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ABSTRACT

While radiation therapy serves as the backbone for nearly 40% of all cancer cures, and is received by
nearly 70% of all cancer patients at some point in their cancer journey, it has yet to enter the modern
era of personalized medicine. While field shape and size is personalized anatomically for all patients,
the dose of radiation is still prescribed in a one-size-fits-all manner. Given the reality of inter-tumoral
heterogeneity demonstrated by cancer sequencing efforts, we propose that we are working under an
outdated null hypothesis in our field: that all patients should respond the same to the same dose of radiation.
We have previously developed a method by which to predict optimal dosing for a given patient, which
we term the Genomically Adjusted Radiation Dose, given the a priori knowledge of a patient’s tumor
genomics. Knowing how much dose a patient’s tumor requires for biological optimization provides the first
opportunity to characterize the inefficienies of one-size-fits-all dosing schemes, that result in both over- and
under-dosing for the majority of patients. To elucidate this inefficiency, and therefore the opportunity to
improvement using a personalized dosing scheme, we develop a competing hazards-style mathematical
model combining the canonical equations for tumor control and normal tissue complication probabilities.
Using data from two prospectively collected cohorts of patients with non-small-cell lung cancer, we show
how the results of a recent uniform dose escalation study can be explained by the biological innefficiency of
empiric uniform dose escalation, and highlight the opportunities for improvement in radiation outcomes
available today, without need for new technology or equipment.
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Introduction

The empiric basis of radiation therapy (RT), the most commonly utilized therapeutic agent in clinical oncology,
has gone unmodified for over 70 years. RT is prescribed based on a uniform, one-size fits all approach,
delivering small daily doses of RT over several weeks (i.e. fractionation). This fractionation approach is
based on studies performed in rams and rabbits by Regaud, Schinz and Slotopolsky over 100 years ago1–5 –
and the standard total doses for control of sub-clinical, microscopic and macroscopic disease (50, 60 and
70 Gy) were established in the 1960s based on tumor control probability models for head and neck cancer
patients6, 7. Although there has been a recent interest in hypofractionation, all of these schedules have also
been empirically derived.

Although RT remains a critical curative agent for cancer, it has yet to adapt a biological basis in the clinic.
We previously proposed that the gene expression-based radiosensitivity index (RSI), a surrogate for intrinsic
cellular radiosensitivity, and the genomic-adjusted radiation dose (GARD), an individualized quantitative
metric of the biologic effect of RT, could serve as the first approach to biology-based RT. Both RSI and
GARD have been validated in multiple clinical cohorts and disease sites as a predictor of clinical outcome
in patients treated with RT8–12, 12–16. Importantly, the Lancet Oncology commission identified GARD as a
research priority in the field of radiation oncology17. In addition, two recent independent studies from Lund
University and Milan provide corroborative evidence that RSI is predictive of RT benefit in breast and head
and neck cancer; a predictive biomarker18.

We hypothesize that given the known heterogeneity of cancer, there is an optimal RT dose for each patient that
maximizes tumor control and limits toxicity; an ideal personalized therapeutic ratio. Further, we hypothesize
that this optimal dose is at least partly defined by tumor biology. In this manuscript, we utilize RSI/GARD to
calculate the optimal RT dose for each patient in a cohort of 1,747 NSCLC patients. We identify three distinct
radiobiological cohorts in NSCLC: (i) Sensitive patients who are biologically optimized at current standard
of care RT dose, (ii) Intermediate patients who may benefit from moderate genomically-directed RT dose
escalation and (iii) Resistant patients who require RT dose beyond standard of care. To further understand the
consequences for outcome in each of these groups, we develop a novel mathematical model for outcome.
This model combines our genomic approach to calculate optimal dose and canonical models of tumor control
and normal tissue complications to calculate a patient specific predicted outcome which includes morbidity
and mortality from specified causes. To make this combined model simpler to use clinically, we further
present decision-support software that provides the first approach to biologically optimize clinical outcome
and toxicity for each individual patient. Our data reveals a tapestry of radiosensitivity heterogeneity, provides
a biological framework that explains the failure of empiric RT dose escalation, and quantifies the opportunity
to improve clinical outcomes in lung cancer by incorporating genomics into RT.

1 Materials and Methods

1.1 Patients

We utilized patients from Total Cancer Care (TCC), a prospective IRB-approved data and tissue collection
protocol active at Moffitt and 18 other institutions since 200619. Tumors from patients enrolled in TCC
protocol were arrayed on Affymetrix Hu-RSTA-2a520709 (Affymetrix, Santa Clara, CA), which contains
approximately 60,000 probesets representing 25,000 genes. Chips were normalized using iterative rank-
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order normalization (IRON)20. Batch-effects were reduced using partial-least squares (PLS). The normalized,
de-batched expression values for 1,747 NSCNC (NSCLC) samples and the ten RSI-genes were extracted
from the TCC database. To quantify the impact of the optimal dose on tumor control and toxicity, we utilized
a subset of 60 patients with Stage 3 NSCLC treated at Moffitt with post-operative RT, which has also been
previously described. The clinical endpoint was local control. The median follow up (based on the reverse
Kaplan-Meier method) in censored patients free from local failure was 59.5 months (95 % CI:38.0-68.5
months)21.

