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 150 

ABSTRACT 151 

A common genetic variant near MBOAT7 (rs641738C>T) has been previously 152 

associated with hepatic fat and advanced histology in non-alcoholic fatty liver 153 



disease (NAFLD), however, these findings have not been consistently 154 

replicated in the literature. Therefore, we aimed to establish whether rs641738 155 

is a risk factor for NAFLD through meta-analysis. Data from 134,015 156 

participants (7,692 with liver biopsies and 50,680 with imaging) was included 157 

in the meta-analysis. The minor T-allele of rs641738C>T was associated with 158 

higher liver fat on CT/MRI using an additive genetic model (+0.05 standard 159 

deviations [95% CI: 0.01 – 0.09], p=0.025), and with an increased risk of 160 

NAFLD (per-allele OR: 1.08 [95% CI: 1.01 - 1.15]), nonalcoholic 161 

steatohepatitis (OR: 1.11 [95% CI: 1.02 - 1.21]), advanced fibrosis (OR: 1.14 162 

[95% CI: 1.05 - 1.23]), and hepatocellular carcinoma (OR: 1.43 [95% CI: 1.22 163 

- 1.67]) in adults with NAFLD. Sub-group analysis did not demonstrate a 164 

difference in Caucasians and non-Caucasians. Rs641738C>T was not 165 

associated with markers of insulin resistance but was associated with higher 166 

risk of stroke in the UK Biobank. These data validate rs641738C>T near 167 

MBOAT7 as a risk factor for the development, activity, and stage of NAFLD 168 

including hepatocellular carcinoma. 169 

 170 
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INTRODUCTION 179 

Since the first genome-wide association study (GWAS) of liver fat (1), more 180 

than 20 genetic single nucleotide variants (SNVs) have been associated with 181 

non-alcoholic fatty liver disease (NAFLD)(2). These studies have deepened 182 

our understanding of the condition, its heritability, and its relationship with 183 

cardio-metabolic disease. 184 

 185 

Rs641738C>T near MBOAT7 (membrane bound O-acyltransferase domain 186 

containing 7) was initially identified as a genome-wide significant risk locus for 187 

alcohol-related cirrhosis(3). It has since been implicated in the pathogenesis 188 

of NAFLD(4), hepatocellular carcinoma(5), as well as in fibrosis development 189 

in chronic hepatitis B and C.  190 

 191 

This SNV is located a few hundred base pairs downstream of the 3’ 192 

untranslated region of MBOAT7, which belongs to a family of genes that code 193 

for specific acyl donors and acceptors. MBOAT7 encodes 194 

lysophosphatidylinositol acyltransferase 1 (LPIAT1), which contributes to the 195 

regulation of free arachidonic acid in cells(6). Rs641738C>T is associated 196 

with lower hepatic expression of MBOAT7 at both the mRNA(7) and protein 197 

level(4). Given its role in inflammatory lipid pathways, most mechanistic work 198 

relating to rs641738 has focused on MBOAT7. 199 

 200 

In NAFLD, the rs641738 variant was first demonstrated to be associated with 201 

increased hepatic fat content and severity of fibrosis in individuals of 202 

European descent(4). Proton magnetic resonance spectroscopy data from 203 



2736 individuals showed a modest increase in hepatic fat in those with TT-204 

genotype (4.1%) compared to those with CT- (3.6%) or CC-genotype (3.5%) 205 

(p=.005). Follow-up studies of European subjects corroborated the initial 206 

findings, and suggested a role in development of hepatocellular 207 

carcinoma(8,9). However, these results were not replicated in adults of other 208 

genetic ancestries(4,10–12) or in children(13). It is recognised that 209 

investigation of candidate genes in relatively small cohorts can generate false-210 

positive findings. 211 

In addition, biallelic loss of function mutations in MBOAT7 cause autosomal 212 

recessive mental retardation 57 (OMIM #617188) and no liver phenotype has 213 

been reported in these patients to date(14), however, rare likely pathogenic 214 

variants in MBOAT7 are associated with HCC in NAFLD(15). In summary, the 215 

association between rs641738 and hepatic fat content, as well as its effects 216 

on severity of NAFLD, remain unclear. Moreover, the broader metabolic 217 

effects of this SNV, including its association with diabetes and cardiovascular 218 

outcomes, have not been assessed. 219 

 220 

Here, we conducted a large meta-analysis of published and unpublished data 221 

to determine if rs641738 influences the development or stage of NAFLD and 222 

associated cardio-metabolic phenotypes.  223 

224 



PATIENTS AND METHODS 225 

 226 

Data sources and study selection 227 

Two data sources were included in the meta-analysis: published studies (and 228 

abstracts) and unpublished GWAS (or targeted genotyping) data. 229 

 230 

Published studies were sourced through Medline and Embase using the 231 

search terms “(MBOAT7 or membrane-bound-o-acyltransferase) or (rs641738 232 

or rs626283) or (TMC4)”. There were no restrictions on date or language, and 233 

the study selection included all original studies including AASLD Liver Meeting 234 

