hundred million deaths were caused by tobacco in the 20th century25. Smoking is a 

major risk factor for six of the eight leading causes of deaths in the world, including respiratory and 

cardiovascular diseases, stroke and several malignant diseases26. Likewise, smoking might also play a major 

role in the genesis of some ILD entities. Some forms of ILD are directly smoking-related, such as RB-ILD and 

desquamative interstitial pneumonia (DIP)27, and smoking is also discussed to increase the risk for 

developing IPF3. We identified a robust smoking signature in the BALF proteomes of our ILD cohort. Clinical 

characteristics of patients included in the smoking analysis are shown in Table S8. A t-test between active 

smokers (n = 19) and never smokers (n = 36) identified 422 significantly regulated proteins (FDR<10%) (Fig. 

5a), including AKR1B10 and the ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1), both of which 

have been shown to be elevated in epithelium of `healthy´ smokers28,29. The comparison of active smokers 

with ex-smokers (n = 49) identified 137 significantly regulated proteins (FDR<10%) (Fig. 5b). Of note, we also 

detected 36 significantly altered proteins (FDR<10%) in ex-smokers vs never smokers (Fig. 5c), indicating that 

some of the alterations induced by smoking are persisting after smoking cessation. Indeed, the fold changes 

between active/never and ex/never smokers were significantly correlated (Pearson r = 0.4785, -log10 p-

value = 14.6536) (Fig. 5d). While surprisingly many changes in smokers persisted after cessation even over 

decades, we found a number of oxidoreductases, including AKR1B10, as highly specific markers of active 

smoking (Fig. 5d-f). The previously reported downregulation of the chemokine CCL18 in alveolar 

macrophages30, persisted after smoking cessation, suggesting that alveolar macrophages permanently 

change their phenotype (Fig. 5g, h). Also the scavenger receptor CD163 was downregulated in both active 
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and ex-smokers compared to never smokers (Fig. 53i). The decline in CCL18 and CD163 was permanent and 

independent of time after cessation (Fig. 5h and 5j, respectively). In contrast to never smokers, the intensity 

distribution of CD163 was bimodal in smokers (Fig. 5k), indicating that only a subset of patients is affected in 

this manner by smoke exposure. 

 

Figure 5. Smoking induces transient and persistent cellular changes reflected in BALF proteomes. (a-c) The volcano 

plots show significantly regulated proteins in BALF between (a) active smokers (n=19) and never-smokers (n=36), (b) 

active smokers and ex-smokers (n=49), and (c) ex-smokers and never-smokers. (d) The scatter plot compares the fold 

changes between active smokers vs. never-smokers (x-axis) and ex-smokers vs. never-smokers (y-axis). (e) AKR1B10 is 

significantly higher and more often detected in BAL fluid of active smokers in comparison to ex- (p<0.0001) and never 

smokers (p<0.0001). (f) Analysis of AKR1B10 and years of smoking abstinence show a reversible expression pattern of 

AKR1B10 after smoking cessation. (g) CCL18 is detected significantly more often in never vs ex-smokers (p=0.0417) and 

with significantly higher intensity in never vs active smokers. (h) The reduced levels of CCL18 do not go back to baseline 

after smoking cessation. (i) While CD163 was detected in almost all patients irrespectively of the smoking status, ex- 

and active smokers showed significantly lower protein levels in comparison to never smokers. (j) CD163 levels are 

changed in smokers and do not recover after smoking cessation. (k) The histograms show the distribution of MS-

intensity values for CD163 in ELF across patients in never smokers (left panel) and smokers (ex- and active smokers – 
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right panel). (l) The heatmap shows relative contribution of cell types to the specific protein biomarker signatures in 

epithelial lining fluid (ELF) of active, former and never smokers. (m) Top protein features in the smoking correlation 

data are shown with their relative gene expression changes in the different indicated cell types. 

Next, we investigated the relative contribution of cell types/states to the association of protein biomarker 

signatures in ELF with patient smoking status (Fig. 5l). Proteins derived from airway epithelial cells were 

strongly enriched in ELF of smokers compared to non-smokers. Interestingly, the increase of basal and goblet 

cell derived proteins was reversible, while increased abundance of proteins derived from ciliated cells was 

persistent. Of note, most of the top proteins regulated with smoking status in ELF were also regulated on 

transcriptional level in the three single cell RNA-seq cohorts in at least one or many cell types (Fig. 5m; see 

Table S9 for a full list of differential gene expression for smoking status stratified by cell type). 