1.2 Radiosensitivity Index (RSI)

RSI scores were previously generated14. RSI was previously trained in 48 cancer cell lines to predict cellular
radiosensitivity as determined by survival fraction at 2 Gy (SF2)13. Each of ten genes in the algorithm is
ranked based on gene expression (highest expressed gene is ranked at 10 and lowest at 1) and RSI is calculated
using the pre-determined equation:

RSI =�0.0098009⇥AR+0.0128283⇥ cJun+0.0254552⇥STAT1�0.0017589⇥PKC�
0.0038171⇥RelA+0.1070213⇥ cABL�0.0002509⇥SUMO1�

0.0092431⇥PAK2�0.0204469⇥HDAC1�0.0441683⇥ IRF1,

which has been presented previously13.

1.3 Genomic Adjusted Radiation Dose (GARD)

GARD has been previously described14. Briefly, it is derived using the LQ model (S = e�nd(a+bd)), and
the individual RSI and the radiation dose/fractionation schedule for each patient. First, a patient-specific
(genomic) ag is derived by substituting RSI for Survival (S) in LQ equation, yielding:

ag =� lnRSI
nd

�bd, (1)

where dose (d) is 2Gy, n is the number of fractions (here n = 1), and b is a constant 0.05/Gy2. GARD is
then calculated using the classic equation for biologic effect, GARD = nd(a +bd), the patient-specific ag
calculated as per equation 1, and the number of fractions (n) and dose per fraction (d) and received by each
patient. It is worth noting that in the case when a patient receives 2Gy fractions, the bd terms drop out, and
GARD reduces to � ln(RSI). A GARD cut-point of 33 was previously identified and published for the lung
clinical cohort14, and will be utilized going forward in this manuscript. It is worth noting, however, that this
cutpoint will differ for each cohort.

1.4 Biologically-Optimized Personalized RT dose (RxRSI)

We define RxRSI as the physical dose required to achieve a previously identified GARD threshold (in this
paper, GARD � 33) in a cohort of lung cancer patients treated with post-operative RT14. RxRSI is calculated
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using the following formula:

RxRSI = GARD/(ag +bd). (2)

Where ag is calculated based on the patient’s RSI as described above and b is a constant (0.05/Gy2). When
comparing RxRSI to the empiric dose received by patients in the lung cancer clinical cohort, we defined
that the RxRSI and empiric dose matched if they were within 10% of each other. As GARD was developed
based on standard fractionation, we further assume that RxRSI is delivered in a similar manner (i.e. dose
per fraction is ⇠ 2Gy). Methods for calculating optimal doses for altered fractionation schedules can be
calculated using the same method, but b needs to be estimated in a different manner.

1.5 Genomic Radiation Treatment Planning

To quantify the impact of the biological optimal RT dose on outcome and toxicity we integrated the algorithms
and equations that define RSI, GARD and RxRSI into radiation treatment planning software. We generated
30 RT plans to match the anatomical and biological diversity in the 60 patient cohort. Plans were created for
the following biological conditions (RxRSI=48 Gy, RxRSI=54 Gy, RxRSI=62 Gy, RxRSI=74 Gy, RxRSI=88
Gy and RxRSI=95 Gy)(Supplementary Figure 1). Dosimetric parameters for normal tissue including mean
heart dose, mean esophagus dose, and mean right and left lung dose, were calculated for all genomic plans.
We utilized the resulting data to generate a linear model to estimate the impact of dose personalization on
normal tissue (see Supplemental Figure 2).

1.6 Linear Model for Normal Tissue Estimates

The mean dose to each normal tissue target (heart, left lung, right lung and esophagus) were calculated across
the 30 genomic plans developed. Mean normal tissue dose was plotted against PTV prescription dose to
obtain a Pearson’s correlation coefficient for mean heart, left lung, right lung, and esophageal dose (R2: 0.98,
0.99, 0.97, 0.99, respectively). These linear relationships were then used to calculate an approximate mean
dose to normal tissue on a Gy�1 basis.

1.7 Normal Tissue Toxicity

To create a combined model of tumor control and NTCP, we required a model of excess toxicity probability
for each orgran at risk (OAR) per Gy delivered. Calculations for relative risk for a given dose received or
dose adjustment was accomplished using different methods for each tissue site, depending on the available
data and recommendations in the literature. When possible, data on rate of complication per dose received
was used, or a quantitative NTCP model which has the benefit of flexibility in choosing dosing parameters.
For generalizability, specific dose-toxicity endpoints were not referenced. This method can be extended to
any OARs, but for this manuscript we focus on the three main drivers of complications in NSCLC radiation
therapy that have quantifiable models: pneumonitis, esophagitis and radiation induced heart disease.