and EASL meeting abstracts. The search was completed on 1st October 2019. 235 

Reference lists of relevant publications were also reviewed. Titles and 236 

abstracts were screened for eligibility independently by two authors, with 237 

inclusion/exclusion criteria applied to potentially eligible full texts. 238 

 239 

A search was conducted for all GWAS in NAFLD, NASH, and steatosis. 240 

Authors of all potentially relevant GWAS were contacted to request extraction 241 

of data regarding rs641738C>T. To assess for cardiometabolic phenotype 242 

associations, Phenoscanner(16) and GeneATLAS(17) were searched for 243 

summary statistics from published GWAS. 244 

 245 

HuGENet guidelines were followed throughout. This study was prospectively 246 

registered on PROSPERO Database of Systemic Reviews 247 

(CRD42018105507) Available from: 248 



http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42018105249 

507 250 

 251 

Inclusion and exclusion criteria 252 

Cohort and case-control studies related to NAFLD were included if genotyping 253 

of rs641738C>T (or other SNVs in linkage disequilibrium [LD, R2>0.8]) was 254 

conducted and data on one of the outcomes of interest were reported. Review 255 

articles, in vitro studies, and investigations involving animal, fish, and 256 

invertebrates were excluded. Studies which investigated liver disease of other 257 

etiologies were also excluded. 258 

 259 

Data collection 260 

For each study, data on participant demographics (sex, age, ethnicity) were 261 

collated. Hepatic steatosis or NAFLD (as diagnosis) was evaluated as a 262 

dichotomous variable where radiological assessment (liver ultrasound, 263 

controlled attenuation parameter [CAP, with cut-off >240m/s], CT, MRI) were 264 

used. Hepatic fat content (from CT, MRS, MRI, PDFF), serum lipid profile, 265 

fasting insulin, and alanine aminotransferase levels were collected as 266 

continuous variables. Hepatic fat content was also assessed using semi-267 

quantitative scoring in the Fenland cohort, as previously described(18), and 268 

using CAP. Histology data were extracted according to the NASH Clinical 269 

Research Network scoring system and, where not otherwise diagnosed by a 270 

pathologist’s assessment, NASH was defined using the Fatty Liver Inhibition 271 

of Progression (FLIP) algorithm. The above data were collected for each 272 

genotype separately (CC, CT, and TT). 273 



 274 

Phenoscanner was used to assess for disease associations with 275 

rs641738C>T at P<0.01. Phenotype associations were filtered for those 276 

related to cardio-metabolic and liver disease. 277 

 278 

The authors of 21 published studies were contacted for additional data, all of 279 

whom replied. Several studies reported outcomes from overlapping cohorts: 280 

ref (4) and ref (19); ref (9) and ref (20). In these instances, data only from the 281 

larger of the overlapping cohorts were included in analyses. 282 

 283 

Cohorts with genome-wide data 284 

The authors of 10 potentially relevant GWAS (and cohort studies with 285 

genome-wide data) were contacted, of which 9 replied and data were included 286 

from 7.. Densely imputed genotyping data were available for rs641738C>T in 287 

all with >0.98 call rate. These cohorts have been described elsewhere  and 288 

detailed description of the quality control processes for genome-wide data is 289 

available in their original descriptions(1,21,30,31,22–29), but in brief, single 290 

nucleotide polymorphisms (SNP) with Hardy-Weinberg equilibrium p-values 291 

<1x10-6 were excluded prior to imputation. Imputation was performed for 292 

variants with mean allele frequencies >.01 and with minimum imputation 293 

quality of >0.3. 294 

Previously unpublished data was included from the Avon Longitudinal Study 295 

of Parents and Children (ALSPAC)(30–32). This is a prospective, longitudinal 296 

study that originally enrolled 14,541 pregnancies with expected delivery dates 297 

between 1st April 1991-31st December 1992. After enrolment of 913 additional 298 



children at age 7, the total sample size is 15,454 pregnancies, resulting in 299 

15,589 foetuses. Of these 14,901 were alive at 1 year of age. Ethical approval 300 

for the study was obtained from the ALSPAC Ethics and Law Committee and 301 

the Local Research Ethics Committees. Data included in this meta-analysis 302 

was from individuals who had attended a study visit between 22 and 26 years 303 

of age for transient elastography measurement with controlled attenuation 304 

parameter (CAP). Please note that the ALSPAC study website contains 305 

details of all the data that is available through a fully searchable data 306 

dictionary and variable search tool 307 

(http://www.bristol.ac.uk/alspac/researchers/our-data). Data was included for 308 

