rs641738C>T near MBOAT7 promotes steatosis, NASH, fibrosis and 1 2 hepatocellular carcinoma in non-alcoholic fatty liver disease: a meta-3 analysis

4

5	Kevin Teo ¹ , Kushala W. M. Abeysekera ² , Leon Adams ^{3,4} , Elmar Aigner ⁵ ,
6	Rajarshi Banerjee ⁶ , Priyadarshi Basu ⁷ , Thomas Berg ⁸ , Pallav Bhatnagar ⁹ ,
7	Stephan Buch ¹⁰ , Ali Canbay ¹¹ , Sonia Caprio ¹² , Ankita Chatterjee ⁷ , Yii-Der Ida
8	Chen ¹³ , Abhijit Chowdhury ¹⁴ , Christian Datz ¹⁵ , Dana de Gracia Hahn ¹ ,
9	Johanna K. DiStefano ¹⁶ , Jiawen Dong ¹ , Amedine Duret ¹ , EU-PNAFLD
10	Investigators*, Connor Emdin ¹⁷ , Madison Fairey ¹ , Glenn S Gerhard ¹⁸ , GOLD
11	Consortium*, Xiuqing Guo ¹³ , Jochen Hampe ¹⁰ , Matthew Hickman ² , Lena
12	Heintz19, Christian Hudert ²⁰ , Harriet Hunter ¹ , Matt Kelly ⁵ , Julia Kozlitina ²¹ ,
13	Marcin Krawczyk ^{19,22} , Frank Lammert ¹⁹ , Claudia Langenberg ²³ , Joel Lavine ²⁴ ,
14	Lin Li ²⁵ , Hong Kai Lim ¹ , Panu Luukkonen ^{26,27,28} , Phillip E. Melton ^{29,30} , Trevor
15	A. Mori ³ , Constantinos A. Parisinos ³¹ , Sreekumar G Pillai ⁹ , Faiza Qayyum ³² ,
16	Matthias C. Reichert ¹⁹ , Stefano Romeo ^{33,34,35} , Jerome Rotter ¹³ , Yu Ri Im ¹ ,
17	Nicola Santoro ¹² , Clemens Schafmayer ³⁶ , Elizabeth K. Speliotes ^{37,38} , Stefan
18	Stender ³² , Felix Stickel ³⁹ , Christopher D. Still ⁴⁰ , Pavel Strnad ⁴¹ , Kent D.
19	Taylor ¹³ , Anne Tybjærg-Hansen ³² , Giuseppina Rosaria Umano ^{12,42} , Mrudula
20	Utukuri ¹ , Luca Valenti ^{43,44} , Nicholas J. Wareham ²³ , Julia Wattacheril ⁴⁵ ,
21	Hannele Yki-Järvinen ^{26,27} , Jake P. Mann ²³

22

Affiliations 23

24	1.	Clinical School of Medicine, University of Cambridge, Cambridge, UK
25	2.	MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol,

- 2. MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, United
- 26 Kingdom

27	3.	Medical School, Faculty of Medical and Health Sciences, University of Western
28		Australia, Perth, Australia
29	4.	Department of Hepatology, Sir Charles Gairdner Hospital, Perth, WA, Australia
30	5.	Department of Internal Medicine I. Paracelsus Medical University, Salzburg, Austria
31	6	Perspectum Diagnostics Ltd. Oxford UK
32	7	National Institute of Biomedical Genomics, Kalvani, India
32	γ. Q	National Institute of Diomedical Genomics, Natyan, mula
24	0.	Infectiology and Broumology, University Clinic to Gastroenterology, Trepatology,
25	0	The life and Company Indiana is N
33	9.	
36	10.	Medical Department 1, University Hospital Dresden, Technische Universität Dresden
37		(IU Dresden), Dresden, Germany
38	11.	Gastroenterology, Hepatology and Infectiology, Otto-von-Guericke University
39		Magdeburg, Magdeburg, Germany
40	12.	Yale University, Department of Pediatrics, New Haven, CT
41	13.	Translational Genomics and Population Sciences Lundquist Institute; Harbor-UCLA
42		Medical Center
43	14.	Institute of Post Graduate Medical Education And Research, Kolkata, India
44	15.	Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of
45		the Paracelsus Medical University Salzburg, Oberndorf, Austria
46	16	Diabetes and Eibrotic Disease Unit Translational Genomics Research Institute
47	10.	(TGon)
18	17	Program in Medical and Population Constice, Pread Institute of Hanvard and MIT
40	17.	Program in Medical and Population Genetics, broad institute of harvard and Mir,
49 50	10	Dustuil, MA Department of Medical Conction and Malagular Dischemistry Lowis Katz School of
50	10.	Madicine et Terrente University, Dhiladelahia, DA
51	40	Medicine at Temple University, Philadelphia, PA
52	19.	Department of Medicine II, Saarland University Medical Center, Saarland University,
53		Homburg, Germany
54	20.	Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Berlin,
55		Germany
56	21.	Eugene McDermott Center for Human Growth and Development, University of Texas
57		Southwestern Medical Center, Dallas, TX, USA
58	22.	Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver
59		Surgery, Laboratory of Metabolic Liver Diseases, Centre for Preclinical Research,
60		Medical University of Warsaw, Warsaw, Poland
61	23.	MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, UK.
62	24.	Department of Pediatrics, Columbia University, New York, USA
63	25.	BioStat Solutions Inc. Frederick, Maryland, USA
64	26.	Minerva Foundation Institute for Medical Research, Helsinki, Finland,
65	27	Department of Medicine, University of Helsinki and Helsinki University Hospital
66		Helsinki, Finland
67	28	Yale University School of Medicine, New Haven, Connecticut, US
68	20.	The Curtin LIWA Centre for Genetic Origins of Health and Disease. Eaculty of Health
60	23.	and Medical Sciences, Curtin University, The University of Western Australia, Borth
70		MA Australia
70	20	VVA, Australia Och est of Dhamman and Diamandiant Ocionada. Esculturat the other occurring
/1	30.	School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin
12		University, Perth, WA, Australia
73	31.	Institute of Health Informatics, Faculty of Population Health Sciences, University
74		College London, London, UK
75	32.	Department of Clinical Biochemisty, Rigshospitalet Copenhagen University Hospital
76		Copenhagen, Denmark
77	33.	Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden
78	34.	Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
79	35.	Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University
80		Magna Graecia, Catanzaro, Italy
81	36.	Department of Visceral and Thoracic Surgery. Kiel University. Kiel. Germany Thomas
82		Berg: Department of Internal Medicine, University Hospital Leinzig, Leinzig, Germany
83	37	Division of Gastroenterology and Henatology Denartment of Medicine University of
84	57.	Michigan Health System Ann Arbor MI
85	38	Department of Computational Medicine and Rightformatics. University of Michigan
86	00.	Medical School Ann Arbor MI
50		

- 87 39. Department of Gastroenterology and Hepatology, University Hospital of Zurich, 88 Switzerland 89 40. Geisinger Obesity Institute, Danville, PA 17822, United States 90 41. Medical Clinic III, University Hospital RWTH Aachen, Aachen, Germany 91 42. Department of the Woman, the Child, of General and Specialized Surgery, University <u>92</u> of Campania Luigi Vanvitelli, Naples Italy <u>93</u> 43. Department of Pathophysiology and Transplantation, Università degli Studi di Milano <u>9</u>4 44. Translational Medicine, Department of Transfusion Medicine and Hematology, 95 Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy 96 45. Department of Medicine, Center for Liver Disease and Transplantation, Columbia 97 University College of Physicians and Surgeons, New York Presbyterian Hospital, 98 New York, New York 10032, USA 99 *A list of contributors is included in the Acknowledgements
- 100
- 101 Keywords: *MBOAT7*, fibrosis, NAFLD, triglyceride, diabetes, ALSPAC

- 103 Footnote page
- 104
- 105 Contact information: Dr Jake P. Mann, University of Cambridge, Department
- 106 of Paediatrics, Cambridge, United Kingdom. jm2032@cam.ac.uk, T: +44 1223
- 107 763480, F: +44 1223 336996
- 108
- 109 Abbreviations (in order of appearance):
- 110 NAFLD, non-alcoholic fatty liver disease; NAFL; non-alcoholic fatty liver;
- 111 NASH, non-alcoholic steatohepatitis; HDL, high-density lipoprotein; HOMA-IR,
- 112 homeostatic model assessment of insulin resistance; BMI, body mass index;
- 113 ALT, alanine aminotransferase; CI, confidence interval; GGT, gamma-
- 114 glutamyl transferase; OR, odds ratio; PNPLA3, patatin-like phospholipase
- domain containing protein 3; *TM6SF2*, transmembrane 6 superfamily member
- 116 2; TMC4, transmembrane channel-like 4; MBOAT7, membrane bound O-
- 117 acyltransferase domain containing 7.
- 118
- 119 Financial support: JPM is supported by a Wellcome Trust Fellowship
- 120 (216329/Z/19/Z) and a Children's Liver Disease Foundation grant. NIH grants:
- 121 R01HD028016 (SC), R01DK111038 (SC), R01DK114504 (NS), DK091601
- 122 (JKD), UL1TR001105 (JK). This study was supported by the German Federal
- 123 Ministry for Education and Research (BmBF) through the Livers Systems
- 124 Medicine (LiSyM) project. This work was supported by grants from the Swiss
- 125 National Funds (SNF no. 310030_169196) and the Swiss Foundation for
- 126 Alcohol Research (SSA) to FS. This Raine Study was supported by the
- 127 National Health and Medical Research Council of Australia [grant numbers
- 403981, 353514 and 572613]. The UK Medical Research Council and

