
BioGerontology manuscript No.
(will be inserted by the editor)

Informative Frailty Indices from Binarized Biomarkers
January 7, 2020

Garrett Stubbings · Spencer Farrell · Arnold Mitnitski · Kenneth
Rockwood · Andrew Rutenberg

Received: date / Accepted: date

Abstract Frailty indices (FI) based on continuous val-
ued health data, such as obtained from blood and urine

tests, have been shown to be predictive of adverse health
outcomes. However, creating FI from such biomarker
data requires a binarization treatment that is difficult

to standardize across studies. In this work, we explore
a “quantile” methodology for the generic treatment of
biomarker data that allows us to construct an FI with-
out preexisting medical knowledge (i.e. risk thresholds)

of the included biomarkers. We show that our quan-
tile approach performs as well as, or even slightly bet-
ter than, established methods for the National Health

and Nutrition Examination Survey (NHANES) and the
Canadian Study of Health and Aging (CSHA) data
sets. Furthermore, we show that our approach is ro-

bust to cohort effects within studies as compared to
other data-based methods. The success of our binariza-
tion approaches provides insight into the robustness of
the FI as a health measure, the upper limits of the FI
observed in various data sets, and highlights general
difficulties in obtaining absolute scales for comparing
FI between studies.
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Introduction

Poor health is often associated with aging, a decrease
in functional capacity, and an increased susceptibility

to illness and injury. While chronological age is a conve-
nient proxy for aging, it cannot capture individual vari-
ability of health at a given age. The frailty index (FI) is
a well-tested way of incorporating large and varied as-

pects of health and function that can be easily used to
differentiate between individuals of the same age. De-
fined as the fraction of selected health attributes that

are in an unhealthy state (called deficits), the FI has
been shown to be a robust measure of individual health
over the aging process (Mitnitski et al. 2001, Searle

et al. 2008). The FI is observed to increase with age
and the distribution of FI on a population level broad-
ens with increasing age, describing the heterogeneity of
aging (Gu et al. 2009). The FI is predictive of mortal-

ity and of other adverse health outcomes (Rockwood,
Song, MacKnight, Bergman, Hogan, McDowell & Mit-
nitski 2006, Evans et al. 2014).

The health attributes considered in the FI are typi-
cally clinically observable or self-reported, such as dis-
abilities in activities of daily living or physical or cog-
nitive impairments (Searle et al. 2008). Alternatively,
standard laboratory measurements such as blood and
urine biomarkers (Blodgett et al. 2017, Mitnitski et al.

2015, Howlett et al. 2014) as well as biomarkers of cel-
lular senescence and oxidative stress (Mitnitski et al.
2015) can be used to create a laboratory-test based FI
known as FI-Lab. Cutpoints are used to binarize the
quantitative biomarker measurements into deficits so
that they can be naturally included in an FI. Normal
reference ranges based on diagnostic or therapeutic util-
ity (McPherson 2017) are commonly used as cutpoints.
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Since the FI is an aggregate measure and is not used
for the diagnosis or treatment of specific conditions,
standard cutpoints are not necessarily best suited to
its role of predicting risks. Furthermore, standard cut-
points are often not available for emerging biomarker
measurements such as in epigenetic, proteomic, metabolomic,
or other high-throughput “omics” approaches. Alterna-
tive “data-based” methods obtain cutpoints from the
available data under consideration. Both normal refer-
ence ranges (Blodgett et al. 2017, Howlett et al. 2014)
and data-based methods (Mitnitski et al. 2015) can and
have been used to create an effective FI-Lab.

One data-based method of biomarker binarization
is to select cutpoints to maximize some predictive as-
pect of the post-binarized biomarker. For example, cut-
points can be selected to maximize the difference be-
tween survival curves of people that are on either side of
the cutpoint for each biomarker (Mitnitski et al. 2015).
Equivalently, other predictive measures such as receiver
operator characteristics (ROC) performance or mutual

information (Farrell et al. 2016) could be used with re-
spect to a particular outcome such as mortality within
5-years to generate “optimal” cutpoints. While attrac-

tive in principle, such individual biomarker optimiza-
tion approaches run the risk of creating FI that are
overly specific to the study cohort and not generally

applicable for other cohorts.