meta-analysis where a CAP measurement was recorded and the participant 309 

had genotyping data for rs641738C>T, which left 2,919 individuals for 310 

inclusion. 311 

Unpublished data from the UK BioBank was extracted under Application ID 312 

9914 (‘Determining the Outcomes of People with Liver Disease’). 313 

 314 

Study quality assessment 315 

Two reviewers independently assessed risk of bias in each study by applying 316 

the Cochrane Risk of Bias in Cohort Studies tool. 317 

 318 

Statistical Analysis: 319 

For dichotomous outcomes, the effect statistic was calculated as an odds ratio 320 

between groups. Genetic association analyses were performed using an 321 

additive model to estimate the effect per T-allele as almost all included studies 322 

had used this model.  323 



For analysis of effect on liver fat, data were inverse normalized and an 324 

additive genetic model (coding the number of T alleles as 0, 1, and 2) was 325 

used with linear regression, adjusted for age, sex, and principal components 326 

of genetic ancestry (where available). In addition, data from the GOLD 327 

Consortium were adjusted for number of alcoholic drinks consumed. 328 

Continuous quantitative liver fat data (from CT, MRI, MRS, or PDFF) and 329 

semi-quantitative data (ultrasound and CAP) were analyzed separately. 330 

For other continuous variables, effect summary was calculated as a mean 331 

difference between CC and TT groups. 332 

Meta-analysis was performed using random effects throughout. 333 

Summary statistics were reported with 95% confidence intervals (CI). Data 334 

from paediatric and adult studies were analyzed separately. Sub-analysis was 335 

performed using only studies with Caucasian (Non-Finnish or Finnish 336 

European ethnicity) where data were available from at least four studies. This 337 

sub-analysis was selected due to initial identification of this variant in 338 

Caucasian individuals, further sub-analysis by ethnicity may be affected by 339 

differences in linkage disequilibrium between genetic ancestries. 340 

Leave-one-out sensitivity analysis was performed for all outcomes using 341 

additive model of inheritance and random effects. 342 

Heterogeneity between groups was described using the Q statistic and I2. 343 

Bias was assessed using Egger’s test and visually using funnel plots where 344 

more than 5 studies were included. P <0.025 (i.e. P<0.05/2) was considered 345 

statistically significant due to testing outcomes twice: in individuals of all 346 

ethnicities and Caucasians only. Analysis was performed using STATAv14 for 347 

Windows (StataCorp. 2015. Stata Statistical Software: Release 14. College 348 



Station, TX: StataCorp LP), DistillerSR Forest Plot Generator from Evidence 349 

Partners (https://evidencepartners.com/resources/forest-plot-generator/), 350 

GraphPad Prism (v8.0 for Mac, GraphPad Software, La Jolla California, USA), 351 

and MetaGenyo(33). 352 

 353 

354 



RESULTS 355 

Database search identified 405 abstracts, of which 18 studies were included. 356 

In addition, unpublished data were extracted from 12 cohorts (Table 1, 357 

Supplementary Fig. 1, and Supplementary Table 1). 358 



Study 
Age group 

Genetic 
ancestry 
(country) 

Study design 
and sample size 
(N) 

Female, 
n (%) 

Features and patient characteristics Liver 
biopsy 
(N) 

Published 
Di Sessa, 2018; 
Paediatric (34) 

Non-Finnish 
European 
(Italy) 

Cases-only  
Hospital-based 
N=1002 

466 (46.5%) Children with hepatic steatosis 
measured by US 

NA 

Di Costanzo, 
2018; 
Adult (35) 

Non-Finnish 
European 
(Italy) 

Case-control 
N=445 

150 (33.7%) Hepatic steatosis measured by US NA 

Dongiovanni, 
2018b; 
Adult (36) 

Mixed: Non-
Finnish European 
and Finnish 
European 

Cases-only 
N=1,388 (LBC) 

728 (52.4%) NAFLD diagnosed by LB (LBC) 1515 

Lin, 2018; 
Paediatric (37) 

East Asian 
(China) 

Population-based 
N=831 

257 (31.4%) Hepatic steatosis measured by US NA 

Viitasalo, 2016; 
Paediatric (38) 

Finnish European 
(Finland) 

Population-based 
N=512 

222 (47.5%) Population cohort of children with 
measurement of ALT 

NA 

Koo, 2018; 
Adult (10) 

East Asian 
(Korea) 