129 Wellcome (Grant ref: 102215/2/13/2) and the University of Bristol provide core 130 support for ALSPAC. ALSPAC GWAS data was generated by Sample 131 Logistics and Genotyping Facilities at Wellcome Sanger Institute and LabCorp 132 (Laboratory Corporation of America) using support from 23andMe. A comprehensive list of grants funding is available on the ALSPAC website 133 134 (http://www.bristol.ac.uk/alspac/external/documents/grant-135 acknowledgements.pdf); This research was specifically funded by grants from 136 MRC and Alcohol Research UK (MR/L022206/1) and NIH (5R01AA018333-137 05) to KWMA & MH. LV was supported by MyFirst Grant AIRC n.16888, Ricerca Finalizzata Ministero della Salute RF-2016-02364358, Ricerca 138 139 corrente Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, LV 140 and AG. received funding from the European Union (EU) Programme Horizon 141 2020 (under grant agreement No. 777377) for the project LITMUS-" Liver 142 Investigation: Testing Marker Utility in Steatohepatitis". German Federal 143 Ministry of Education and Research (BMBF LiSyM 031L0051 to F.L.) PL is 144 supported by grants from the Sigrid Jusélius Foundation and the Novo 145 Nordisk Foundation. The Fenland study was funded by grants to the MRC 146 Epidemiology Unit (MC UU12015/1, MC UU 12015/5). RB and MK are 147 employees of and shareholders in Perspectum Diagnostics Ltd. CAP is 148 funded by a Wellcome Trust Clinical PhD Programme (206274/Z/17/Z). 149 150

151 ABSTRACT

A common genetic variant near *MBOAT7* (rs641738C>T) has been previously
associated with hepatic fat and advanced histology in non-alcoholic fatty liver

154	disease (NAFLD), however, these findings have not been consistently
155	replicated in the literature. Therefore, we aimed to establish whether rs641738
156	is a risk factor for NAFLD through meta-analysis. Data from 134,015
157	participants (7,692 with liver biopsies and 50,680 with imaging) was included
158	in the meta-analysis. The minor T-allele of rs641738C>T was associated with
159	higher liver fat on CT/MRI using an additive genetic model (+0.05 standard
160	deviations [95% CI: $0.01 - 0.09$], p=0.025), and with an increased risk of
161	NAFLD (per-allele OR: 1.08 [95% CI: 1.01 - 1.15]), nonalcoholic
162	steatohepatitis (OR: 1.11 [95% CI: 1.02 - 1.21]), advanced fibrosis (OR: 1.14
163	[95% CI: 1.05 - 1.23]), and hepatocellular carcinoma (OR: 1.43 [95% CI: 1.22
164	- 1.67]) in adults with NAFLD. Sub-group analysis did not demonstrate a
165	difference in Caucasians and non-Caucasians. Rs641738C>T was not
166	associated with markers of insulin resistance but was associated with higher
167	risk of stroke in the UK Biobank. These data validate rs641738C>T near
168	MBOAT7 as a risk factor for the development, activity, and stage of NAFLD
169	including hepatocellular carcinoma.
170	
171	
172	
173	Abstract word count: 192
174	
175	Conflict of interest: Connor Emdin reports personal fees from Navitor
176	Pharma and Novartis.
177	
178	

179 **INTRODUCTION**

180 Since the first genome-wide association study (GWAS) of liver fat (1), more

181 than 20 genetic single nucleotide variants (SNVs) have been associated with

182 non-alcoholic fatty liver disease (NAFLD)(2). These studies have deepened

- 183 our understanding of the condition, its heritability, and its relationship with
- 184 cardio-metabolic disease.

185

186 Rs641738C>T near *MBOAT7* (membrane bound O-acyltransferase domain

187 containing 7) was initially identified as a genome-wide significant risk locus for

alcohol-related cirrhosis(3). It has since been implicated in the pathogenesis

189 of NAFLD(4), hepatocellular carcinoma(5), as well as in fibrosis development

190 in chronic hepatitis B and C.

191

192 This SNV is located a few hundred base pairs downstream of the 3'

193 untranslated region of MBOAT7, which belongs to a family of genes that code

194 for specific acyl donors and acceptors. *MBOAT7* encodes

195 lysophosphatidylinositol acyltransferase 1 (LPIAT1), which contributes to the

regulation of free arachidonic acid in cells(6). Rs641738C>T is associated

197 with lower hepatic expression of *MBOAT7* at both the mRNA(7) and protein

198 level(4). Given its role in inflammatory lipid pathways, most mechanistic work

relating to rs641738 has focused on *MBOAT7*.

200

201 In NAFLD, the rs641738 variant was first demonstrated to be associated with

202 increased hepatic fat content and severity of fibrosis in individuals of

203 European descent(4). Proton magnetic resonance spectroscopy data from

204 2736 individuals showed a modest increase in hepatic fat in those with TT-

genotype (4.1%) compared to those with CT- (3.6%) or CC-genotype (3.5%)

206 (p=.005). Follow-up studies of European subjects corroborated the initial

207 findings, and suggested a role in development of hepatocellular

208 carcinoma(8,9). However, these results were not replicated in adults of other

209 genetic ancestries(4,10–12) or in children(13). It is recognised that

investigation of candidate genes in relatively small cohorts can generate false-positive findings.

In addition, biallelic loss of function mutations in *MBOAT7* cause autosomal

213 recessive mental retardation 57 (OMIM #617188) and no liver phenotype has

been reported in these patients to date(14), however, rare likely pathogenic

variants in *MBOAT7* are associated with HCC in NAFLD(15). In summary, the

association between rs641738 and hepatic fat content, as well as its effects

217 on severity of NAFLD, remain unclear. Moreover, the broader metabolic

effects of this SNV, including its association with diabetes and cardiovascular

219 outcomes, have not been assessed.

220

Here, we conducted a large meta-analysis of published and unpublished data to determine if rs641738 influences the development or stage of NAFLD and associated cardio-metabolic phenotypes.

224

225 **PATIENTS AND METHODS**

226

227 Data sources and study selection

Two data sources were included in the meta-analysis: published studies (and

- abstracts) and unpublished GWAS (or targeted genotyping) data.
- 230

231 Published studies were sourced through Medline and Embase using the

search terms "(*MBOAT7* or membrane-bound-o-acyltransferase) or (rs641738

233 or rs626283) or (*TMC4*)". There were no restrictions on date or language, and

the study selection included all original studies including AASLD Liver Meeting

and EASL meeting abstracts. The search was completed on 1st October 2019.

236 Reference lists of relevant publications were also reviewed. Titles and

abstracts were screened for eligibility independently by two authors, with

238 inclusion/exclusion criteria applied to potentially eligible full texts.

239

A search was conducted for all GWAS in NAFLD, NASH, and steatosis.

Authors of all potentially relevant GWAS were contacted to request extraction

of data regarding rs641738C>T. To assess for cardiometabolic phenotype

associations, Phenoscanner(16) and GeneATLAS(17) were searched for

summary statistics from published GWAS.

245

246 HuGENet guidelines were followed throughout. This study was prospectively

247 registered on PROSPERO Database of Systemic Reviews

248 (CRD42018105507) Available from:

- 249 <u>http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42018105</u>
- 250 <u>507</u>
- 251

252 Inclusion and exclusion criteria

Cohort and case-control studies related to NAFLD were included if genotyping of rs641738C>T (or other SNVs in linkage disequilibrium [LD, R²>0.8]) was conducted and data on one of the outcomes of interest were reported. Review articles, *in vitro* studies, and investigations involving animal, fish, and invertebrates were excluded. Studies which investigated liver disease of other etiologies were also excluded.