In summary, we found that proteome changes in active smokers were partially persistent for decades after 

smoking cessation, indicating long lasting epigenetic alterations in airway epithelial cells and alveolar 

macrophages. 

 

Biomarkers of lung health in plasma proteomes 

More than half of all clinical decisions are currently based on blood biomarker analysis31. To extend our 

analysis to the plasma proteome we made use of a recently established high throughput plasma proteomics 

workflow31–33 (Fig. 6a), and generated plasma proteomes from two independent cohorts of ILD patients 

(Munich, n=30 and Hannover, n=81; healthy age matched controls, n=30; see Table S10 for clinical 

characteristics and Table S11 for plasma protein quantifications). The Hannover cohort included more 

patients with better lung function on average, with samples taken mainly at time of initial diagnosis, while 

the Munich cohort contained patients closer to endstage disease. Thus, by construction, we did not expect a 

perfect match of these two cohorts. Upon correlation with forced vital capacity (FVC %) we identified a 

shared panel of proteins in both cohorts that were either positively or negatively associated with the lung 

function outcome (Fig. 6b).  

Most prominently we found the cartilage acidic protein 1 (CRTAC1) has higher levels in the plasma of 

patients with better lung function in both cohorts. CRTAC1 was also positively correlated with lung function 

in the BALF proteome analysis (Fig. 6c, Fig. 3), and was robustly detected by mass spectrometry in >80% of 

the plasma samples (Fig. 6d). Re-analysis of published bulk transcriptomes confirmed a highly significant 

downregulation of CRTAC1 mRNA in the lung of ILD patients compared to healthy controls and COPD 

patients (Fig. 6e). On whole body level the mRNA expression of CRTAC1 is highest in the lung (Fig. 6g), and 

our single cell atlas reveals specific expression in lung lymphathic endothelium, airway club cells, and most 

prominently in alveolar type-2 epithelial cells (Fig. 6g). Expression of CRTAC1 in alveolar epithelial cells was 

consistently downregulated in ILD samples compared to controls in all three patient cohorts analyzed by 

single cell RNA-seq (Fig. 6h).  

Finally, we investigated the relative contribution of cell types/states to the protein biomarker signatures in 

plasma that correlated with lung function (Fig. 6i). We divided the patients into two groups representing 

mild and severe disease based on lung function (FVC %) and compared these two groups with healthy 

controls. We observed a gradual increase of proteins potentially derived from lung fibroblast subsets, plasma 

cells and pDCs and a gradual reduction of proteins potentially derived from lung endothelial cells, alveolar 

macrophages, AT2 cells, and mDC2 (Fig. 6i). 
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We conclude that plasma proteomes harbor protein biomarker signatures that report lung health, with 

CRTAC1 as a particular robust example that can be monitored with mass spectrometry workflows. 

 

Figure 6. Multi-cohort plasma proteome analysis identifies the novel peripheral biomarker of lung health CRTAC1. (a) 

A high throughput experimental workflow for plasma proteomics
32

. (b) The indicated proteins were selected based on 

their common direction of correlation with patient lung function in two independent patient cohorts with distinct 

clinical characteristics. (c) The bar graph shows Pearson correlation coefficients of the indicated proteins with the lung 

function parameter forced vital capacity (FVC %) in the bronchoalveolar lavage fluid proteome cohort (BALF Munich), 

and two plasma proteome cohorts (plasma Munich, plasma Hannover). (d) All proteins quantified in plasma ranked by 

their abundance measured by mass spectrometry (MS-intensity). (e) Relative gene expression levels of CRTAC1 in 

GSE47460. Dots represent average expression in tissue of individual patients. The line represents the mean. CRTAC1 is 

significantly downregulated in ILD but not COPD patients (One-way ANOVA). (f) Relative expression level of CRTAC1 

across human organs. (g) UMAP embedded visualization of single cells colored by gene expression for CRTAC1, which is 

specifically expressed in alveolar type-2 (AT2), Club and lymphatic endothelial (Lymp_EC) cells. (h) The box plots 

illustrate differences in mRNA detection for CRTAC1 in alveolar epithelial cells from control donors and fibrosis patients 

in the three indicated patient cohorts. (i) The heatmap shows the predicted relative contribution of lung cell types to 
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the association of protein biomarker signatures in plasma with lung function (forced vital capacity - FVC). Patients were 

split in two groups, one with a mild decline in lung function [FVC 60-100%] and one with severe loss of lung function 

[FVC 20-60%] and compared to healthy age matched controls. 