Case-control 
Hospital-based 
N=525 

264 (50.3%) Adults with NAFLD diagnosed by LB, 
or US/MRI/CT 

416 

Published and unpublished data 
Hudert, 2018; 
Paediatric (13) 

Non-Finnish 
European 
(Germany) 

Case-control 
Hospital-based  
N=270 
 

92 (34%) Patients: children with NAFLD 
diagnosed by LB 
Controls: healthy population (adult) 
controls 

70 

Mann, 2018a; 
Adult (24) 

Non-Finnish 
European 

Population cohort 
N=10,934 

5,823 
(53.2%) 

Hepatic steatosis measured by US NA 



(England) 
Mann, 2018b; 
Paediatric (39) 

Non-Finnish 
European 
(Italy) 

Hospital-based 
N=67 

34 (50.7%) Children with NAFLD diagnosed by LB 67 

Umano, 2018; 
Paediatric (12) 

Mixed: Non-
Finnish 
European, 
African American, 
Hispanic 
(USA) 

Cases-only 
Hospital-based 
N=860 

509 (59.2%) Hepatic steatosis measured by MRI NA 

Krawczyk, 2018; 
Adult (20) 

Non-Finnish 
European 
(Germany) 

Cases-only 
N=237 

24 (38.1%) Adults with NAFLD diagnosed by LB, 
or US/MRI/CT 

63 

Krawczyk, 2017; 
Adult (9) 

Non-Finnish 
European 
(Germany) 

Cases-only 
N=515 

280 (54.4%) Adults with NAFLD diagnosed by LB, 
or US/MRI/CT 

320 

Kawaguchi, 
2018; 
Adult (25) 

East Asian 
(Japan) 

Case-control 
Mixed hospital- 
and population-
based 
N=8,608 

5111 
(59.6%) 

Patients: Adults with NAFLD 
diagnosed by LB 
Controls: healthy population controls 

936 

Dongiovanni, 
2018; 
Adult (19) 

Mixed: Non-
Finnish 
European, 
African American, 
Hispanic 
(USA) 

Population cohort: 
N= 4,570 (DHS), 
 
Cases-only 
Hospital-based: 
N=1,515 (LBC) 

3,330 
(54.7%) 

Hepatic steatosis measured by H-MRS 
(DHS) or NAFLD diagnosed by LB 
(LBC) 

1515 



Mancina, 2016; 
Adult (4) 

Mixed: Non-
Finnish 
European, 
African American, 
Hispanic 
(USA) 

Population cohort: 
N= 3,854 (DHS) 
 
Cases-only 
Hospital-based: 
N=1,149 (LBC) 

2754 
(54.4%) 

Hepatic steatosis measured by H-MRS 
(DHS) or NAFLD diagnosed by LB 
(LBC) 

1149 

Luukkonen, 
2016; 
Adult (8) 

Finnish European 
(Finland) 

Cases-control 
Hospital-based 
N=125 

83 (66.4%) Adults assessed for NAFLD by LB 125 

Donati, 2017; 
Adult (5) 

Non-Finnish 
European 
(Italy / UK) 

Case-control 
Hospital-based 
N=765 (Italian) 
N=358 (UK 
NAFLD) 

188 (24.6%) 
143 (39.4%) 
387 (34.5%) 

Adults with NAFLD diagnosed by LB 1123 

Sookoian, 2018; 
Adult (11) 

Caucasian 
(Argentina) 

Case-control 
Hospital-based 
N=634 

360 (57.0%) Patients: adults with NAFLD diagnosed 
by LB 
Controls: hepatic steatosis absent on 
US 

372 

Unpublished data 
UKBB cohort, 
2019; 
Adult 

Non-Finnish 
European 
(UK) 

Population-based 
N=7,078 

3,822 
(54%) 

GWAS of hepatic steatosis measured 
by MRI from the UK BioBank. 

NA 

DiStefano, 2015; 
Adult (21) 

Non-Finnish 
European 
(USA) 

Cases-only 
Hospital-based 
N=1,868 

1,512 
(80.9%) 

GWAS of adults with NAFLD 
diagnosed by LB 

1868 

Adams, 2013; 
Paediatric (22) 

Non-Finnish 
European 
(Australia) 

Population-based 
N=928 

444 (47.8%) GWAS of adolescents with hepatic 
steatosis measured by US 

NA 



Lauridsen, 2018; 
Adult (40) 

Non-Finnish 
European 
(Denmark) 

Population-based 
N=7511 

775 
(53.9%) 

Hepatic steatosis measured by CT, 
part of the Copenhagen General 
Population Study 

NA 

Luukkonen, 
2018; 
Adult (41) 

Finnish European 
(Finland) 

Cases-only 
Hospital-based 
N= 38 

21 
(55%) 