259

260 Data collection

261 For each study, data on participant demographics (sex, age, ethnicity) were collated. Hepatic steatosis or NAFLD (as diagnosis) was evaluated as a 262 263 dichotomous variable where radiological assessment (liver ultrasound, controlled attenuation parameter [CAP, with cut-off >240m/s], CT, MRI) were 264 265 used. Hepatic fat content (from CT, MRS, MRI, PDFF), serum lipid profile, fasting insulin, and alanine aminotransferase levels were collected as 266 267 continuous variables. Hepatic fat content was also assessed using semi-268 quantitative scoring in the Fenland cohort, as previously described(18), and 269 using CAP. Histology data were extracted according to the NASH Clinical 270 Research Network scoring system and, where not otherwise diagnosed by a 271 pathologist's assessment, NASH was defined using the Fatty Liver Inhibition of Progression (FLIP) algorithm. The above data were collected for each 272 273 genotype separately (CC, CT, and TT).

275 Phenoscanner was used to assess for disease associations with

276 rs641738C>T at P<0.01. Phenotype associations were filtered for those

related to cardio-metabolic and liver disease.

278

279 The authors of 21 published studies were contacted for additional data, all of

whom replied. Several studies reported outcomes from overlapping cohorts:

ref (4) and ref (19); ref (9) and ref (20). In these instances, data only from the

larger of the overlapping cohorts were included in analyses.

283

284 **Cohorts with genome-wide data**

285 The authors of 10 potentially relevant GWAS (and cohort studies with 286 genome-wide data) were contacted, of which 9 replied and data were included 287 from 7.. Densely imputed genotyping data were available for rs641738C>T in 288 all with >0.98 call rate. These cohorts have been described elsewhere and 289 detailed description of the quality control processes for genome-wide data is 290 available in their original descriptions(1,21,30,31,22-29), but in brief, single 291 nucleotide polymorphisms (SNP) with Hardy-Weinberg equilibrium p-values <1x10⁻⁶ were excluded prior to imputation. Imputation was performed for 292 293 variants with mean allele frequencies >.01 and with minimum imputation 294 quality of >0.3. Previously unpublished data was included from the Avon Longitudinal Study 295 296 of Parents and Children (ALSPAC)(30-32). This is a prospective, longitudinal 297 study that originally enrolled 14,541 pregnancies with expected delivery dates

298 between 1st April 1991-31st December 1992. After enrolment of 913 additional

- children at age 7, the total sample size is 15,454 pregnancies, resulting in
- 300 15,589 foetuses. Of these 14,901 were alive at 1 year of age. Ethical approval
- 301 for the study was obtained from the ALSPAC Ethics and Law Committee and
- 302 the Local Research Ethics Committees. Data included in this meta-analysis
- 303 was from individuals who had attended a study visit between 22 and 26 years
- 304 of age for transient elastography measurement with controlled attenuation
- 305 parameter (CAP). Please note that the ALSPAC study website contains
- 306 details of all the data that is available through a fully searchable data
- 307 dictionary and variable search tool
- 308 (http://www.bristol.ac.uk/alspac/researchers/our-data). Data was included for
- 309 meta-analysis where a CAP measurement was recorded and the participant
- 310 had genotyping data for rs641738C>T, which left 2,919 individuals for
- inclusion.
- 312 Unpublished data from the UK BioBank was extracted under Application ID
- 313 9914 ('Determining the Outcomes of People with Liver Disease').
- 314

315 Study quality assessment

- 316 Two reviewers independently assessed risk of bias in each study by applying
- 317 the Cochrane Risk of Bias in Cohort Studies tool.
- 318

319 Statistical Analysis:

- 320 For dichotomous outcomes, the effect statistic was calculated as an odds ratio
- 321 between groups. Genetic association analyses were performed using an
- 322 additive model to estimate the effect per T-allele as almost all included studies
- had used this model.

324 For analysis of effect on liver fat, data were inverse normalized and an

325 additive genetic model (coding the number of T alleles as 0, 1, and 2) was

326 used with linear regression, adjusted for age, sex, and principal components

327 of genetic ancestry (where available). In addition, data from the GOLD

328 Consortium were adjusted for number of alcoholic drinks consumed.

329 Continuous quantitative liver fat data (from CT, MRI, MRS, or PDFF) and

330 semi-quantitative data (ultrasound and CAP) were analyzed separately.

331 For other continuous variables, effect summary was calculated as a mean

332 difference between CC and TT groups.

333 Meta-analysis was performed using random effects throughout.

334 Summary statistics were reported with 95% confidence intervals (CI). Data

from paediatric and adult studies were analyzed separately. Sub-analysis was

336 performed using only studies with Caucasian (Non-Finnish or Finnish

337 European ethnicity) where data were available from at least four studies. This

338 sub-analysis was selected due to initial identification of this variant in

339 Caucasian individuals, further sub-analysis by ethnicity may be affected by

340 differences in linkage disequilibrium between genetic ancestries.

341 Leave-one-out sensitivity analysis was performed for all outcomes using

342 additive model of inheritance and random effects.

343 Heterogeneity between groups was described using the Q statistic and I².

Bias was assessed using Egger's test and visually using funnel plots where

345 more than 5 studies were included. P <0.025 (i.e. P<0.05/2) was considered

346 statistically significant due to testing outcomes twice: in individuals of all

347 ethnicities and Caucasians only. Analysis was performed using STATAv14 for

348 Windows (StataCorp. 2015. Stata Statistical Software: Release 14. College

- 349 Station, TX: StataCorp LP), DistillerSR Forest Plot Generator from Evidence
- 350 Partners (https://evidencepartners.com/resources/forest-plot-generator/),
- 351 GraphPad Prism (v8.0 for Mac, GraphPad Software, La Jolla California, USA),
- and MetaGenyo(33).
- 353

355 **RESULTS**

- 356 Database search identified 405 abstracts, of which 18 studies were included.
- In addition, unpublished data were extracted from 12 cohorts (Table 1,
- 358 **Supplementary Fig. 1**, and **Supplementary Table 1**).

Study Age group	Genetic ancestry (country)	Study design and sample size (N)	Female, n (%)	Features and patient characteristics	Liver biopsy (N)
Published	(••••••••••••••••••••••••••••••••••••••				
Di Sessa, 2018; Paediatric (34)	Non-Finnish European (Italy)	Cases-only Hospital-based N=1002	466 (46.5%)	Children with hepatic steatosis measured by US	NA
Di Costanzo, 2018; Adult (35)	Non-Finnish European (Italy)	Case-control N=445	150 (33.7%)	Hepatic steatosis measured by US	NA
Dongiovanni, 2018b; Adult (36)	Mixed: Non- Finnish European and Finnish European	Cases-only N=1,388 (LBC)	728 (52.4%)	NAFLD diagnosed by LB (LBC)	1515
Lin, 2018; Paediatric (37)	East Asian (China)	Population-based N=831	257 (31.4%)	Hepatic steatosis measured by US	NA
Viitasalo, 2016; Paediatric (38)	Finnish European (Finland)	Population-based N=512	222 (47.5%)	Population cohort of children with measurement of ALT	NA
Koo, 2018; Adult (10)	East Asian (Korea)	Case-control Hospital-based N=525	264 (50.3%)	Adults with NAFLD diagnosed by LB, or US/MRI/CT	416
Published and ur	published data	Γ	1		T
Hudert, 2018; Paediatric (13)	Non-Finnish European (Germany)	Case-control Hospital-based N=270	92 (34%)	Patients: children with NAFLD diagnosed by LB Controls: healthy population (adult) controls	70
Mann, 2018a; Adult (24)	Non-Finnish European	Population cohort N=10,934	5,823 (53.2%)	Hepatic steatosis measured by US	NA

	(England)				
Mann, 2018b;	Non-Finnish	Hospital-based	34 (50.7%)	Children with NAFLD diagnosed by LB	67
Paediatric (39)	(Italy)	IN=07			
Umano, 2018; Reodictria (12)	Mixed: Non-	Cases-only	509 (59.2%)	Hepatic steatosis measured by MRI	NA
raeulatile (12)	Furopean	N=860			
	African American,				
	Hispanic				
	(USA)				
Krawczyk, 2018;	Non-Finnish	Cases-only	24 (38.1%)	Adults with NAFLD diagnosed by LB,	63
Adult (20)	European	N=237		or US/MRI/CT	
	(Germany)				
Krawczyk, 2017;	Non-Finnish	Cases-only	280 (54.4%)	Adults with NAFLD diagnosed by LB,	320
Adult (9)	European	N=515		or US/MRI/CT	
Kawaquchi	Germany) Fast Δsian	Case-control	5111	Patients: Adults with NAFLD	936
2018 [.]	(Japan)	Mixed hospital-	(59.6%)	diagnosed by LB	500
Adult (25)	(oupun)	and population-		Controls: healthy population controls	
		based		, , , , , , , , , , , , , , , , , , ,	
		N=8,608			
Dongiovanni,	Mixed: Non-	Population cohort:	3,330	Hepatic steatosis measured by H-MRS	1515
2018;	Finnish	N= 4,570 (DHS),	(54.7%)	(DHS) or NAFLD diagnosed by LB	
Adult (19)	European,			(LBC)	
	African American,	Cases-only			
	Hispanic	Hospital-based:			
	(USA)	N=1,515 (LBC)			