In the QUANTEC review of lung complications, the primary endpoint is radiation pneumonitis22. The
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reviewers conducted a meta-analysis of applicable studies and performed logistic regression on rates of
radiation pneumonitis versus mean lung dose (MLD),

p =
expb0 +b1 ⇥MLD

1+ expb0 +b1 ⇥MLD
. (3)

Parameters for b0 and b1 were calculated for a model in the above form. The QUANTEC reported recommen-
dations for toxicity endpoints for the esophagus were inconclusive due to the volume-dependent effect of the
available data23. Two of the studies, both published in 2005, provided quantitative models in the form of the
Lyman-Kutcher-Burman equation, with parameters m and T D50 that were within bounds of the confidence
intervals24, 25,

NTCP =
1p
2p

Z t

•
e�x2/2dx, where t =

EUD�T D50

m ·T D50
. (4)

Cardiac complications due to radiation were modeled as a fixed rate of 7.4% increased risk per 1 Gy dose
received by the heart. The endpoint included coronary events as defined by myocardial infarction, coronary
revascularization, or death from ischemic heart disease26.

1.8 Statistical Methods

A survival regression model was used to quantify the impact of individual GARD on local control. By
applying the cut-point of 33 to define two strata, a time-dependent parametric model was developed that could
then be adjusted by normal-tissue effects. This initial calculation of parameters for a Weibull distribution was
done using the Surv-Reg package in R, of the form H(t) = l tr , as the hazard function, and S = el tr as the
survival function. The adjusted outcome models were developed in python in the defined form such that

H(t) =
Z t

0
h(u)du and S(t) = [S0(t)] exp(H(t)), (5)

and implemented in the Dash open source library for data visualization.

2 Results

2.1 The biological optimized dose (RxRSI) identifies three distinct radiobiological clinical
cohorts in NSCLC

As we have demonstrated before14, there is wide heterogeneity in the radiation sensitivity in NSCLC. In
Figure 1A, we plot the distribution of of RSI in a large (1,747 patients) cohort of NSCLC patients from
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the TCC cohort (range: 0.079-0.752). Of note, there is a bimodal distribution of RSI dose across this
population, suggesting that a uniform, one-size fits all approach to RT dose is sub-optimal for the majority of
patients. Taking into consideration a separate cohort of post-operative NSCLC patients with known clinical
history, including post-operative radiation dose, we calculate RxRSI (the physical dose predicted to optimize
biological outcome). The distribution of this calculation across this cohort (Figure 1B), reveals three distinct
radiobiological cohorts in this subset of patients: 1. Radiosensitive patients which achieve RxRSI at current
standard of care RT dose (50 Gy or less in this post-operative setting), 2. Intermediate sensitivity which
achieve RxRSI within the standard of care accepted range(50-70Gy) and 3. a radioresistant group which
require doses above standard of care (>70 Gy for post-operative RT) to achieve RxRSI.

Figure 1. We identify three distinct groups of patients from genomics and standard RT dosing
schedules. (A) Distribution of RSI in a cohort of 1,747 patients with NSCLC in the TCC cohort. (B)
Calculating RxRSI (the physical dose required to achieve an optimized biological outcome) for each patient
in a clinical cohort of 60 patients with known clinical outcome, dose received and RSI reveals three groups:
patients who require less than SOC dose (50Gy), patients who require a dose within the SOC range
(50-70Gy) and patients who require more than the SOC dose (> 70Gy). (C) Translating to primary radiation
doses and a larger (TCC) cohort, we see that there is a subset of patients who are optimized by 60Gy (blue), a
small subset of patients would benefit from moderate (up to 74Gy - grey) and a large cohort (red) who would
need greater than 74Gy.

Translating this calculation to the larger (TCC) cohort, and into primary radiation dosing, we see a similar
split into three groups, but now notice another interesting finding: in the area of recent dose-escalation
(60-74Gy) there is a very low number of patients, suggesting that very little is to be gained in this region.
Figure 1C shows three regions, (blue) where any patient would be optimized by 60Gy, (grey) where moderate
dose escalation to 74Gy is required and (red) a large region where doses above 74Gy would be required
(of note, this region contains approximately 42% of the population, which happens to be approximately the
percentage who experience local failure with chemoradiation).
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2.2 Empiric RT dose is biologically imprecise and results in an inefficient distribution of
RT-related toxicity and clinical benefit