Hepatic steatosis measured by MRS NA 

Speliotes 2011; 
Adult (1) 

Mixed: Non-
Finnish 
European, 
African American, 
Hispanic 
(USA, Iceland, 
Europe) 

Population-based 
N=4,244 

- GWAS of hepatic steatosis measured 
by CT 

NA 

Strnad, Buch, & 
Hamesch, 2018; 
Adult (42,43) 

Non-Finnish 
European 
(Germany, 
Austria, & 
Switzerland) 

Case-control 
Hospital-based 
N=1184 

573 
(48.4%) 

Adults with NAFLD diagnosed by LB 672 

Emdin, 2019; 
Adult (26) 

Non-Finnish 
European 
(UK) 

Population-based 
N=77,464 

42,144 
(54%) 

Adults with coded diagnosis of NAFLD 
and/or cirrhosis 

NA 

Reichert, 2019; 
Adult (44) 

Non-Finnish 
European 
(Germany) 

Hospital-based 
N= 54 

24 (42.1%) Adults with NAFLD cirrhosis diagnosed 
by LB, or US/MRI/CT 

NA 

Guzman, 2018; 
Adult (27) 

Mixed:  Hispanic 
and non-Hispanic 
(USA) 

Case-control 
N=246 (GLDI 
study) 
 

104  
(42.3%) 
 
57 

Adults with Type 2 Diabetes with 
hepatic steatosis measured by MRI 

NA 



Case-control 
N=158 (GLDJ 
study) 

(36.1%) 

Wattacheril, 
2017; 
Paediatric (28) 

Hispanic 
(USA) 

Cases-only 
N=208 

0 
(all male) 

GWAS of Hispanic boys with NAFLD 
diagnosed by LB 

208 

Chatterjee, 2018; 
Adult (29) 

South Asian 
(India) 

Hospital-based 
N=354 

138 (38.9%) GWAS of adults with NAFLD 
diagnosed by LB or US 

132 

Abeysekera, 
2019 (30,31,45); 
Adult 

Non-Finnish 
European 
(UK) 

Population-based 
N=2,919 

1,781 (61%) GWAS data from the ALSPAC birth 
cohort study with steatosis diagnosed 
using CAP >280kPa 

NA 

Table 1. Characteristic of studies included in the meta-analysis. ALSPAC, Avon Longitudinal Study of Parents and Children; CAP, controlled 
attenuation parameter; CT, computerized tomography; DHS, Dallas Heart Study; GWAS, genome-wide association study; LB, liver biopsy; 
LBC, Liver Biopsy Cohort; MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy; NA, not applicable; US, ultrasound. 
 

<Table 1.> 



 359 

In total, 134,015 individuals (4,174 children) were included in the meta-360 

analysis. Most studies were in adults (24/31, 77%) and in individuals of 361 

European ancestry (21/31, 68%). Of the 31 included studies, 15 (totaling 362 

7,692 unique participants, hereof 345 children) reported data on liver 363 

histology. 364 

 365 

Liver fat, NAFLD, and severe steatosis in adults 366 

Seven studies (21,924 participants) reported data on hepatic fat as a 367 

continuous variable assayed by CT or MR (1,19,27,29,40). In meta-analysis 368 

across these seven studies, rs641738 was associated with increased liver fat, 369 

with a per T-allele increase of 0.05 (95% CI 0.01 - 0.09) standard deviations in 370 

inverse normalized liver fat (Figure 1). There was significant heterogeneity 371 

between studies with I2 = 67% and Tau2=.002. This trend of association 372 

remained on sub-analysis including only cohorts with Caucasian (European) 373 

ethnicity (Supplementary Figure 2). 374 

 375 

 376 



Figure 1. The effect of rs641738C>T on liver fat. Data from 21,924 377 

individuals with CT or MRI liver fat. T-allele was associated with a small 378 

increase in liver fat, where data represents standard deviation change in 379 

normalized liver fat per T-allele. CGPS, Copenhagen General Population 380 

Study; CI, confidence interval; ES, effect summary; GOLD, Genetics of Liver 381 

Disease; N, number of individuals included; UKBB, UK BioBank. 382 

 383 

The rs641738 variant C>T was also associated with NAFLD as a trait (OR 384 

1.08 (95% CI 1.01, 1.15) using an additive model of inheritance (Figure 2A). 385 

Sensitivity analysis using the leave-one-out method did not demonstrate any 386 

individual study to affect the estimate (Supplementary Figure 3) and there was 387 

no evidence of study distribution bias on funnel plot (Egger’s test p=0.23, 388 

Supplementary Figure 4). The trend of a positive association was seen on 389 

sub-analysis in Caucasians (OR 1.10 (95% CI 0.99, 1.21), Supplementary 390 

Figure 5A). 391 

 392 



 393 

Figure 2. rs641738C>T is associated with higher odds of diagnosis of 394 

NAFLD and histological severity of steatosis. Data from 31,462 adults with 395 

radiologically defined steatosis for presence versus absence of NAFLD (2A), 396 

and from 4,572 adults with liver biopsy data for presence of severe steatosis 397 