Mancina, 2016; Adult (4)	Mixed: Non- Finnish European, African American, Hispanic	Population cohort: N= 3,854 (DHS) Cases-only Hospital-based:	2754 (54.4%)	Hepatic steatosis measured by H-MRS (DHS) or NAFLD diagnosed by LB (LBC)	1149
Luukkonen, 2016; Adult (8)	Finnish European (Finland)	Cases-control Hospital-based N=125	83 (66.4%)	Adults assessed for NAFLD by LB	125
Donati, 2017; Adult (5)	Non-Finnish European (Italy / UK)	Case-control Hospital-based N=765 (Italian) N=358 (UK NAFLD)	188 (24.6%) 143 (39.4%) 387 (34.5%)	Adults with NAFLD diagnosed by LB	1123
Sookoian, 2018; Adult (11)	Caucasian (Argentina)	Case-control Hospital-based N=634	360 (57.0%)	Patients: adults with NAFLD diagnosed by LB Controls: hepatic steatosis absent on US	372
Unpublished data	a				
UKBB cohort, 2019; Adult	Non-Finnish European (UK)	Population-based N=7,078	3,822 (54%)	GWAS of hepatic steatosis measured by MRI from the UK BioBank.	NA
DiStefano, 2015; Adult (21)	Non-Finnish European (USA)	Cases-only Hospital-based N=1,868	1,512 (80.9%)	GWAS of adults with NAFLD diagnosed by LB	1868
Adams, 2013; Paediatric (22)	Non-Finnish European (Australia)	Population-based N=928	444 (47.8%)	GWAS of adolescents with hepatic steatosis measured by US	NA

Lauridsen, 2018; Adult (40)	Non-Finnish European (Denmark)	Population-based N=7511	775 (53.9%)	Hepatic steatosis measured by CT, part of the Copenhagen General Population Study	NA
Luukkonen, 2018; Adult (41)	Finnish European (Finland)	Cases-only Hospital-based N= 38	21 (55%)	Hepatic steatosis measured by MRS	NA
Speliotes 2011; Adult (1)	Mixed: Non- Finnish European, African American, Hispanic (USA, Iceland, Europe)	Population-based N=4,244	-	GWAS of hepatic steatosis measured by CT	NA
Strnad, Buch, & Hamesch, 2018; Adult (42,43)	Non-Finnish European (Germany, Austria, & Switzerland)	Case-control Hospital-based N=1184	573 (48.4%)	Adults with NAFLD diagnosed by LB	672
Emdin, 2019; Adult (26)	Non-Finnish European (UK)	Population-based N=77,464	42,144 (54%)	Adults with coded diagnosis of NAFLD and/or cirrhosis	NA
Reichert, 2019; Adult (44)	Non-Finnish European (Germany)	Hospital-based N= 54	24 (42.1%)	Adults with NAFLD cirrhosis diagnosed by LB, or US/MRI/CT	NA
Guzman, 2018; Adult (27)	Mixed: Hispanic and non-Hispanic (USA)	Case-control N=246 (GLDI study)	104 (42.3%) 57	Adults with Type 2 Diabetes with hepatic steatosis measured by MRI	NA

		Case-control	(36.1%)		
		N=158 (GLDJ			
		study)			
Wattacheril,	Hispanic	Cases-only	0	GWAS of Hispanic boys with NAFLD	208
2017;	(USA)	N=208	(all male)	diagnosed by LB	
Paediatric (28)					
Chatterjee, 2018;	South Asian	Hospital-based	138 (38.9%)	GWAS of adults with NAFLD	132
Adult (29)	(India)	N=354		diagnosed by LB or US	
Abeysekera,	Non-Finnish	Population-based	1,781 (61%)	GWAS data from the ALSPAC birth	NA
2019 (30,31,45);	European	N=2,919		cohort study with steatosis diagnosed	
Adult	(UK)			using CAP >280kPa	

Table 1. Characteristic of studies included in the meta-analysis. ALSPAC, Avon Longitudinal Study of Parents and Children; CAP, controlled attenuation parameter; CT, computerized tomography; DHS, Dallas Heart Study; GWAS, genome-wide association study; LB, liver biopsy; LBC, Liver Biopsy Cohort; MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy; NA, not applicable; US, ultrasound.

<Table 1.>

360 In total, 134,015 individuals (4,174 children) were included in the meta-

analysis. Most studies were in adults (24/31, 77%) and in individuals of

362 European ancestry (21/31, 68%). Of the 31 included studies, 15 (totaling

- 363 7,692 unique participants, hereof 345 children) reported data on liver
- histology.
- 365

366 Liver fat, NAFLD, and severe steatosis in adults

367 Seven studies (21,924 participants) reported data on hepatic fat as a

368 continuous variable assayed by CT or MR (1,19,27,29,40). In meta-analysis

across these seven studies, rs641738 was associated with increased liver fat,

370 with a per T-allele increase of 0.05 (95% CI 0.01 - 0.09) standard deviations in

inverse normalized liver fat (Figure 1). There was significant heterogeneity

- between studies with $I^2 = 67\%$ and $Tau^2 = .002$. This trend of association
- 373 remained on sub-analysis including only cohorts with Caucasian (European)

374 ethnicity (Supplementary Figure 2).

375

376

- 377 Figure 1. The effect of rs641738C>T on liver fat. Data from 21,924
- 378 individuals with CT or MRI liver fat. T-allele was associated with a small
- 379 increase in liver fat, where data represents standard deviation change in
- 380 normalized liver fat per T-allele. CGPS, Copenhagen General Population
- 381 Study; CI, confidence interval; ES, effect summary; GOLD, Genetics of Liver
- 382 Disease; N, number of individuals included; UKBB, UK BioBank.
- 383
- 384 The rs641738 variant C>T was also associated with NAFLD as a trait (OR
- 1.08 (95% CI 1.01, 1.15) using an additive model of inheritance (Figure 2A).
- 386 Sensitivity analysis using the leave-one-out method did not demonstrate any
- individual study to affect the estimate (Supplementary Figure 3) and there was
- no evidence of study distribution bias on funnel plot (Egger's test p=0.23,
- 389 **Supplementary Figure 4**). The trend of a positive association was seen on
- 390 sub-analysis in Caucasians (OR 1.10 (95% CI 0.99, 1.21), Supplementary
- 391 Figure 5A).
- 392

Α	Steate	eis	No ste	atosis	NAFLD			
Study	T-alleles	Total	T-allele	s Total	diagnosis	OR	95% CI	Weight
Mancina 2016 (Black)	225	646	631	2010	<u>↓ .</u>	1.17	[0.97; 1.41]	7.9%
Kawaguchi 2018	402	1802	3361	15342		1.02	0.91; 1.15]	12.5%
Koo 2018	164	730	39	192		1.14	[0.77; 1.68]	2.6%
Di Costanzo 2018	209	436	187	454		1.31	[1.01; 1.71]	4.9%
Di Stefano 2015	1224	2748	450	954		0.90	[0.78; 1.04]	10.3%
Donati 2017	980	2144	248	568		1.09	[0.90; 1.31]	8.0%
Luukkonen 2016	77	176	23	54		— 1.05	[0.57; 1.94]	1.1%
Mancina 2016 (White)	281	610	461	1154		1.28	[1.05; 1.57]	7.4%
Mann 2018a (Fenland)	2044	4602	7494	17266		1.04	[0.98; 1.11]	16.9%
Mancina 2016 (Hispanic)	142	438	171	492		0.90	[0.69; 1.18]	4.7%
Chatterjee 2015	223	416	136	292		- 1.33	[0.98; 1.79]	4.1%
Mancina 2016 (LBC)	1050	2062	96	230		— 1.45	[1.10; 1.91]	4.6%
Sookoian 2018	298	744	219	524		0.93	[0.74; 1.17]	6.2%
Abeysekera 2019 (ALSPAC	;) 253	566	2356	5272		1.00	[0.84; 1.19]	8.6%
Random effects model		18120		44804	\diamond	1.08	[1.01; 1.15]	100%
Heterogeneity: I-squared=42.9%	%, tau-square	ed=0.00	6, p=0.044	6				
					0.75 1 1.5			
В					Sovere steatosis			
Otrada	S3		S0-2		(S0-2 vs S3)	0.0	050/ 01	M/- 1-1-4
Study	T-alleles T	otal T	alleles T	otal	(00-2 V3. 00)	OR	95% CI	weight
Koo 2018	40 1	80	126 5	554		0.97 [0.65; 1.45]	7.9%
Mancina 2016	220 4	44	788 18	354		1.33 [1.08; 1.64]	30.0%
Di Stefano 2015	179 3	60	1494 33	340		1.22 [0.98; 1.52]	27.3%
Donati 2017	230 4	70	670 15	552		1.26 [1.03; 1.55]	30.2%
Krawczyk 2018	28	50	32	76		- 1.75 [0.85; 3.60]	2.5%
Chatterjee 2015	17	28	142 2	264		1.33 [0.60; 2.94]	2.0%
Random effects model	15	32	76	640	\diamond	1.26 [1.12; 1.41]	100%
Heterogeneity: I-squared=0%	, tau-square	d=0, p=	0.7392			•	•	
					0.5 1 2			
					0.0 1 2			