Discussion 

The field of single cell genomics has rapidly evolved and with the increasing availability of cell atlases is now 

moving towards the mechanistic characterization of pathogenesis and disease progression. We can 

conceptualize inter-individual variance within patient cohorts with a model in which patients at different 

stages of a disease progression trajectory will have their cells and tissues in different characteristic states. 

Body fluids potentially contain a composite representation of these disease stage specific differences in the 

form of proteins and possibly cell free DNA. We must deconvolute these composite signatures in order to 

make predictions about cell and tissue level changes in the patient. In this work we show a first proof of 

concept for this idea. We envision that training machine learning algorithms with large datasets of matched 

single cell genomic and fluid proteomic or sequencing readouts will enable new automated tools for clinical 

decision making34 and drug monitoring35. 

In idiopathic pulmonary fibrosis (IPF), the most common form of lung fibrosis, the progressive replacement 

of lung parenchyma with scar tissue leads to respiratory failure with a median survival time of 2-4 years after 

diagnosis. Current models of disease pathogenesis propose that a combination of repetitive (micro)injuries 

to susceptible alveolar epithelial cells (AEC) with an aberrant repair response causes pathological 

interactions of AEC with fibroblasts and subsequent accumulation of scar tissue36. Human genetic data and 

preclinical models show that epithelial injury possibly caused by environmental exposures, can drive 

subsequent fibrosis, with a combination of genetic predisposition and aging thought to be related to the 

failed regenerative response in IPF. Using correlation of ELF protein abundance with levels of LDH in patient 

plasma we identified a human lung injury signature that we validated in a mouse model of acute lung injury. 

The protein injury signature contained known biomarkers of IPF, including MMP7 and CCL18, correlated with 

lung function decline and featured an increase of proteins derived from various cell types including fibroblast 

subsets, pericytes, plasma cells and mesothelial cells, as well as reduced levels of proteins derived from 

several other cell types including alveolar macrophages, airway and alveolar epithelial and endothelial cells. 

BALF and plasma levels of CRTAC1 were robustly correlated with lung function and pLDH inferred injury 

status and we show that the highest expression of CRTAC1 in the human body is found in AT2 cells. The 

function of CRTAC1 in the lung is unknown. Interestingly, the levels of CRTAC1 in isolated human AT2 cells 

increase upon differentiation with glucocorticoids37, which are known to be essential for alveolar maturation 

in lung development38. We propose that the downregulation of CRTAC1 in AT2 of ILD patients may hint at 

currently uncharacterized changes in glucocorticoid signaling in these cells.  

ILD patients experience highly diverse clinical courses, with progression often accelerated due to acute 

exacerbations (AE), associated with a high mortality39. Efforts have been made to find predictive biomarkers 

for AE and disease outcome20,40. For instance elevated serum levels of AT2 derived SP-A and SP-D are 

associated with an increased risk of mortality in IPF40–42. Nevertheless, such biomarkers are currently not 

clinically established and often it is unclear which cellular changes they represent. While early detection of 

AE is currently of major interest, there are also patients who present with clinical worsening without 

meeting the criteria for AE. A daily home spirometry study resulted in highly diverse lung function 

trajectories in IPF43, suggesting that lung function diversity could also reflect different stages after epithelial 

lung injury with phases of decreased lung function (potentially being a phase of subclinical 
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injury/exacerbation) followed by phases of slightly increased lung function (potentially being a phase of 

successful tissue repair). Therefore, we propose that the human lung injury signature discovered in this 

study can instruct the design of follow up studies that evaluate its use in monitoring acute or subclinical 

exacerbations of ILD patients.  

We identified a surprisingly large set of changes between ex-smokers and never smokers, some of which 

persisted even after decades of smoking cessation, indicating permanent epigenetic alterations. Indeed, 

signatures of smoking induced changes in genome-wide DNA methylation signatures have been shown to 

persist over many years44. Deconvolution of BALF proteomes with cell type signatures showed a strong 

increase in contributions from airway club and goblet cells as well as ciliated cells in active smokers, which 

was most prominent in smoking associated RB-ILD patients. Interestingly, the increase in club/goblet cell 

derived proteins, which likely stems from smoking induced goblet cell hyperplasia45, was fully reversible 

upon smoking cessation, while the number of proteins derived from ciliated cells remained upregulated in 

ex-smokers. This indicates a permanent shift in airway epithelial cell composition in ex-smokers. Top hits in 

the differential gene expression analysis between smokers and non-smokers in the three single cell cohorts 

also showed a bias towards airway epithelial cells, however not surprisingly also alveolar macrophages (AM) 

were severely affected. For instance, we observed a negative correlation of AM derived CCL18 with lung 

function and also an irreversible downregulation of the protein in BALF once the patient ever smoked. CCL18 

has been reported to be elevated in the serum and BALF in patients with interstitial lung disease46. A pooled 

post-hoc analysis of the CAPACITY and ASCEND studies identified CCL-18 as the most robust blood marker 

for disease progression in IPF20. Given our observation that CCL18 levels are permanently reduced in ex-

smokers it will thus be interesting to re-evaluate previous reports on CCL18 association with IPF progression 

with respect to smoking history. 