(S0-2 versus S3, 2B) using an additive model of inheritance. ALSPAC, Avon 398 

Longitudinal Study of Parents and Children; LBC, Liver Biopsy Cohort. 399 

 400 

 401 

In patients with NAFLD, rs641738C>T was associated with the presence of 402 

severe steatosis (S0-2 vs. S3) on liver biopsy (OR 1.26 [95% CI 1.12, 1.41], 403 

Figure 2B). This association remained on sub-analysis in Caucasian 404 

individuals (OR 1.28 [95% CI 1.14, 1.45], Supplementary Figure 5B). A similar 405 

trend was observed using CAP and semi-quantitative ultrasound to assess 406 



steatosis severity (β .02 (95% CI -.002, .04) standard deviations of inverse 407 

normalized liver fat score per T-allele, Supplementary Figure 6). 408 

 409 

 410 

Histological NASH in adults 411 

Data from 9 studies (6,155 participants) showed that rs641738C>T was 412 

positively associated with the presence of NASH on biopsy in adults (OR 1.11 413 

(95% 1.02, 1.21, Figure 3). A similar magnitude of effect was observed on 414 

sub-analysis in Caucasian individuals (OR 1.13 (95% 1.01, 1.27, 415 

Supplementary Figure 7). 416 

 417 

 418 

Figure 3. rs641738C>T is associated with higher odds of NASH on 419 

biopsy. Data from 6,155 adults with NASH defined according to the FLIP 420 

algorithm for NAFL versus NASH, using an additive model of inheritance. 421 

NAFL, non-alcoholic fatty liver. 422 

 423 

 424 

Fibrosis in adults 425 



Data from 8 studies (82,857 adults, 6,787 with liver biopsy data) were 426 

included in meta-analysis of fibrosis. Our primary outcome, presence of 427 

advanced fibrosis in adults (stage F0-2 versus stage F3-4), was positively 428 

associated with T-allele (OR 1.14 (95% 1.05, 1.23), Figure 4A) in adults. 429 

Sensitivity analysis, including omission of coded cirrhosis data from Emdin et 430 

al.(26), did not alter the effect summary (Supplementary figure 8). Presence of 431 

any fibrosis (stage 0 versus stage 1-4) was also positively associated with 432 

rs641738C>T (OR 1.14 (95% 1.01, 1.28), Figure 4B). On sub-analysis of 433 

Caucasian individuals, rs641738C>T was associated with advanced fibrosis 434 

(OR 1.16 (95% 1.06, 1.26)) but not with any fibrosis (OR 1.15 (95% 0.99, 435 

1.34)) despite a positive trend (Supplementary figure 9). 436 

 437 

 438 

Figure 4. rs641738C>T is associated with increased fibrosis in NAFLD. A, 439 

data from 6,787 adults with biopsy-proven NAFLD (plus coding data from 440 



Emdin et al.) comparing advanced fibrosis (F3-4) versus F0-2, using an 441 

additive model of inheritance. B, data from 6,787 adults with biopsy-proven 442 

NAFLD comparing any fibrosis (F1-4) versus no fibrosis F0.  443 

 444 

Development of hepatocellular carcinoma 445 

Five cohorts (3,803 participants, 360 cases of NAFLD-HCC) reported on 446 

development of HCC in patients with NAFLD. Presence of T-allele was 447 

associated with increased odds of HCC in NAFLD (OR 1.43 (95% CI 1.22, 448 

1.67, Figure 5). 449 

 450 

 451 

Figure 5. rs641738C>T is associated with higher odds of NAFLD-HCC. 452 

Data from 3,803 adults with NAFLD assessing for the presence versus 453 

absence of HCC, using an additive model of inheritance. 454 

 455 

 456 

Effect on aminotransferases, lipids, and fasting insulin 457 

Data from 12 studies (17,148 participants) was available for meta-analysis of 458 

serum biochemical parameters. T-allele was associated with lower 459 

triglycerides (mean difference CC versus TT genotype -3.7 mg/dL (95% CI -460 



7.2, -0.2)) but no other effect on aminotransferases, serum lipids, or fasting 461 