³⁹³

394 Figure 2. rs641738C>T is associated with higher odds of diagnosis of

395 **NAFLD and histological severity of steatosis**. Data from 31,462 adults with

396 radiologically defined steatosis for presence versus absence of NAFLD (2A),

397 and from 4,572 adults with liver biopsy data for presence of severe steatosis

398 (S0-2 versus S3, 2B) using an additive model of inheritance. ALSPAC, Avon

399 Longitudinal Study of Parents and Children; LBC, Liver Biopsy Cohort.

- 400
- 401
- 402 In patients with NAFLD, rs641738C>T was associated with the presence of
- 403 severe steatosis (S0-2 vs. S3) on liver biopsy (OR 1.26 [95% CI 1.12, 1.41],
- 404 Figure 2B). This association remained on sub-analysis in Caucasian
- individuals (OR 1.28 [95% CI 1.14, 1.45], Supplementary Figure 5B). A similar
- 406 trend was observed using CAP and semi-quantitative ultrasound to assess

- 407 steatosis severity (β .02 (95% CI -.002, .04) standard deviations of inverse
- 408 normalized liver fat score per T-allele, Supplementary Figure 6).

410

411 Histological NASH in adults

- 412 Data from 9 studies (6,155 participants) showed that rs641738C>T was
- 413 positively associated with the presence of NASH on biopsy in adults (OR 1.11
- 414 (95% 1.02, 1.21, Figure 3). A similar magnitude of effect was observed on
- sub-analysis in Caucasian individuals (OR 1.13 (95% 1.01, 1.27,
- 416 **Supplementary Figure 7**).

417

	NA	SH	N	AFL	Presence of			
Study	T-allele	s Total	T-allele	s Total	NASH	OR	95% CI	Weight
Kawaguchi 2018	292	1276	110	526		1.12	[0.88; 1.44]	11.0%
Koo 2018	82	352	82	378		1.10	[0.77; 1.55]	5.6%
Di Stefano 2015	377	848	847	1900		1.00	[0.85; 1.17]	25.3%
Donati 2017	335	726	526	1192	- -	1.08	[0.90; 1.31]	19.5%
Dongiovanni 2018 (LBC)	299	620	1020	2404		1.26	[1.06; 1.51]	21.4%
Luukkonen 2016	24	50	53	126		- 1.27	[0.66; 2.45]	1.6%
Strnad 2018	95	188	354	812		1.32	[0.96; 1.82]	6.6%
Sookoian 2018	172	436	102	270		1.07	[0.79; 1.47]	6.9%
Chatterjee 2015	50	88	72	118		0.84	[0.48; 1.47]	2.1%
Random effects model	tau-sau	4584 ared-0	n-0 6278	7726	\$	1.11	[1.02; 1.21]	100%
neterogeneny. Psquareu_0/6	,944	<i>ai</i> cu_0,	p=0.0270		ГÌ			
					0.5 1 2			

418

419 Figure 3. rs641738C>T is associated with higher odds of NASH on

- 420 **biopsy**. Data from 6,155 adults with NASH defined according to the FLIP
- 421 algorithm for NAFL versus NASH, using an additive model of inheritance.
- 422 NAFL, non-alcoholic fatty liver.

423

- 424
- 425 **Fibrosis in adults**

426	Data from 8 studies	(82,857 adults,	6,787 with	liver biops	y data) were
-----	---------------------	-----------------	------------	-------------	--------	--------

- 427 included in meta-analysis of fibrosis. Our primary outcome, presence of
- 428 advanced fibrosis in adults (stage F0-2 versus stage F3-4), was positively
- 429 associated with T-allele (OR 1.14 (95% 1.05, 1.23), Figure 4A) in adults.
- 430 Sensitivity analysis, including omission of coded cirrhosis data from Emdin et
- 431 *al.*(26), did not alter the effect summary (Supplementary figure 8). Presence of
- 432 any fibrosis (stage 0 versus stage 1-4) was also positively associated with
- 433 rs641738C>T (OR 1.14 (95% 1.01, 1.28), Figure 4B). On sub-analysis of
- 434 Caucasian individuals, rs641738C>T was associated with advanced fibrosis
- 435 (OR 1.16 (95% 1.06, 1.26)) but not with any fibrosis (OR 1.15 (95% 0.99,
- 436 1.34)) despite a positive trend (Supplementary figure 9).
- 437

Α	F3	3-4	F	0-2	Advanced fibrosis			
Study	T-allele	s Tota	al T-allele	es Total	or cirrhosis	OR	95% CI	Weight
Kawaguchi 2018	103	456	211	926	ŧ	0.99	[0.76; 1.29]	8.6%
Koo 2018	25	110	178	812	<u>_</u>	1.05	[0.65; 1.69]	2.7%
Di Stefano 2015	75	162	1613	3570		1.05	[0.76; 1.43]	6.2%
Donati 2017	209	420	489	1110	!=	1.26	[1.00; 1.58]	12.3%
Dongiovanni 2018 (LBC)	144	304	1180	2726	-	1.18	[0.93; 1.50]	11.0%
Emdin 2019	619 -	1314	66393	152230	+	1.15	[1.03; 1.28]	52.4%
Luukkonen 2016	5	6	95	224	+	- 6.79	[0.78; 59.07]	0.1%
Strnad 2018	91	192	531	1152	÷	1.05	[0.78; 1.43]	6.6%
Random effects model	:	2964		162750	¢	1.14	[1.05; 1.23]	100%
Heterogeneity: I-squared=0%, t	au-squar	red=0, µ	<i>b=0.6353</i>					
					0.1 0.51 2 10			
В	F.			50	Any fibrosis			
Study	г. - т. н. н.	-4		FU 	(F0 vs. F1-4)		05% CI	Waight
	I-allele			es lotal				weight
Kawaguchi 2018	216	952	186	850		1.05	[0.84; 1.31]	13.6%
K00 2018	147	640	56	282		1.20	[0.85; 1.70]	8.2%
DI Stefano 2015	325	/58	1363	2974		0.89	[0.76; 1.04]	17.4%
Donati 2017	543	1186	320	/38		1.10	[0.92; 1.33]	15.8%
Dongiovanni 2018 (LBC)	//1	1/12	553	1318		1.13	[0.98; 1.31]	18.5%
Krawczyk 2017	190	384	84	206		1.42	[1.01; 2.00]	8.3%
Luukkonen 2016	44	94	56	136		- 1.26	[0.74; 2.14]	4.3%
Strnad 2018	315	618	307	726		1.42	[1.14; 1.76]	13.9%
Random effects model		6344	ŀ	7230	\diamond	1.14	[1.01; 1.28]	100%
Heterogeneity: I-squared=53.9	9%, tau-s	quared	l=0.0146, p	b=0.0335				
					1 1 1			

439 Figure 4. rs641738C>T is associated with increased fibrosis in NAFLD. A,

440 data from 6,787 adults with biopsy-proven NAFLD (plus coding data from

- 441 Emdin et al.) comparing advanced fibrosis (F3-4) versus F0-2, using an
- 442 additive model of inheritance. B, data from 6,787 adults with biopsy-proven
- 443 NAFLD comparing any fibrosis (F1-4) versus no fibrosis F0.
- 444

445 **Development of hepatocellular carcinoma**

- 446 Five cohorts (3,803 participants, 360 cases of NAFLD-HCC) reported on
- 447 development of HCC in patients with NAFLD. Presence of T-allele was
- 448 associated with increased odds of HCC in NAFLD (OR 1.43 (95% CI 1.22,
- 449 1.67, Figure 5).

450

Study	HC T-allele	CC s Total	No T-allele	HCC es Total	He	patocellular carcinoma	OR	95% CI	Weight
Donati 2017 (Italian)	142	262	839	1884			— 1.47	[1.14; 1.91]	37.4%
Donati 2017 (UK)	21	40	303	676	-		1.36	[0.72; 2.58]	6.2%
Dongiovanni 2018b	139	264	1146	2686			— 1.49	[1.16; 1.93]	39.2%
Kawaguchi 2018	30	116	342	1570		-	— 1.25	[0.81; 1.93]	13.4%
Reichert 2019	23	38	41	70			1.08	[0.48; 2.43]	3.9%
Random effects model		720		6886			1.43	[1.22; 1.67]	100%
Heterogeneity: I-squared=0%	s, tau-squa	ared=0,	p=0.9094	4					
						1			
					0.5	1	2		

- 452 Figure 5. rs641738C>T is associated with higher odds of NAFLD-HCC.
- 453 Data from 3,803 adults with NAFLD assessing for the presence versus
- 454 absence of HCC, using an additive model of inheritance.
- 455

451

456

457 Effect on aminotransferases, lipids, and fasting insulin

- 458 Data from 12 studies (17,148 participants) was available for meta-analysis of
- 459 serum biochemical parameters. T-allele was associated with lower
- 460 triglycerides (mean difference CC versus TT genotype -3.7 mg/dL (95% CI -

- 461 7.2, -0.2)) but no other effect on aminotransferases, serum lipids, or fasting
- 462 insulin (Table 2).