Historical models of radiation response have always considered either tumor control or normal tissue
complications. This was all that was possible, because no estimate of required dose was available. With the
advent of our predicted optimal dose, we now have the ability to quantify excess dose received by individual
patients when receiving empiric dosing. To quantify the untoward effects of empiric RT dose then, we
generated 30 radiation treatment plans representing the distribution observed for RxRSI in the lung cancer
patients treated with post-operative RT. We calculated the excess normal tissue dose delivered (when the
patient was given more than RxRSI) or the additional normal tissue dose required (when patients receive a
dose lower than the RxRSI). For 25% of the patients in our cohort, the empiric dose and RxRSI matched while
for 75% it did not match (supplementary table 1-4). We then calculated the impact on normal tissue dose and
toxicity of actually delivering RxRSI for each patient using RT doses within standard of care guidelines (RT
dose 50-70 Gy). In sensitive post-operative patients, adjustment to the RxRSI (set to a minimum dose of 50
Gy) would have resulted in an overall mean dose decrease to the esophagus, right and left lung and heart
(supplementary table 4). In intermediate post-operative patients, adjustment to the RxRSI would also have
resulted in a mean increase in dose to normal tissue (supplementary table 2). The mean increase in normal
tissue dose for intermediate patients (RxRSI>Dose received) is very similar to mean decreases experienced
by sensitive patients (RxRSI<Dose received). Thus, since resistant patients are not adjusted because RxRSI is
above standard of care (supplementary table 3), the overall risk profile for normal tissue complications for the
whole population is not expected to be affected by the dose adjustments proposed by RxRSI. The predicted
impact of personalized dose adjustments on normal tissue toxicity is shown in supplementary table 5. In
summary our data demonstrates that it is possible to deliver RxRSI to 75% of the patients without changing
the overall toxicity profile for the whole population.

2.3 Development of combined mathematical model to correct tumor control by toxicity from
excess dose

To estimate the clinical potential for personalized prescription RT dose beyond simply tumor control, we
developed a mathematical model to utilize genomic markers of radiosensitivity to optimize radiation outcomes
considering both tumor control and individual toxicity. While great efforts have been made to understand
the untoward effects of radiation over the decades27, knowledge of excess dose for an individual patient
has not been possible, and this information has not been able to be incorporated into personalized predictions.
Our genomic framework, in particular the estimate of required dose, RxRSI, provides a first estimate of
this. To understand the combined contributions of tumor and excess normal tissue effects on outcomes,
we have created a competing hazards style risk model. We term the outcome the “penalized local control”
(pLC), which includes local recurrence (classic TCP) and events related to RT-related toxicity (styled after
NTCP), but does not account for death due to disease progression or other causes. The penalized local control
curve for a population is calculated as S(t) =C1S1(t)+C2S2(t) where Ci (i 2 1,2) represents the fraction of
patients that receive a tumor dose that is either adequate (i = 1, RT dose � RxRSI), or inadequate (i = 2,
RT dose < RxRSI), and S(t) is the survival function derived from the individual cohort’s KM analysis (see
Methods 1.8). Finally the convolved survival curves is then adjusted for the predicted toxicity hazard ratios
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as per Methods 1.7:

pLC(t) = [S74Gy(t)]HRC·HRE ·HRP . (6)

Here HRC, HRE , HRP are the risks for each adverse outcome including cardiac, esophagitis and pneumonitis,
respectively).

Figure 2. Combined TCP and NTCP model). (A) The cumulative distribution function of the (bi-modal)
RxRSI is a TCP curve (and approximates a sigmoid). (B) Probability of grade 3 or greater toxicity with dose
for each of esophagus (purple), lung (yellow) and heart (blue). (C) TCP (blue) corrected by NTCP (yellow)
as a function of dose.

2.4 Combined tumor control and NTCP model accurately predicts the outcome of RTOG
0617

To validate the combined TCP and NTCP model, we designed an in silico clinical trial (a phase i trial if you
will28), to match the recent trial of uniform dose escalation in NSCLC (RTOG 0617 60Gy vs 74Gy). As in
RTOG 0617 we assigned (uniformly at random), 200 patients for a 74Gy arm, and 200 patients for a 60Gy
arm. We calculated the expected clinical outcome for each arm based on an estimate of tumor control and
toxicity for each patient. We performed 100 iterations of this in silico trial, randomly assigning an RSI value
to each in silico patient using data from the TCC NSCLC cohort. This trial is schematized in Figure 3A. Of
note, this empiric distribution is statistically indistinguishable from the smaller, 60 patient cohort reported
above (p ⌧ 0.001 using Anderson-Darling and Kolmogorov-Smirnov tests (Supplementary Figure 3).

As shown in Figure 3B, the combined model predicts that uniform dose escalation to 74 Gy to unselected
patients would result in no radiation-associated overall gains when compared to 60 Gy, consistent with the
results observed in the actual clinical trial. In addition, as shown in Figure 3C, the model correctly predicts
the 1 and 2 year local control observed in RTOG 0617. To further understand the biological underpinnings to
explain this result, we determined the proportion of patients that were expected to derive a benefit from dose
escalation to 74 Gy. As seen in Figure 4C (blue group), 39.6% of the patients achieved or exceed RxRSI
at 60 Gy. Only an additional 18.6% reached RxRSI at 74 Gy (grey group). However, our model predicts
that still about 41.7% of the patients may need higher doses (>74Gy, red group). Thus, in an unselected
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Figure 3. An in silico trial of dose escalation using the competing outcomes model in NSCLC
matches the outcomes of a recent cooperative group trial. (A) Schematic of our in silico trial designed to
match RTOG 0617, with patients drawn uniformly at random from the TCC cohort. (B) A Kaplan-Meier
curve depicting penalised local control (pLC). The 60 and 74Gy arms are predicted to have statistically
indistinguishable outcomes (penalized local control) through 5 years. (C) Using the combined model
accurately predicts the results of RTOG 0617.