Our machine learning analysis demonstrates that correspondence of fluid proteomes and single cell 

transcriptomes can be used to correctly predict the direction of lung function changes across modalities, 

indicating that further development of this concept will contribute to future clinical decision making. Our 

work has several limitations that prohibit to fully complete this task. Since the cross-modal analysis was done 

on non-matched patient cohorts it is currently difficult to assess the specificity of fluid proteome signatures 

for tissue level cell state changes, and to go beyond associative signatures. Thus, carefully designed 

longitudinal multi-modal analysis of animal models and patient cohorts will be required to train machine 

learning algorithms, in particular causal inference models, for future applications in predictive personalized 

medicine.  
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Supplementary figures 
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Figure S1.  Clustering analysis and cell type annotation reveals 45 distinct cell type identities in human lung 

parenchyma. (a) UMAP embedding colored by Louvain clusters demonstrates separation of cells into major lineages. 

(b) UMAP embedding displays identified cell types, colored by individual patients. (c, f, i, l) The whole lung parenchymal 

dataset was split into subsets for (c) COL1A2+ mesenchymal cells, EPCAM+ epithelial cells (f), CLDN5+ endothelial cells 

(i) and CD45+ (gene name PTPRC) leukocytes (l). (d, g, j, m) New UMAP embeddings of the subsets demonstrate 

separation of cluster identities that allows for identification of cell states. (e, h, k, n) Cells colored in disease groups 

show origin of identified cell states. 
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Figure S2. Heterogeneity of the epithelial lining fluid proteome in a large interstitial lung disease patient cohort. (a) 

Comparison of BAL fluid proteome (n=128) and ILD lung tissue proteome (n=11) allows the separation of true 

constituents of the epithelial lining fluid from tissue leakage proteins and identifies 199 proteins with significant 

enrichment in the BAL-fluid proteome. The color code shows the relative enrichment of proteins in fluid versus tissue 

(ELF score). (b) The box plot shows distributions of ELF enrichment scores for the indicated gene categories. (c) 

Identification of 285 proteins with highest coefficient of variation and heterogeneity between patients enriched in 

human BAL-fluid. (d, e) Principal component analysis reveals groups of patients with similar enrichment for the 

indicated gene categories, irrespective of the indicated clinical diagnosis. (f) The correlogram shows the Pearson 

correlation of the 285 proteins with highest CV across individual patients. Enriched gene categories and examples of co-

regulated proteins are shown. 
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Figure S3. Correlation patterns between 33 clinical parameters in an ILD cohort. (a) Pairwise Pearson correlation 

values of 33 clinical parameters were grouped by hierarchical cluster analysis. (b) DLCO shows negative correlation with 

age in the study cohort (p<0.0001). (c) Positive correlation of CD4/CD8 ratio in BAL fluids with DLCO. 

 

Figure S4. BALF proteins correlating with plasma LDH represent a human lung injury signature.  (a)  The bar graph 

shows the Pearson correlation values of the indicated proteins for DLCO [%] (blue) and plasma LDH (red). (c) The scatter 

plot shows significant correlation of alpha 2 macroglobulin (A2M) abundance (MS-intensity) in BALF with patient age. 

(d, e) Original (d) and age-corrected (e) correlation of A2M in BAL fluids with age. (f) The scatter plot shows the Pearson 

correlation of individual proteins from the human BAL fluid proteome with plasma LDH (x-axis) and the fold changes (y-

axis) of the orthologous proteins in mouse lung after bleomycin injury
47

. (g) The annotation enrichment score shows a 
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common upregulation of gene categories like acute phase, ECM, complement and innate immunity in the BAL fluids of 

bleomycin mice and human ILD with high plasma LDH.  
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Methods 

Data availability 

Count tables of the Munich single cell cohort as well as all custom analysis code can be accessed at 

https://github.com/theislab/2020_Mayr. Proteome raw data and MaxQuant processing tables can be 

downloaded from the PRIDE repository under the accession number PXD017145 (BALF) and PXD017210 

(plasma). 