	Numbe			Random effects			
	r of cohorts	Pq	 2	Mean differenc e	[95% CI]	Pz	
ALT, IU/L (n=17,102)	14	.44	.01	27	91, 0.37	.41	
Triglycerides, mg/dL (n=17,148)	15	.19	.23	-3.71	-7.22,20	.04	
Total cholesterol, mg/dL (n=16,822)	13	.009	.52	.45	-2.41, 3.31	.76	
High-density lipoprotein, mg/dL (n=9,843)	10	.08	.39	26	-1.31, .80	.63	
Low density lipoprotein, mg/dL (n=8,800)	7	.18	.30	2.06	30, 4.42	.09	
Fasting insulin, mU/L (n=6,269)	4	.004	.71	66	-2.52, 1.20	.49	

464

Table 2. Meta-analysis for the effect of rs641738C>T on biochemical indices liver
damage dyslipidemia, and insulin resistance. Data represents the mean difference
between CC and TT genotypes using random effects. N represents the sum of
individuals with CC and TT genotypes included in each analysis.

469

470

471

472 **Disease outcomes in adults**

473 Using data from previous meta-analyses via Phenoscanner and UK BioBank

- 474 data via GeneAtlas, rs641738C>T was weakly positively associated stroke (β
- 475 0.0007, p=0.004), Supplementary table 2). There was no evidence of an
- 476 association with type 2 diabetes, coronary artery disease, or chronic kidney
- 477 disease. It was also associated with higher alkaline phosphatase (β 0.005,
- 478 p=6.1x10⁻⁶).
- 479

480 Effect of rs641738C>T on paediatric NAFLD

- 481 Data from seven studies (4,174 children) was used in the meta-analysis.
- 482 rs641738C>T was not significantly associated with any disease outcome
- 483 studied (Supplementary table 3 and Supplementary Figure 10). However
- 484 there was a trend towards increasing hepatic fat fraction (0.19 SD (95% CI -
- 485 0.05, 0.42)) and severity of steatosis (OR 1.21 (95% 0.89, 1.64)).
- 486
- 487
- 488
- 489
- 490
- 491

492 **DISCUSSION**

493 Identification of genetic variants associated with NAFLD has the potential to

494 inform pre-clinical research and our understanding of hepatic metabolism. In

this meta-analysis we have validated the importance of rs641738C>T near

496 *MBOAT7* on the full spectrum of NAFLD in adults.

497

498 A two-stage GWAS initially identified rs641738C>T as a genome-wide

499 significant locus for alcohol-related cirrhosis(3). *MBOAT7* was a potentially

500 interesting target as an enzyme involved in (phosphor)lipid metabolism,

501 conceptually similar to other SNVs at GWAS-significance in alcoholic and

502 non-alcoholic liver disease, namely TM6SF2 and PNPLA3. Later studies

503 found the variant to influence the full spectrum of fatty liver disease, from

504 steatosis to NASH, to fibrosis, cirrhosis and HCC(4,8). However, these

505 associations have not been consistently replicated in the literature(11). We

506 conducted a meta-analysis to firmly establish the association of rs641738C>T

507 with NAFLD.

508

509 Main findings

510 We found that the T-allele of rs641738C>T was associated with higher liver

511 fat content, and with an increased risk of NASH, fibrosis, and HCC. The

512 effects sizes of rs641738C>T reported here are small compared to those of

513 PNPLA3 p.I148M and TM6SF2 p.E167K, the two strongest steatogenic

514 variants(2). Also, unlike NASH-associated variants in *PNPLA3*, *HSD17B13*,

515 MARC1, and TM6SF2, there was no association between this MBOAT7

516 variant and alanine or aspartate aminotransferase. The marginal positive

517 effect of this variant on hepatic triglyceride content may suggest alterations in 518 the composition of hepatic lipid, rather than quantity(8). This is consistent with 519 pre-clinical data on lipotoxicity, where the composition of hepatic fats 520 influence development of NASH. On the other hand, a recent Mendelian 521 randomization study using these variables as instruments to assess causality 522 of fatty liver in determining fibrosis has shown the effect of steatosis highly 523 correlates with fibrosis in all the genetic variables indicating that quantity of 524 lipid rather than quality may be more important(19). Functional studies are 525 needed to understand the relationship between quality/quantity of fat and 526 hepato-toxic/-protective mechanism in causing progression of disease.

527

528 The function of this variant is still relatively poorly understood and there is 529 conflicting evidence as to whether rs641738 is associated with changes in 530 hepatic expression of *MBOAT7*. Results from the GTEx Consortium show a 531 strong negative association with T-allele(7), which is supported by data from 532 Schadt et al.(46). *MBOAT7* protein expression correlated with mRNA in liver 533 biopsies from Mancina et al.(4) but this finding was not replicated by Sookoian et al.(11). MBOAT7 encodes LPIAT1, a 6 transmembrane domain protein 534 535 involved in acyl-chain remodeling of membranes that influence intracellular 536 membrane composition and circulating phosphatidylinositols(8). Further 537 recent metabolite profiling data implicates MBOAT7 as the causal gene for 538 this SNV(24). Moreover, TMC4 was found with a low expression in the liver(4) 539 that is consistent with no mechanistic data supporting its role in NAFLD. 540

The hypothesis that *MBOAT7* is the causal gene underlying the association 541 542 with liver disease at the locus is supported by the observation that mice 543 deficient for MBOAT7 have altered hepatic concentrations of polyunsaturated 544 phosphatidylinositol(47). Similarly, metabolite data from humans is strongly suggestive that rs641738C>T reduces MBOAT7 function(48). In addition, loss 545 546 of MBOAT7, but not TMC4, increases the severity of NAFLD in mice fed a 547 high-fat diet(49). It is not known whether these genetically modified animals 548 have increased susceptibility to HCC.

549

550 This variant shows a particularly strong association with development of HCC.

551 It is unclear whether this reflects the effect on NASH-fibrosis or if there is a

specific causal relationship between *MBOAT7* and HCC.

553

554 We found no evidence of rs641738 on insulin resistance: the key driver of 555 hepatic steatosis, as determined by unaltered fasting insulin concentrations. 556 GWAS meta-analyses of type 2 diabetes have implicated p.I148M in PNPLA3 557 and p.E167K in TM6SF2 as significant risk loci (albeit with very modest effect size as compared to their effects on liver disease) and a Mendelian 558 559 randomization study indicates a causal role in determining insulin resistance 560 mediated by the degree of liver damage(19). Similarly, these two variants are 561 associated with reduced risk of coronary artery disease whereas rs641738 562 has no effect. It does, however, appear to be weakly associated with higher 563 prevalence of stroke in the UK BioBank(17). Our analysis also found lower 564 serum triglycerides in those with TT-genotype versus CC-genotype, though this was not replicated in the Global Lipid Genetic Consortium data(50). 565

567 There is some evidence that genetic variants affect response to drug

568 treatment (for *PNPLA3*) but this is yet to be explored for *MBOAT7*. It will be

569 equally interesting to assess whether somatic genotype of variants associated

570 with HCC affects treatment response.

571

572 A strength of this analysis is the inclusion of data from individuals of multiple

573 ethnicities (and genetic ancestries). We found no difference in the impact of

574 the variant on liver disease among Caucasian and non-Caucasian individuals.

575 Another strength is the large number of individuals with liver biopsy-derived 576 phenotypic data.

577

578 Limitations and quality of evidence

An important practical consideration is the population frequency of this variant in different ethnicities. The mean allelic frequency of the effect (T-)allele is highly variable: from 0.24 in East Asians compared to 0.53 in those of South Asian ancestry.

583

584 Studies measured hepatic fat using several different imaging modalities,

585 which have varying sensitivity for quantification of liver fat. This may have

586 accounted for some of the heterogeneity observed in these analyses. There

587 was a trend towards more positive associations in population-based studies

using more sensitive techniques (MRI or MRS). It is possible that weighting

589 towards large CT-based studies could have underestimated the true effect

590 size.