population, uniform dose escalation to 74 Gy benefits only a minority (grey only) of patients and exposes the
majority (blue and grey) of patients to additional toxicity, obfuscating any radiation-associated clinical gains.
However, a targeted dose escalation strategy, where only patients in the cohort of patients with intermediate
radiosensitivty (RxRSI, 62-74 Gy) receive 74 Gy would be expected to improve the local control for the
whole cohort by an absolute 3.6% at 2 years, and 7.8% at 5 years (Figure 4B). This small, but significant
gain, would increase to 3.8% at 2 years and 8.1% at 5 years if patients were given the exact dose that was
predicted to optimize their outcome, rather than the full 74Gy, as they would be spared the additional toxicity.
Taken to the logical limit, where each patient is given only the dose they need, to an upper limit of 80Gy
(lower bound of 45Gy), would further increase the outcomes by another 2.3% and 4.8% at 2 and 5 years,
respectively, highlighting the opportunity when radiation therapy is truly personalized.

3 Discussion

In this paper, we present a clinically-feasible system to personalize RT prescription based on biological
parameters, and quantify the clinical opportunity for improved clinical outcomes inherent in personalized RT
for patients with NSCLC. Our proposal for personalized RT prescription is based on three parameters: (i) RSI
which defines the patient’s individual tumor radiosensitivity; (ii) GARD, which defines the individualized
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Figure 4. Empiric dose escalation reached a local optima at 60Gy, but personalized dosing offers
significant benefits with current technology. (A) A radiation dose of 60Gy will provide optimal tumor
control for approximately 40% of the population, and escalation to 74Gy will only optimize a further 18.6%,
while exposing all to additional toxicity. (B) A Kaplan-Meier curve depicting an in silico trial of 60Gy vs.
74Gy, with escalation only for those the RSI based model predicts who would benefit. (C) A Kaplan-Meier
curve depicting an in silico trial of predicted optimal dose in the range 45-80Gy.

clinical effect of a given dose of RT in a given patient with a distinct RSI; and, (iii) RxRSI, the biologically-
optimal RT prescription dose, which we define as the prescription dose required to achieve a GARD target
value associated with improved clinical outcome. Personalized RT prescription provides an alternative to the
empiric-based one-size fits all approach that is currently standard in the field.

In two cohorts of patients with NSCLC, we showed that prescribing uniform, empiric-based RT dose is
biologically imprecise, with 75% of patients we analyzed receiving non-optimal doses of RT. Conversely, we
showed that the personalized, RxRSI-based prescription approach can deliver optimal doses to up to 75%
of the patients in the clinical cohort even when we restrict ourselves to a dose range within the standard of
care. This optimal dose can be achieved without an overall increase in expected normal tissue toxicity for the
whole cohort. To quantify the clinical potential of personalized RT prescription to improve outcomes in lung
cancer, we developed a first-in-class mathematical model combining tumor control and normal tissue toxicity.
The model assumes an ideal biological dose to maximize tumor control and estimates outcome based on
whether the RxRSI is achieved, then incorporates a penalization scheme based on the added toxicity to which
patients are potentially exposed when their RxRSI is exceeded.

To validate the model, we tested it using published data from RTOG-0617, a Phase 3 randomized trial in lung
cancer that assessed whether a uniform 14 Gy dose escalation would result in clinical gains in lung cancer.
The model correctly predicted both qualitatively and quantitatively the (counter-intuitive) trial outcome: that
uniform, empiric dose escalation to 74 Gy does not result in any radiation-associated clinical gains, which it
explains is secondary to the potential gains in tumor control being outweighed by the number of patients
exposed to additional toxicity. However, the model predicts that a personalized strategy to deliver 74 Gy only
to the patient subset most likely to benefit (RxRSI 62-74 Gy) would have improved the radiation-associated
outcome for the whole cohort by 7.8% in local control at 5 years. Thus, we propose that the delivery of
biologically-inaccurate RT doses results in a significant detriment of clinical outcome for lung cancer patients
treated with RT.
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While the classic LQ model predicts that every individual in a population has the same opportunity to benefit
from uniform dose escalation, the RxRSI model predicts that only a minority of patients (16.2% in this
analysis) have the opportunity to benefit from dose escalation to 74 Gy. This opportunity to benefit is
outweighed by potential increase toxicity to the rest of the patients. Inspecting the distribution of RSI in
the two cohorts for lung cancer also illustrates an interesting point. Dose escalation from 45-60Gy results
in capturing the lion’s share of the patients in the first peak of the distribution. However, escalation from
60-74Gy only captures the tail of the first mode, and does not affect the second peak. This may explain
how uniform dose escalation to 60Gy shows benefit to the entire population, as the benefit outweighs the
harm. In addition, our model postulates that 42% of the patients are still undertreated at 74 Gy, which is
consistent with the local failure rate reported in 061729. We postulate that the distributions we measured here
are conserved, and further analysis of them in different disease sites could provide insight into opportunities
for personalized dose escalation and de-escalation. On the strength of this analysis, we submit that our lack
of understanding of biological heterogeneity, and how to treat it, explains the failure of biologically naïve
uniform RT dose escalation.