 
Human samples 

Human samples of the Munich cohorts (tissue, BAL fluid and plasma) were obtained from the BioArchive of 

the Comprehensive Pneumology Center Munich (CPC-M). All patients gave written informed consent and the 

study was approved by the local ethics committee of the Ludwig-Maximilians University of Munich, Germany 

(EK 333-10 and 382-10). Plasma samples of the Hannover cohort were obtained as part of a cooperation of 

the German Centers for Lung Research (DZL). Patients gave written informed consent to the DZL broad-

consent form and the study was approved by the local ethics committee of the Medizinische Hochschule 

Hannover (2923-2015). Lung tissues used as healthy controls for single cell analysis were tumor free, 

uninvolved lung tissue freshly obtained during tumor resections performed at the lung specialist clinic 

“Asklepios Fachkliniken Munich-Gauting”. ILD lung tissue for single cell analysis was freshly obtained after 

lung transplantation at the University Hospital Munich. BAL fluid samples of the BAL fluid cohort and 

matched plasma samples were collected at the lung specialist clinic and included mainly first ILD evaluations. 

Plasma samples from an independent ILD cohort were obtained from the university hospital of the Ludwigs 

Maximilian University Munich from patients seen in the ILD outpatient clinic during routine visits or in the 

inpatient unit during evaluation for lung transplantation.  

The diagnosis of IPF was made in accordance with the current guidelines48. All ILD diagnosis were made 

according to international guidelines and established criteria. Non-ILD patients of the BAL fluid cohort 

included patients who underwent BAL due to evaluation of asthma, COPD, lung cancer, hemoptysis or 

chronic cough. 

For transport from the surgeon to the laboratory, lung tissue samples for single cell analysis were stored in 

ice-cold DMEM-F12 media and packed in thermo stable boxes. Tissue was processed with a maximum delay 

of 2 h after surgery. On delivery to the lab, tissue samples were assessed visually for qualification for the 

study. 

Lung tissue processing 

Lung tissue was processed as previously described10. Briefly, around 1.5 g of tissue per sample was manually 

homogenized into smaller pieces (~0.5 mm² per piece). Before tissue digestion, lung homogenates were 

cleared by washing excessive blood through a 40 μm strainer with of ice-cold PBS. The tissue was transferred 

into enzyme mix consisting of dispase, collagenase, elastase, and DNase for mild enzymatic digestion for 1 h 

at 37 °C while shaking. Enzyme activity was inhibited by adding PBS supplemented with 10% FCS. Dissociated 

cells in suspension were passed through a 70 μm strainer and pelleted. The cell pellet was resuspended in 

red blood cell lysis buffer and incubated shortly at room temperature to lyse remaining red blood cells. After 

incubation, PBS supplemented with 10% FCS was added to the suspension and the cells were pelleted. The 

cells were taken up in PBS supplemented with 10% FCS, counted using a Neubauer chamber, and critically 
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assessed for single-cell separation and viability. Two-hundred and fifty thousand cells were aliquoted in PBS 

supplemented with 0.04% of bovine serum albumin and loaded for Drop-seq at a final concentration of 100 

cells μl−1. 

Single cell sequencing using Dropseq 

Drop-seq experiments were performed largely as described previously49 with few adaptations during the 

single-cell library preparation12,50. Briefly, using a microfluidic polydimethylsiloxane device (Nanoshift), single 

cells from the lung cell suspension were co-encapsulated in droplets with barcoded beads (ChemGenes). 

Droplet emulsions were collected for 15 min each before droplet breakage was performed using 

perfluorooctanol (Sigma-Aldrich). After breakage, beads were collected and the hybridized mRNA transcripts 

reverse transcribed (Maxima RT, Thermo Fisher). Unused primers were removed by the addition of 

exonuclease I (New England Biolabs). Beads were washed, counted, and aliquoted for pre-amplification with 

12 PCR cycles (primers, chemistry, and cycle conditions identical to those previously described). PCR 

products were pooled and purified twice by 0.6x clean-up beads (CleanNA). Before tagmentation, cDNA 

samples were loaded on a DNA High Sensitivity Chip on the 2100 Bioanalyzer (Agilent) to ensure transcript 

integrity, purity, and amount. For each sample, 1 ng of pre-amplified cDNA from an estimated 1,000 cells 

was tagmented by Nextera XT (Illumina) with a custom P5 primer (Integrated DNA Technologies). Single-cell 

libraries were sequenced in a 100 bp paired-end run on the Illumina HiSeq4000 using 0.2 nM denatured 

sample and 5% PhiX spike-in. For priming of read 1, 0.5 μM Read1CustSeqB (primer sequence: 

GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC) was used. 