592	We found significant differences between adult and paediatric histological
593	analyses though a consistent trend was observed in the analysis of hepatic fat
594	fraction. There are several potential reasons, including: sample size
595	insufficient to demonstrate an effect, variations in imaging quantification of fat,
596	too few clinical events (i.e. with fibrosis) to demonstrate an effect, different
597	histology of paediatric NASH, or a true alternative effect of this variant on
598	paediatric NAFLD.
599	
600	Though there was minimal heterogeneity across included studies, the
601	numbers of individuals with NAFLD and HCC were comparatively low. Further
602	work in this area may improve the accuracy of effect estimates.
603	
604	Conclusions
605	rs641738C>T near MBOAT7 increases risk of NASH, fibrosis, and HCC in
606	NAFLD with a small, positive effect on total liver fat and no impact on insulin
607	resistance. These data validate this locus as significant in the pathogenesis of
608	NAFLD.
609	
610	

611

612 **ACKNOWLEDGEMENTS**

613 The authors are grateful to the Raine Study participants and their families,

and to the Raine Study research staff for cohort coordination and data

615 collection. The authors gratefully acknowledge the following institutes for

616 providing funding for Core Management of the Raine Study: The University of 617 Western Australia (UWA), Curtin University, the Raine Medical Research Foundation, the UWA Faculty of Medicine, Dentistry and Health Sciences, the 618 619 Telethon Kids Institute, the Women and Infants Research Foundation (King 620 Edward Memorial Hospital) and Edith Cowan University). 621 We are extremely grateful to all the families who took part in the ALSPAC 622 study, the midwives for their help in recruiting them, and the whole ALSPAC 623 team, which includes interviewers, computer and laboratory technicians, 624 clerical workers, research scientists, volunteers, managers, receptionists and 625 nurses. 626 This study has been conducting using data from the Fenland study. The 627 authors gratefully acknowledge the help of the MRC Epidemiology Unit 628 Support Teams, including Field, Laboratory and Data Management Teams. The authors are grateful to the members of the EU-PNAFLD Registry, 629 630 including Anita Vreugdenhil, Anna Alisi, Piotr Socha, Wojciech Jańczyk, Ulrich 631 Baumann, Sanjay Rajwal, Indra van Mourik, Florence Lacaille, Myriam 632 Dabbas, Deirdre A. Kelly, Quentin M. Anstee and the late Valerio Nobili. We would also like to thank Naga Chalasani for his helpful comments. This 633 634 research has made use of the UK Biobank resource under project number 635 9914.

636

637 **REFERENCES**

- 1. Speliotes EK, Yerges-armstrong LM, Wu J, Hernaez R, Lauren J,
- 639 Palmer CD, et al. Genome-Wide Association Analysis Identifies
- 640 Variants Associated with Nonalcoholic Fatty Liver Disease That Have
- Distinct Effects on Metabolic Traits. Plos Genet. 2011;7:e1001324.
- 642 2. Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and
- 643 NASH: Clinical impact. J. Hepatol. [Internet]. 2018;68:268–279.
- 644 Available from: https://doi.org/10.1016/j.jhep.2017.09.003
- 645 3. Buch S, Stickel F, Trépo E, Way M, Herrmann A, Nischalke HD, et al. A
- 646 genome-wide association study confirms PNPLA3 and identifies
- 647 TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat.
- 648 Genet. [Internet]. 2015;47:1443–1448. Available from:
- 649 http://dx.doi.org/10.1038/ng.3417
- 4. Mancina RM, Dongiovanni P, Petta S, Pingitore P, Meroni M, Rametta
- 651 R, et al. The MBOAT7-TMC4 Variant rs641738 Increases Risk of
- 652 Nonalcoholic Fatty Liver Disease in Individuals of European Descent.
- 653 Gastroenterology. 2016;150:1219-1230e6.
- 5. Donati B, Dongiovanni P, Romeo S, Meroni M, McCain M, Miele L, et al.
- 655 MBOAT7 rs641738 variant and hepatocellular carcinoma in non-
- 656 cirrhotic individuals. Sci. Rep. [Internet]. 2017;7:4492. Available from:
- 657 http://www.nature.com/articles/s41598-017-04991-0
- 658 6. Gijón MA, Riekhof WR, Zarini S, Murphy RC, Voelker DR.
- 659 Lysophospholipid acyltransferases and arachidonate recycling in human
 660 neutrophils. J. Biol. Chem. 2008;283:30235–30245.
- 661 7. Consortium TGte. The Genotype-Tissue Expression (GTEx) project.

662 Nat. Genet. 2013;45:580–585.

663	8.	Luukkonen PK, Zhou Y, Hyötyläinen T, Leivonen M, Arola J, Orho-
664		Melander M, et al. The MBOAT7 variant rs641738 alters hepatic
665		phosphatidylinositols and increases severity of non-alcoholic fatty liver
666		disease in humans. J. Hepatol. [Internet]. 2016;65:1263–1265.
667		Available from:
668		http://www.sciencedirect.com/science/article/pii/S0168827816304214
669	9.	Krawczyk M, Rau M, Schattenberg JM, Bantel H, Pathil A, Demir M, et
670		al. Combined effects of the PNPLA3 rs738409, TM6SF2 rs58542926,
671		and MBOAT7 rs641738 variants on NAFLD severity: a multicenter
672		biopsy-based study. J. Lipid Res. [Internet]. 2017;58:247–255. Available
673		from: http://www.jlr.org/lookup/doi/10.1194/jlr.P067454
674	10.	Koo BK, Joo SK, Kim D, Bae JM, Park JH, Kim JH, et al. Additive
675		effects of PNPLA3 and TM6SF2 on the histological severity of non-
676		alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2018;33:1277-
677		1285.
678	11.	Sookoian S, Flichman D, Garaycoechea ME, Gazzi C, Martino JS,
679		Castaño GO, et al. Lack of evidence supporting a role of TMC4-
680		rs641738 missense variant - MBOAT7- intergenic downstream variant -
681		In the Susceptibility to Nonalcoholic Fatty Liver Disease. Sci. Rep.
682		2018;8:5097.
683	12.	Umano GR, Caprio S, Di Sessa A, Chalasani N, Dykas DJ, Pierpont B,
684		et al. The rs626283 variant in the MBOAT7 gene is associated with
685		insulin resistance and fatty liver in Caucasian obese youth. Am. J.
686		Gastroenterol. [Internet]. 2018;113:376–383. Available from:

- 687 http://dx.doi.org/10.1038/ajg.2018.1
- 13. Hudert CA, Selinski S, Rudolph B, Bläker H, Christoph, Loddenkemper,
- 689 et al. Genetic determinants of steatosis and fibrosis progression in
- 690 pediatric non-alcoholic fatty liver disease. Liver Int. 2018;In Press:doi:
- 691 10.1111/liv.14006.
- 692 14. Johansen A, Rosti RO, Musaev D, Sticca E, Harripaul R, Zaki M, et al.
- 693 Mutations in MBOAT7, Encoding Lysophosphatidylinositol
- 694 Acyltransferase I, Lead to Intellectual Disability Accompanied by
- 695 Epilepsy and Autistic Features. Am. J. Hum. Genet. 2016;99:912–916.
- 15. Pelusi S, Baselli G, Pietrelli A, Dongiovanni P, Donati B, McCain MV, et
- al. Rare Pathogenic Variants Predispose to Hepatocellular Carcinoma
- in Nonalcoholic Fatty Liver Disease. Sci. Rep. 2019;9:1–10.
- 699 16. Staley JR, Blackshaw J, Kamat MA, Ellis S, Surendran P, Sun BB, et al.
- 700 PhenoScanner: A database of human genotype-phenotype

associations. Bioinformatics. 2016;32:3207–3209.

- 17. Canela-Xandri O, Rawlik K, Tenesa A. An atlas of genetic associations
- in UK Biobank. Nat. Genet. [Internet]. 2018;50:1593–1599. Available
- from: http://www.ncbi.nlm.nih.gov/pubmed/30349118
- 18. De Lucia Rolfe E, Brage S, Sleigh A, Finucane F, Griffin SJ, Wareham
- 706 NJ, et al. Validity of ultrasonography to assess hepatic steatosis
- compared to magnetic resonance spectroscopy as a criterion method in
 older adults. PLoS One. 2018;13:87–99.
- 19. Dongiovanni P, Stender S, Pietrelli A, Mancina RM, Cespiati A, Petta S,
- 710 et al. Causal relationship of hepatic fat with liver damage and insulin
- resistance in nonalcoholic fatty liver. J. Intern. Med. 2018;283:356–370.