The framework to personalize RT prescription presented in this paper has a number of advantages over the
current empiric approach. First, it accounts for biological heterogeneity that is specific to RT, updating the
naive assumption of homogeneous biology across our patients, which is inherent in the empiric approach.
Second, since it uses biological information to formulate an optimized and personalized RT prescription
dose, it requires that genomic data be collected for every patient. This provides the framework to identify
novel biology that impacts RT benefit. Thus the precision RxRSI model is only the first step towards a
more efficient and optimal approach to RT prescription. In contrast, multiple Phase 3 clinical trials have
demonstrated that additional clinical benefit from the empiric approach is unlikely29–33. Critically, as we
have demonstrated, this novel personalized system can be utilized within the standard of care framework for
RT dose, and can be done so without the need for additional equipment or medicines.

While significant interest has been focused on the development of better therapeutic agents including targeted
agents and immunotherapy, RT remains a fundamental curative treatment for the majority of patients with
cancer. It has been estimated that 40% of all cancer cures are due to RT34. In contrast, to date, no targeted
agent or immunotherapy has shown similar curative potential in solid tumors. Shifting to a biology-based
system will provide a new direction for radiation oncology with multiple opportunities to improve clinical
outcome. And that opportunity is not small. Approximately, 50% of all cancer patients receive RT which
translates to about 850,000 patients in the US35. A moderate improvement in RT-based cures of 5% would
represent an additional 42,500 patients potentially achieving cure. According to the American Cancer Society,
this is approximately the same number of patients that die from breast cancer every year in the US.

In conclusion, radiation oncology has employed an empiric uniform approach to prescribe RT that is based
on models developed and published over 70 years ago. We demonstrate that this one-size fits all approach is
biologically inaccurate for the majority of patients, and results in significant detriment of clinical outcome
for patients treated with RT. We propose a new paradigm, where the field updates its assumptions by
acknowledging the biologically heterogeneity of tumors and moves towards the delivery of biological optimal
doses of RT.
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Supplementary Data: Personalizing Radiotherapy Prescription Dose Using Genomic 

Markers of Radiosensitivity 

 

 

Supplementary Figure 1 Genomic Radiation Therapy Planning: Optimizing and Personalizing RT dose with 
RSI/GARD. We developed a novel capacity for genomic radiation treatment planning by integrating the algorithms 
for RSI, GARD and RxRSI into a commercially-available RT treatment planning system. The system integrates 
imaging, biological and prescription information and generates a standard plan based on empiric dosing and an 
alternative genomic radiation plan based on the patient’s RSI, GARD and RxRSI. The actual treatment plans used to 
treat the Moffitt lung cancer clinical cohort were not retrievable. However the clinical prescription utilized, the 
genomic data and clinical outcome were retrievable via our TCC database. We created a set of de-identified 
radiation treatment plans for post-operative RT in lung cancer. We selected five base plans that represented common 
treatment areas in post-operative lung, including central lesions, right and left-sided lesions as well as large and 
smaller fields. We then created 6 different plans for each of the five base plans to represent different biological 
conditions requiring RxRSIs within the range observed in our cohort (48 Gy, 54 Gy, 62 Gy, 74 Gy, 88 Gy, 95 Gy). 
(A,B) Standard of care and genomic plan for a patient receiving post-operative RT. (C, D) The standard dose plan 
was prescribed to 54 Gy. Genomic planning calculates the RxRSI in this example as 74 Gy.  
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Normal Tissue Linear Model From Composite NSCLC Plans 

  

  

Supplementary figure 2. A linear model to estimate impact of RT dose adjustment and normal tissue 
dose. Using the plans generated we calculated the mead dose to each normal tissue target across all 30 
genomic plans. A linear model was generated by blotting dose to PTV vs. mean dose to each of the 
normal tissues. The resulting linear equation was utilized to calculate an approximate mean dose to 
normal tissue on a per gray basis. 
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Suplementary Figure 3. RSI distribution for both the Moffitt clinical cohort (n = 60) and the 
TCC modeling cohort (n = 1,747). Both distributions are statistically similar using Anderson-
Darling and Kolmogorov-Smirnov tests, p < 0.001. 
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Supplementary Tables  

Pt ID Actual 

dose 

RSI GARD RxRSI Actual 

vs 

RxRSI 

Dose Δ 

Mean 

Esoph

ageal 

Δ @ 

RxRSI 

Mean 

Left 

Lung Δ 

@ 

RxRSI 

Mean 

Right 

Lung Δ 

@ 

RxRSI 

Mean 

Heart 

Δ @ 

RxRSI 

Δ number 

treatment weeks 

(rounded up to 

whole fraction) 