Processing of single cell data from Munich 

For the single cell data of human patients form the Munich cohort, the Dropseq computational pipeline was 

used (version 2.0) as previously described51. Briefly, STAR (version 2.5.2a) was used for mapping52. Reads 

were aligned to the  hg19 reference genome (GSE63269). For barcode filtering, we excluded barcodes with 

less than 200 detected genes. For further filtering we kept the top barcodes based on UMI count per cell, 

guided by the number of estimated cells per sample. As we observed a certain degree of ambient RNA bias, 

we applied SoupX53 to lessen this effect. The pCut parameter was set to 0.3 within each sample before 

merging the count matrices together. The merged expression table was then pre-processed further. A high 

proportion (> 10%) of transcript counts derived from mitochondria-encoded genes may indicate low cell 

quality, and we removed these unqualified cells from downstream analysis. Cells with a high number of UMI 

counts may represent doublets, thus only cells with less than  4000 UMIs were used in downstream analysis. 

Genes were only considered if they were expressed in at least 3 cells in the data set52. 

 

Analysis of single cell data from Munich 

The downstream analysis of the Munich single cell data was performed using the Scanpy Package54, a python 

package for the exploration of single-cell RNA-seq data. Following the common procedure, the expression 

matrices were normalized using scran’s55 normalization based on size factors which are calculated and used 

to scale the counts in each cell. Next log transformation was used via scanpy’s pp.log1p(). Highly variable 

genes were selected as follows. First the function pp.highly_variable_genes() was executed for each sample 

separately, returning the top 4,000 variable genes per sample. Next, we only considered a gene as variable if 

it was labelled as such in at least 2 samples, resulting in a total of 15,096 genes which were further used for 

the principal component analysis. In an additional step to mitigate the effects of unwanted sources of cell-
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to-cell variation, we regressed out the number of UMI counts, percentage of mitochondrial DNA and the 

calculated cell cycle score using the function pp.regress_out(). 

For visualizing the whole Munich data set, the UMAP was generated using 50 components as input for 

scanpy’s tl.umap() with number of neighbors set to 10 and min_dist parameter to 0.4. To better align the 

data of the different patients and to account for possible batch effects we used the python package bbknn() 

(batch balanced k nearest neighbours)56 with the same number of components and neighbors. Louvain 

clustering was calculated with resolution 6. The whole lung parenchymal dataset was split into subsets for 

COL1A2+ mesenchymal cells, EPCAM+ epithelial cells, CLDN5+ endothelial cells and PTPRC+ leukocytes. New 

UMAP embeddings of these subsets were calculated until clear separation of cluster identities was achieved 

that allowed for identification of cell states by exploring the highest expressed markers per cluster explored 

via tl.rank_genes_groups() and manual assessment of known marker gene expression. 

 

 

Computational data integration of  single cell data 

To improve statistical power, to ensure generalization across cohorts and to achieve a more balanced ratio 

of diseased and healthy patients, our Munich single-cell RNA-seq data set was combined with the filtered 

count matrices from the Chicago cohort (Reyfman et al17) and the Nashville cohort (Habermann et al15). 

Before combining these, the count matrices from Chicago and Nashville were processed separately. The 

normalization using scran and the log transformation of the two external datasets was performed as 

described for the Munich cohort. The effect of cell cycle, the percentage of mitochondrial reads and the 

number of UMI counts was regressed out cohort-wise as well. 

For a first lighter batch correction we defined the list of variable genes in a way to decrease cohort specific 

effect as follows. For both the Nashville and the Chicago data we considered a gene as highly variable if it is 

labelled highly variable in at least 3 patients of the respective data set. Next, the preprocessed count 

matrices from the three data sets were merged and genes retained their highly variable status if they were 

highly variable in at least two of the three cohorts, resulting in 3,854 variable genes. 

The concatenated object was scaled with scanpy’s pp.scale() function and the principal components were 

calculated using the defined variable genes. As a second batch correction we calculated the neighborhood 

graph using the bbknn package, defining the individual patients as batch key, 5 number of neighbors within 

batch and 40 components. As described for the Munich cohort, the whole combined object was subsetted 

and new embeddings were calculated in order to identify cell states. 
 