Krawczyk M, Bantel H, Rau M, Schattenberg JM, Grünhage F, Pathil A,
et al. Could inherited predisposition drive non-obese fatty liver disease?
Results from German tertiary referral centers. J. Hum. Genet. [Internet].
2018;63:621–626. Available from: http://dx.doi.org/10.1038/s10038-0180420-4

- DiStefano JK, Kingsley C, Craig Wood G, Chu X, Argyropoulos G, Still
 CD, et al. Genome-wide analysis of hepatic lipid content in extreme
 obesity. Acta Diabetol. 2014;52:373–382.
- 22. Adams LA, White SW, Marsh JA, Lye SJ, Connor KL, Maganga R, et al.
- Association between liver-specific gene polymorphisms and their
 expression levels with nonalcoholic fatty liver disease. Hepatology.
 2013;57:590–600.
- 724 23. Stender S, Smagris E, Lauridsen BK, Kofoed KF, Nordestgaard BG,
- Tybjærg-Hansen A, et al. Relationship between genetic variation at
 PPP1R3B and levels of liver glycogen and triglyceride. Hepatology.
 2018;67:2182–2195.
- 228 24. Mann JP, Pietzner M, Wittemans LB, Rolfe EDL, Kerrison N, Allison
- 729 ME, et al. Metabolomic patterns associated with known genetic variants
- 730 for hepatic steatosis and non-alcoholic steatohepatitisidentify
- biomarkers that may be of utility in predicting adverse liver outcomes. J
 Hepatol. 2018;68:S331–S332.
- Kawaguchi T, Shima T, Mizuno M, Mitsumoto Y, Umemura A, Kanbara
 Y, et al. Risk estimation model for nonalcoholic fatty liver disease in the
 Japanese using multiple genetic markers. PLoS One. 2018;13:1–16.
- 736 26. Emdin CA, Haas M, Khera A V, Aragam K, Chaffin M, Jian L, et al. A

- 737 missense variant in Mitochondrial Amidoxime Reducing Component 1
- 738 gene and protection against liver disease. bioRxiv.
- 739 2019;http://dx.doi.org/10.1101/594523.
- 740 27. Guzman CB, Duvvuru S, Akkari A, Bhatnagar P, Battioui C, Foster W,
- et al. Coding variants in PNPLA3 and TM6SF2 are risk factors for
- 742 hepatic steatosis and elevated serum alanine aminotransferases
- caused by a glucagon receptor antagonist . Hepatol. Commun.

744 2018;2:561–570.

- 28. Wattacheril J, Lavine JE, Chalasani NP, Guo X, Kwon S, Schwimmer J,
- et al. Genome-Wide Associations Related to Hepatic Histology in
- 747 Nonalcoholic Fatty Liver Disease in Hispanic Boys. J. Pediatr. [Internet].
- 748 2017;190:100-107.e2. Available from:
- 749 https://doi.org/10.1016/j.jpeds.2017.08.004
- 750 29. Chatterjee A, Das K, Singh P, Mondal D, Ghosh R, Chowdhury A, et al.
- 751 Exome-wide association study with hepatic fat content in nonalcoholic
- fatty liver disease reveals significant association with 5 novel QTLs.
- 753 Hepatol. Int. 2018;12:181.
- 30. Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al.
 Cohort profile: The 'Children of the 90s'-The index offspring of the avon
 longitudinal study of parents and children. Int. J. Epidemiol.
- 757 2013;42:111–127.
- 31. Northstone K, Lewcock M, Groom A, Boyd A, Macleod J, Timpson N, etal. The Avon Longitudinal Study of Parents and Children (ALSPAC): an
- ⁷⁶⁰ updated on the enrolled sample of index children in 2019. Wellcome
- 761 Open Res. 2019;4:doi.org/10.12688/wellcomeopenres.15132.1.

762	32.	Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG.
763		Research electronic data capture (REDCap)-A metadata-driven
764		methodology and workflow process for providing translational research
765		informatics support. J. Biomed. Inform. 2009;42:377–381.
766	33.	Martorell-Marugan J, Toro-Dominguez D, Alarcon-Riquelme ME,
767		Carmona-Saez P. MetaGenyo: A web tool for meta-analysis of genetic
768		association studies. BMC Bioinformatics. 2017;18:1–6.
769	34.	Di Sessa A, Umano GR, Cirillo G, Del Prete A, Iacomino R, Marzuillo P,
770		et al. The Membrane-bound O-Acyltransferase7 rs641738 Variant in
771		Pediatric Nonalcoholic Fatty Liver Disease. J. Pediatr. Gastroenterol.
772		Nutr. 2018;67:69–74.
773	35.	Di Costanzo A, Belardinilli F, Bailetti D, Sponziello M, D'Erasmo L,
774		Polimeni L, et al. Evaluation of Polygenic Determinants of Non-Alcoholic
775		Fatty Liver Disease (NAFLD) By a Candidate Genes Resequencing
776		Strategy. Sci. Rep. 2018;8:1–10.
777	36.	Dongiovanni P, Meroni M, Mancina RM, Baselli G, Rametta R, Pelusi S,
778		et al. Protein phosphatase 1 regulatory subunit 3B gene variation
779		protects against hepatic fat accumulation and fibrosis in individuals at
780		high risk of nonalcoholic fatty liver disease. Hepatol. Commun.
781		2018;2:666–675.
782	37.	Lin YC, Chang PF, Chang MH, Ni YH. Genetic determinants of hepatic
783		steatosis and serum cytokeratin-18 fragment levels in Taiwanese
784		children. Liver Int. 2018;38:1300–1307.
785	38.	Viitasalo A, Eloranta A-M, Atalay M, Romeo S, Pihlajamaki J, Lakka TA.
786		Association of MBOAT7 gene variant with plasma ALT levels in

787		children: the PANIC study. Pediatr. Res. 2016;80:651–655.
788	39.	Mann JP, Vreugdenhil A, Socha P, Jańczyk W, Baumann U, Rajwal S,
789		et al. European paediatric non-alcoholic fatty liver disease registry (EU-
790		PNAFLD): Design and rationale. Contemp. Clin. Trials. 2018;75:67–71.
791	40.	Lauridsen BK, Stender S, Kristensen TS, Kofoed KF, Køber L,
792		Nordestgaard BG, et al. Liver fat content, non-alcoholic fatty liver
793		disease, and ischaemic heart disease: Mendelian randomization and
794		meta-analysis of 279 013 individuals. Eur. Heart J. 2018;39:385–393.
795	41.	Luukkonen PK, Sädevirta S, Zhou Y, Kayser B, Ali A, Ahonen L, et al.
796		Saturated fat is more metabolically harmful for the human liver than
797		unsaturated fat or simple sugars. Diabetes Care. 2018;41:1732–1739.
798	42.	Strnad P, Buch S, Hamesch K, Fischer J, Rosendahl J, Schmelz R, et
799		al. Heterozygous carriage of the alpha1-antitrypsin Pi*Z variant
800		increases the risk to develop liver cirrhosis. Gut [Internet]. 2018;Epub
801		ahead:doi: 10.1136/gutjnl-2018-316228. Available from:
802		http://gut.bmj.com/lookup/doi/10.1136/gutjnl-2018-316228
803	43.	von Schönfels W, Beckmann JH, Ahrens M, Hendricks A, Röcken C,
804		Szymczak S, et al. Histologic improvement of NAFLD in patients with
805		obesity after bariatric surgery based on standardized NAS (NAFLD
806		activity score). Surg. Obes. Relat. Dis. 2018;14:1607–1616.
807	44.	Reichert M, Ripoll C, Casper M, Horn P, Bruns T, Grünhage F, et al.
808		Increased prevalence of low-frequency and rare NOD2 variants in
809		patients with liver cirrhosis. J. Hepatol. 2019;70:e442.
810	45.	Abeysekera KW, Fernandes G, Hammerton G, Gordon F, Portal A,
811		Heron J, et al. The preavlence of non-alcoholic fatty liver disease in

812	young adults:	An impending public	health crisis? J. Hepatol.
-----	---------------	---------------------	----------------------------

813 **2019;70:e45**.

46. Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, et al.

815 Mapping the genetic architecture of gene expression in human liver.

- 816 PLoS Biol. 2008;6:1020–1032.
- 47. Lee H-C, Inoue T, Sasaki J, Kubo T, Matsuda S, Nakasaki Y, et al.
- 818 LPIAT1 regulates arachidonic acid content in phosphatidylinositol and is
- required for cortical lamination in mice. Mol. Biol. Cell. 2012;23:4689–
- 820 **4700**.
- 48. Shin S-Y, Fauman EB, Petersen A-K, Krumsiek J, Santos R, Huang J,
- 822 et al. An atlas of genetic influences on human blood metabolites. Nat

823 Genet [Internet]. 2014;46:543–550. Available from:

- 824 http://dx.doi.org/10.1038/ng.2982%5Cnhttp://www.nature.com/ng/journa
- 825 I/v46/n6/pdf/ng.2982.pdf
- 49. Helsley RN, Varadharajan V, Brown AL, Gromovsky AD, Schugar RC,
- 827 Ramachandiran I, et al. Obesity-linked suppression of membrane-
- bound O -acyltransferase 7 (MBOAT7) drives non-alcoholic fatty liver
 disease. Elife. 2019;8:e49882.
- 830 50. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni
- 831 S, et al. Discovery and refinement of loci associated with lipid levels.
- 832 Nat. Genet. 2013;45:1274–1285.
- 833