46 54 0.26 36.378 48.986 -5.014 -1.263 -0.633 -0.551 -0.355 -1 

47 60 0.31 35.126 56.369 -3.631 -0.914 -0.459 -0.399 -0.257 -0.8 

48 60 0.31 35.126 56.369 -3.631 -0.914 -0.459 -0.399 -0.257 -0.2 

49 63 0.33 34.885 59.596 -3.404 -0.857 -0.43 -0.374 -0.241 -1 

50 61.2 0.334 33.522 60.246 -0.954 -0.24 -0.12 -0.105 -0.068 -0.6 

51 50 0.262 33.453 49.323 -0.677 -0.171 -0.086 -0.074 -0.048 0 

52 54 0.292 33.192 53.688 -0.312 -0.079 -0.039 -0.034 -0.022 -0.6 

53 60 0.332 33.088 59.841 -0.159 -0.04 -0.02 -0.018 -0.011 0 

54 61.2 0.343 32.711 61.74 0.54 0.136 0.068 0.059 0.038 -0.6 

55 55.8 0.312 32.464 56.721 0.921 0.232 0.116 0.101 0.065 -0.4 

56 61.2 0.357 31.538 64.038 2.838 0.715 0.358 0.312 0.201 -0.2 

57 60 0.35 31.493 62.87 2.87 0.723 0.363 0.315 0.204 0.4 

58 61.2 0.358 31.406 64.306 3.106 0.782 0.392 0.341 0.22 -0.2 

59 60 0.357 30.884 64.111 4.111 1.035 0.519 0.452 0.291 0.6 

60 54 0.328 30.107 59.189 5.189 1.307 0.655 0.57 0.368 0 

Mean 58.4 0.3 33 58.5 0.1 0 0 0 0 -0.307 

Supplementary Table 1. Group 1 sub-cohort. In these patients, the dose delivered and the calculated RxRSI 
matched. 
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Pt ID Actual 

dose 

RSI GARD RxRSI Actual 

vs 

RxRSI 

Dose Δ 

Mean 

Esophag

eal 

Increase 

@ RxRSI 

Mean 

Left 

Lung 

Increase 

@ RxRSI 

Mean 

Right 

Lung 

Increase 

@ RxRSI 

Mean 

Heart 

Increas

e @ 

RxRSI 

Increase 

number 

treatment 

weeks 

(rounded 

up) 

16 45 0.272 29.265 50.744 5.744 1.446 0.725 0.631 0.407 1 

17 50 0.306 29.597 55.749 5.749 1.448 0.726 0.632 0.408 1.2 

18 50.4 0.315 29.112 57.131 6.731 1.695 0.85 0.74 0.477 0.2 

19 46 0.318 26.33 57.654 11.654 2.934 1.472 1.281 0.826 1.2 

20 50 0.323 28.26 58.387 8.387 2.112 1.059 0.922 0.595 2 

21 43.2 0.324 24.371 58.496 15.296 3.852 1.932 1.681 1.084 1.2 

22 54 0.328 30.107 59.189 5.189 1.307 0.655 0.57 0.368 0 

23 54 0.334 29.577 60.249 6.249 1.573 0.789 0.687 0.443 0.2 

24 45 0.345 23.965 61.965 16.965 4.272 2.143 1.864 1.203 1.2 

25 54 0.345 28.757 61.967 7.967 2.006 1.006 0.876 0.565 0.2 

26 54 0.346 28.638 62.225 8.225 2.071 1.039 0.904 0.583 1.4 

27 54 0.353 28.152 63.3 9.3 2.342 1.175 1.022 0.659 0.4 

28 50 0.353 26.014 63.428 13.428 3.381 1.696 1.476 0.952 1.4 

29 50.4 0.361 25.669 64.794 14.394 3.624 1.818 1.582 1.021 1 

30 60 0.389 28.293 69.983 9.983 2.514 1.261 1.097 0.708 1 

Mean 50.66

7 

0.334 27.74 60.351 9.684 2.438 1.223 1.064 0.687 0.907 

Supplementary Table 2. Group 2a patients. In this group, patients received lower dose by more than 10% than the 
calculated RxRSI. Adjustment of these patients dose could be done within standard of care range (50-70 Gy). 
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Pt ID Actual 

dose 

RSI GARD RxRSI Actual 

vs RxRSI 

Dose Δ 

Mean 

Esophage

al 

Increase 

@ RxRSI 

Mean 

Left 

Lung 

Increase 

@ RxRSI 

Mean 

Right 

Lung 

Increase 

@ RxRSI 

Mean 

Heart 

Increase 

@ RxRSI 

Increase 

number 

Rx 

weeks 

(rounde

d up) 