 

Differential gene expression analysis 

To identify genes associated with ILD status in a cell-type specific manner we applied the following 

procedure. The R statistical software was used for the analysis (ref). Since the outcome of interest (ILD 

status) varies at the donor (n = 61) as opposed to the cell level (n = 233,638) we framed the analysis as a 

likelihood of detection problem across all donors. For each donor and cell-type combination we calculated 

the likelihood of detection for each gene as the average number of cells with more than one count. As the 

likelihood of detection represents a probability and is bounded between 0 and 1, values were square-root 

transformed. Next, we used multiple linear regression to model the probabilities of detection. The square-

root transformed detection probability was used as the dependent variable and the ILD status, age or 

smoking status, as the explanatory variable accounting for the total number of UMI counts, total number of 
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cells and study indicator as covariates. The resulting t and p-values for the coefficient describing the ILD 

status were used in downstream analysis.  

 

Cell type signature enrichment analysis 

To infer cell type frequency changes from bulk transcriptomics or proteomics data we applied signature 

enrichment analysis. We defined cell type signatures as sets of genes with significant cell type specific 

expression as defined in Table S2. Next, we statistically evaluated enrichment of each signature in a ranked 

list of fold changes or correlation coefficients using the Kolmogorov-Smirnov test. The signed p-value score 

represents the -log10 p-value of the Kolmogorov-Smirnov test signed by the effect size. Negative and 

positive values represent depletion and enrichment of the given signature in the ranked list, respectively. 

Random forest prediction 

To integrate scRNAseq with BALF data we used a random forest as implemented in the R randomForest 

package. First, BALF expression data was quantile normalized and scaled. Next, only features with an 

absolute correlation coefficient greater than 0.2 with lung function and present in the scRNAseq data were 

used to train a random forest to predict lung function. Then, in silico bulk scRNAseq was calculated by taking 

the mean expression count of each gene across all cells for all samples. Finally, the in silico bulk data was 

quantile normalized and scaled before feeding it into the trained model to predict lung function.    

Clinical parameters 

For all patients included in the final analysis clinical information were collected at the time of BAL fluid 

procedure or when plasma was taken, respectively. Clinical parameters included demographics (age, gender, 

smoking status, pack years, smoking abstinence, lung function [forced vital capacity (FVC) (% pred.), FVC (l), 

FVC (post broncholysis), expiratory reserve volume (ERV), forced expiratory volume in 1 second (FEV1) (l), 

FEV1/FVC (%), inspiratory capacity (IC) (l), total lung capacity (TLC) (l), TLC from baseline, residual volume 

(RV), RV (%TLC), diffusing capacity of the lung for carbon monoxide (DLCO) (VA) (mmol/min/kPa/l), DLCO 

(SB) (% pred.), DLCO (SB) (Hb corrected, % pred.), DLCO (SB) (mmol/min/kPa), mean expiratory flow (MEF) 

25, MEF50, intrathoracic gas volumen (ITGV)], laboratory values [cholinesterase, alkaline phosphatase, C-

reactive protein, alanine-aminotransferase (ALT), aspartate-aminotransferase (AST), gamma-

glutamyltransferase (GGT), LDH]. 

BAL procedure  

BALF was collected from 141 patients undergoing bronchoscopy from January 2013 until March 2016 at the 

Lungenfachklinik Gauting in Munich, Germany. Most of the patients underwent bronchoscopy due to ILD 

evaluation. BAL was performed with standard technique. In brief, 100 to 200 ml of sterile saline (0.9% NaCl) 

was instilled into the right middle lobe or the lingula in 20-ml injections which were each immediately 

aspirated. Cells of the BAL were analyzed by cytospin analysis. The remaining cell-free BAL fluid was 

immediately stored at -80°C and transferred to the BioArchive of the CPC-M. For mass spectrometry, only 

the cell-free BAL fluids were analyzed. Of the 141 patients only 124 passed quality control and were included 

in the analysis (95 ILD and 29 non-ILD). 
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Mass spectrometry 

The BAL fluid depleted from cells was subjected to mass spectrometry analysis. Proteins were precipitated 

from 300µl BAL fluid using 80% ice cold acetone, followed by reduction and alkylation of proteins and 

overnight digestion into peptides using Trypsin and LysC proteases (1:100) as previously described (Schiller 

et al, MSB 2015). Peptides were purified using stage-tips containing a Poly-styrene-divinylbenzene 

copolymer modified with sulfonic acid groups (SDB-RPS) material (3M, St. Paul, MN 55144-1000, USA) as 

previously described (Kulak et al, 2014). Approximately 2 μg of peptides were separated in four hour 

gradients on a 50-cm long (75-μm inner diameter) column packed in-house with ReproSil-Pur C18-AQ 1.9 μm 

resin (Dr. Maisch GmbH). Reverse-phase chromatography was performed with an EASY-nLC 1000 ultra-high 

pressure system (Thermo Fisher Scientific), which was coupled to a Q-Exactive Mass Spectrometer (Thermo 