insulin (Table 2). 462 

 463 

 
Numbe

r of 
cohorts 

PQ I2 

Random effects 
Mean 

differenc
e 

[95% CI] Pz 

ALT, IU/L 
(n=17,102) 14 .44 .01 -.27 -.91, 0.37 .41 

Triglycerides, mg/dL 
(n=17,148) 15 .19 .23 -3.71 -7.22, -.20 .04 

Total cholesterol, 
mg/dL 

(n=16,822) 
13 .009 .52 .45 -2.41, 3.31 .76 

High-density 
lipoprotein, mg/dL 

(n=9,843) 
10 .08 .39 -.26 -1.31, .80 .63 

Low density 
lipoprotein, mg/dL 

(n=8,800) 
7 .18 .30 2.06 -.30, 4.42 .09 

Fasting insulin, mU/L 
(n=6,269) 4 .004 .71 -.66 -2.52, 1.20 .49 

 464 
Table 2. Meta-analysis for the effect of rs641738C>T on biochemical indices liver 465 
damage dyslipidemia, and insulin resistance. Data represents the mean difference 466 
between CC and TT genotypes using random effects. N represents the sum of 467 
individuals with CC and TT genotypes included in each analysis. 468 
 469 
 470 
 471 

Disease outcomes in adults 472 

Using data from previous meta-analyses via Phenoscanner and UK BioBank 473 

data via GeneAtlas, rs641738C>T was weakly positively associated stroke (β 474 

0.0007, p=0.004), Supplementary table 2). There was no evidence of an 475 

association with type 2 diabetes, coronary artery disease, or chronic kidney 476 

disease. It was also associated with higher alkaline phosphatase (β 0.005, 477 

p=6.1x10-6). 478 

 479 

Effect of rs641738C>T on paediatric NAFLD 480 



Data from seven studies (4,174 children) was used in the meta-analysis. 481 

rs641738C>T was not significantly associated with any disease outcome 482 

studied (Supplementary table 3 and Supplementary Figure 10). However 483 

there was a trend towards increasing hepatic fat fraction (0.19 SD (95% CI -484 

0.05, 0.42)) and severity of steatosis (OR 1.21 (95% 0.89, 1.64)). 485 

 486 

 487 

 488 

 489 

 490 

491 



DISCUSSION 492 

Identification of genetic variants associated with NAFLD has the potential to 493 

inform pre-clinical research and our understanding of hepatic metabolism. In 494 

this meta-analysis we have validated the importance of rs641738C>T near 495 

MBOAT7 on the full spectrum of NAFLD in adults. 496 

 497 

A two-stage GWAS initially identified rs641738C>T as a genome-wide 498 

significant locus for alcohol-related cirrhosis(3). MBOAT7 was a potentially 499 

interesting target as an enzyme involved in (phosphor)lipid metabolism, 500 

conceptually similar to other SNVs at GWAS-significance in alcoholic and 501 

non-alcoholic liver disease, namely TM6SF2 and PNPLA3. Later studies 502 

found the variant to influence the full spectrum of fatty liver disease, from 503 

steatosis to NASH, to fibrosis, cirrhosis and HCC(4,8). However, these 504 

associations have not been consistently replicated in the literature(11). We 505 

conducted a meta-analysis to firmly establish the association of rs641738C>T 506 

with NAFLD. 507 

 508 

Main findings 509 

We found that the T-allele of rs641738C>T was associated with higher liver 510 

fat content, and with an increased risk of NASH, fibrosis, and HCC. The 511 

effects sizes of rs641738C>T reported here are small compared to those of 512 

PNPLA3 p.I148M and TM6SF2 p.E167K, the two strongest steatogenic 513 

variants(2). Also, unlike NASH-associated variants in PNPLA3, HSD17B13, 514 

MARC1, and TM6SF2, there was no association between this MBOAT7 515 

variant and alanine or aspartate aminotransferase. The marginal positive 516 



effect of this variant on hepatic triglyceride content may suggest alterations in 517 

the composition of hepatic lipid, rather than quantity(8). This is consistent with 518 

pre-clinical data on lipotoxicity, where the composition of hepatic fats 519 

influence development of NASH. On the other hand, a recent Mendelian 520 

randomization study using these variables as instruments to assess causality 521 

of fatty liver in determining fibrosis has shown the effect of steatosis highly 522 

correlates with fibrosis in all the genetic variables indicating that quantity of 523 

lipid rather than quality may be more important(19). Functional studies are 524 

needed to understand the relationship between quality/quantity of fat and 525 

hepato-toxic/-protective mechanism in causing progression of disease. 526 

 527 

The function of this variant is still relatively poorly understood and there is 528 

conflicting evidence as to whether rs641738 is associated with changes in 529 

hepatic expression of MBOAT7. Results from the GTEx Consortium show a 530 

strong negative association with T-allele(7), which is supported by data from 531 