31 61.2 0.407 27.475 73.507 12.307 3.099 1.554 1.353 0.873 0.6 

32 55.8 0.412 24.731 74.458 18.658 4.698 2.357 2.051 1.323 1.4 

33 60 0.415 26.36 75.115 15.115 3.806 1.909 1.661 1.072 1.6 

34 60 0.453 23.765 83.315 23.315 5.871 2.945 2.562 1.653 2.4 

35 45 0.455 17.702 83.891 38.891 9.793 4.912 4.274 2.757 3.4 

36 64.8 0.467 24.697 86.587 21.787 5.486 2.752 2.394 1.545 1.6 

37 54 0.467 20.546 86.732 32.732 8.242 4.134 3.597 2.321 2.8 

38 50.4 0.475 18.77 88.61 38.21 9.621 4.826 4.199 2.709 3.4 

39 50 0.475 18.601 88.704 38.704 9.746 4.888 4.254 2.744 4 

40 55.8 0.475 20.747 88.753 32.953 8.298 4.162 3.622 2.336 2.8 

41 50 0.483 18.189 90.714 40.714 10.252 5.142 4.475 2.887 4.2 

42 50.4 0.496 17.648 94.242 43.842 11.039 5.537 4.818 3.108 4 

43 45 0.498 15.685 94.677 49.677 12.509 6.274 5.46 3.522 4 

44 54 0.499 18.764 94.971 40.971 10.316 5.175 4.503 2.905 3.6 

45 60 0.503 20.638 95.939 35.939 9.049 4.539 3.95 2.548 3.6 

Mea

n 

54.42

7 

0.465 20.954 86.681 32.254 8.122 4.074 3.545 2.287 2.893 

Supplementary Table 3. Group 2b patients. Similar to group 2a patients, these patients received lower doses than 
the RxRSI. However dose adjustments for these patients are outside the standard of care and in many cases result in 
plans that do not meet DVH guideline criteria at our institution 
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Pt 

ID 

Actual 

dose 

RSI GARD RxRSI 

min 

set to 

50Gy 

RxRSI Actual 

vs 

RxRSI 

min 50 

Gy 

Dose Δ 

Actu

al vs 

RxRSI 

Dose 

Δ 

Mean 

Esoph

ageal 

Decre

ase @ 

RxRSI 

Mean 

Left 

Lung 

Decre

ase @ 

RxRSI 

Mean 

Right 

Lung 

Decre

ase @ 

RxRSI 

Mean 

Heart 

Decre

ase @ 

RxRSI 

Decrea

se 

numbe

r Rx 

weeks 

(round

ed up) 

1 59.4 0.015 124.78 50 15.71 9.4 43.69 2.367 1.187 1.033 0.666 1.6 

2 59.4 0.092 70.758 50 27.70

3 

9.4 31.69

7 

2.367 1.187 1.033 0.666 1.6 

3 60 0.118 64.117 50 30.88

1 

10 29.11

9 

2.518 1.263 1.099 0.709 1 

4 70 0.166 62.947 50 36.69

8 

20 33.30

2 

5.036 2.526 2.198 1.418 2 

5 66 0.177 57.198 50 38.07

8 

16 27.92

2 

4.029 2.021 1.758 1.134 1.6 

6 50 0.16 45.875 50 35.96

7 

0 14.03

3 

0 0 0 0 1.6 

7 50 0.168 44.588 50 37.00

6 

0 12.99

4 

0 0 0 0 1 

8 54 0.198 43.788 50 40.69

6 

4 13.30

4 

1.007 0.505 0.44 0.284 1 

9 60 0.238 43.028 50 46.01

6 

10 13.98

4 

2.518 1.263 1.099 0.709 1 

10 60 0.239 42.907 50 46.14

6 

10 13.85

4 

2.518 1.263 1.099 0.709 1 

11 60 0.248 41.802 50 47.36

6 

10 12.63

4 

2.518 1.263 1.099 0.709 2 

12 70 0.304 41.671 55.43

5 

55.43

5 

14.565 14.56

5 

3.668 1.84 1.601 1.033 1 

13 60 0.254 41.159 50 48.10

6 

10 11.89

4 

2.518 1.263 1.099 0.709 2 
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14 70 0.323 39.564 58.38

7 

58.38

7 

11.613 11.61

3 

2.924 1.467 1.276 0.823 1 

15 54 0.239 38.621 50 46.14

1 

4 7.859 1.007 0.505 0.44 0.284 1 

Mean 60.18

7 

0.196 53.52 50.92

1 

40.68

9 

9.265 19.49

8 

2.333 1.17 1.018 0.657 1.36 

Supplementary Table 4. Group 3 patients. In this group, patients receive a higher dose by more than 10% than the 
calculated RxRSI. Adjustments to dose on these patients sometimes were set to a minimum dose of 50 Gy. 

 

 

 

 

Supplementary Table 5. Estimating the impact of personalized dose adjustments (RxRSI) on normal 

tissue risk. Difference calculated as dose given  – dose received if adjusted to RxRSI. Positive values 

indicate increased risk when comparing empiric dose and proposed RxRSI dose. Negative values 

correspond to risk taken on if given RxRSI dose. 
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