Scientific). Peptides were loaded with buffer A (0.1% (v/v) formic acid) and eluted with a nonlinear 240-min 

gradient of 5–60% buffer B (0.1% (v/v) formic acid, 80% (v/v) acetonitrile) at a flow rate of 250 nl/min. After 

each gradient, the column was washed with 95% buffer B and re-equilibrated with buffer A. Column 

temperature was kept at 50 °C by an in-house designed oven with a Peltier element (Thakur et al, 2011) and 

operational parameters were monitored in real time by the SprayQC software (Scheltema & Mann, 2012). 

MS data were acquired with a shotgun proteomics method, where in each cycle a full scan, providing an 

overview of the full complement of isotope patterns visible at that particular time point, is follow by up-to 

ten data-dependent MS/MS scans on the most abundant not yet sequenced isotopes (top10 method) 

(Michalski et al, 2011a). Target value for the full scan MS spectra was 3 × 106 charges in the 300−1,650 m/z 

range with a maximum injection time of 20 ms and a resolution of 70,000 at m/z 400. The resulting mass 

spectra were processed using the MaxQuant software (Cox and Mann, 2008), which enabled label free 

protein quantification (Tyanova et al., 2016).  

Plasma samples were prepared with the Plasma Proteome Profiling Pipeline57 automated on an Agilent 

Bravo liquid handling platform. Briefly, plasma samples were diluted 1:10 in ddH2O and 10 µl were mixed 

with 10 µl PreOmics lysis buffer (P.O. 00001, PreOmics GmbH) for reduction of disulfide bridges, cysteine 

alkylation and protein denaturation at 95°C for 10 min. Trypsin and LysC were added at a ratio of 1:100 

micrograms of enzyme to micrograms of protein after a 5 min cooling step at room temperature. Digestion 

was performed at 37 °C for 1 h. An amount of 20 µg of peptides was loaded on two 14-gauge StageTip plugs, 

followed by consecutive purification steps according to the PreOmics iST protocol (www.preomics.com). The 

StageTips were centrifuged using an in-house 3D-printed StageTip centrifugal device at 1500 g. The collected 

material was completely dried using a SpeedVac centrifuge at 60 °C (Eppendorf, Concentrator plus). Peptides 

were suspended in buffer A* (2% acetonitrile (v/v), 0.1% formic acid (v/v)) and shaking for 10 min at room 

temperature. Plasma peptides were measured using LC-MS instrumentation consisting of an Evosep One 

(Evosep), which was online coupled to a Q Exactive HF Orbitrap (Thermo Fisher Scientific). Peptides were 

separated on 15 cm capillary columns (ID: 150 µm; in-house packed into the pulled tip with ReproSil-Pur 

C18-AQ 1.9 µm resin (Dr. Maisch GmbH)). For each LC-MS/MS analysis about 0.5 µg peptides were loaded 

and separated using the Evosep 60 samples method. Column temperature was kept at 60 °C by an in-house-

developed oven containing a Peltier element, and parameters were monitored in real time by the SprayQC 

software. MS data was acquired with data independent acquisition using a full scan at a resolution of 

120,000 at m/z 200, followed by 22 MS/MS scans at a resolution of 30,000. MS raw files were analyzed by 

Spectronaut software (version 12.0.20491.10.2123957,58) from Biognosys with default settings applied and 

were searched against the human Uniprot FASTA database.  
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Mass spectrometry bioinformatic and statistical analyses 

Mass spectrometry raw files were processed using the MaxQuant software59 (version 1.5.3.34). As previously 

described47, peak lists were searched against the human Uniprot FASTA database (November 2016), and a 

common contaminants database (247 entries) by the Andromeda search engine60. Pearson correlation 

analysis, t-test statistics, ANOVA tests, or Fisher’s exact test were performed using the GraphPad Prism 5 

software. Protein expression was corrected for age in the following manner. Age was regressed out from the 

protein expression data using the R function aov(). The residuals from this model were used in subsequent 

analysis. All other statistical and bioinformatics operations (such as normalization, data integration, 

annotation enrichment analysis, correlation analysis, hierarchical clustering, principal component analysis, 

and multiple-hypothesis testing corrections), were run with the Perseus software package (version 1.5.3.0 

and 1.6.1.1.) (Tyanova et al, 2016). 
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