Schadt et al.(46). MBOAT7 protein expression correlated with mRNA in liver 532 

biopsies from Mancina et al.(4) but this finding was not replicated by Sookoian 533 

et al.(11). MBOAT7 encodes LPIAT1, a 6 transmembrane domain protein 534 

involved in acyl-chain remodeling of membranes that influence intracellular 535 

membrane composition and circulating phosphatidylinositols(8). Further 536 

recent metabolite profiling data implicates MBOAT7 as the causal gene for 537 

this SNV(24). Moreover, TMC4 was found with a low expression in the liver(4) 538 

that is consistent with no mechanistic data supporting its role in NAFLD.  539 

 540 



The hypothesis that MBOAT7 is the causal gene underlying the association 541 

with liver disease at the locus is supported by the observation that mice 542 

deficient for MBOAT7 have altered hepatic concentrations of polyunsaturated 543 

phosphatidylinositol(47). Similarly, metabolite data from humans is strongly 544 

suggestive that rs641738C>T reduces MBOAT7 function(48). In addition, loss 545 

of MBOAT7, but not TMC4, increases the severity of NAFLD in mice fed a 546 

high-fat diet(49). It is not known whether these genetically modified animals 547 

have increased susceptibility to HCC.  548 

 549 

This variant shows a particularly strong association with development of HCC. 550 

It is unclear whether this reflects the effect on NASH-fibrosis or if there is a 551 

specific causal relationship between MBOAT7 and HCC.  552 

 553 

We found no evidence of rs641738 on insulin resistance: the key driver of 554 

hepatic steatosis, as determined by unaltered fasting insulin concentrations. 555 

GWAS meta-analyses of type 2 diabetes have implicated p.I148M in PNPLA3 556 

and p.E167K in TM6SF2 as significant risk loci (albeit with very modest effect 557 

size as compared to their effects on liver disease) and a Mendelian 558 

randomization study indicates a causal role in determining insulin resistance 559 

mediated by the degree of liver damage(19). Similarly, these two variants are 560 

associated with reduced risk of coronary artery disease whereas rs641738 561 

has no effect. It does, however, appear to be weakly associated with higher 562 

prevalence of stroke in the UK BioBank(17). Our analysis also found lower 563 

serum triglycerides in those with TT-genotype versus CC-genotype, though 564 

this was not replicated in the Global Lipid Genetic Consortium data(50).  565 



 566 

There is some evidence that genetic variants affect response to drug 567 

treatment (for PNPLA3) but this is yet to be explored for MBOAT7. It will be 568 

equally interesting to assess whether somatic genotype of variants associated 569 

with HCC affects treatment response. 570 

 571 

A strength of this analysis is the inclusion of data from individuals of multiple 572 

ethnicities (and genetic ancestries). We found no difference in the impact of 573 

the variant on liver disease among Caucasian and non-Caucasian individuals. 574 

Another strength is the large number of individuals with liver biopsy-derived 575 

phenotypic data. 576 

 577 

Limitations and quality of evidence 578 

An important practical consideration is the population frequency of this variant 579 

in different ethnicities. The mean allelic frequency of the effect (T-)allele is 580 

highly variable: from 0.24 in East Asians compared to 0.53 in those of South 581 

Asian ancestry. 582 

 583 

Studies measured hepatic fat using several different imaging modalities, 584 

which have varying sensitivity for quantification of liver fat. This may have 585 

accounted for some of the heterogeneity observed in these analyses. There 586 

was a trend towards more positive associations in population-based studies 587 

using more sensitive techniques (MRI or MRS). It is possible that weighting 588 

towards large CT-based studies could have underestimated the true effect 589 

size. 590 



 591 

We found significant differences between adult and paediatric histological 592 

analyses though a consistent trend was observed in the analysis of hepatic fat 593 

fraction. There are several potential reasons, including: sample size 594 

insufficient to demonstrate an effect, variations in imaging quantification of fat, 595 

too few clinical events (i.e. with fibrosis) to demonstrate an effect, different 596 

histology of paediatric NASH, or a true alternative effect of this variant on 597 

paediatric NAFLD. 598 

 599 

Though there was minimal heterogeneity across included studies, the 600 

numbers of individuals with NAFLD and HCC were comparatively low. Further 601 

work in this area may improve the accuracy of effect estimates. 602 

 603 

Conclusions 604 

rs641738C>T near MBOAT7 increases risk of NASH, fibrosis, and HCC in 605 

NAFLD with a small, positive effect on total liver fat and no impact on insulin 606 

resistance. These data validate this locus as significant in the pathogenesis of 607 

NAFLD.  608 

 609 

 610 

 611 
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