Another popular data-based method for binarizing
continuous-valued data is to select cutpoints based on

the quantile of the population. This approach is used
in both the Fried frailty phenotype (Fried et al. 2001)
(with quintiles) and in the exploration of the allostatic

load theory of physiological disregulation (Seplaki et al.
2005, Juster et al. 2010) (with quartiles). Here, a risk
direction is chosen for each biomarker, e.g. by how the
biomarker changes with age, and the cutpoint is se-
lected for each biomarker by the quantile of that biomarker
– i.e. the fraction of the population that has values
of the biomarker above the cutpoint. This approach
should be less susceptible to overfitting, since the quan-
tile is chosen globally for all biomarkers rather than
individually for each biomarker. Nevertheless, it raises
the question of how to choose the best quantile and of
how sensitively the results depend upon the quantile
chosen. Investigation of allostatic load (Seplaki et al.
2005) found that deciles and quartiles behaved simi-

larly, implying that the quantile approach may be ro-
bust with respect to choice of quantile. Nevertheless,
no systematic investigation of the quantile approach in
the context of the FI has been done before.

A systematic investigation of data-based approaches
for the binarization of continuous-valued biomarkers
used in the evaluation of the FI can explore the ques-

tions of overfitting due to optimization raised above. At
the same time, we can examine the robustness (or in-
sensitivity) of the FI as a predictive measure of health
outcomes or mortality and the robustness of the FI
maximum seen in observational studies of aging (Searle
et al. 2008, Mitnitski et al. 2015), with respect to the
details of any binarization approach. Robust and vali-
dated data-based approaches to binarization will facil-
itate the future development of FI for high-throughput
’omics data and for more model organisms of aging.

Here, we examine the effectiveness of data-based bi-
narization schemes for building the FI from biomarker
data. We use both the NHANES and CSHA data sets
to check whether cohort effects are large; we find that
they are not. We examine overfitting effects with cross-
validation, and find that they are present when op-
timal cutpoints are chosen for each biomarker – but
that they are small when global cutpoints are chosen
for all biomarkers. We compare the predictive perfor-
mance of data-based schemes against earlier published
results, and find that the data-based schemes have com-

parable or slightly higher predictive value than the es-
tablished FI with respect to predicting mortality and
clinical deficits. Overall, we find that a generic quantile
data-based binarization approach performs well.

A key characteristic of the FI is the relatively in-
sensitivity (Searle et al. 2008, Mitnitski et al. 2015) to
the particular choice of deficits. We show that this also

holds for choosing cutpoints for FI-Lab, and we find
that a broad range of cutpoints exist where the quantile
binarized FI-Lab is effective. This demonstrates both
the universality of the FI and the generality of our

method of choosing cutpoints. Nevertheless, we iden-
tify the best range of quantiles to use and we find that
they overlap with the quintiles used in the Fried frailty
phenotype (Fried et al. 2001). Furthermore, many as-
pects of the FI calculated at these quantiles such as
maximum, minimum and overall distribution of FI in

the population overlap with results from previous FI-
Lab studies.

Methods

Data, evaluation, and cross-validation

The data used in this study are from the National Health
and Nutrition Examination Study (NHANES) (Cen-
ters for Disease Control and Prevention National Cen-
ter for Health Statistics Updated 2014) and the Cana-
dian Study of Health and Aging (CSHA) (Canadian

Study of Health and Aging Working Group 1994). The
NHANES data set consists of the 8881 individuals from
the NHANES study with data for at least 11 of the
16 available biomarkers. This sample has an age range
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of 20 to 85. The data used from the CSHA study has
973 individuals aged 65+ for which data is available
for at least 16 of the 22 biomarkers. Age distributions
for these data sets are shown in supplemental Fig. S1,
which highlights the smaller and older cohort of the
CSHA study.

Both of these data sets have previously been used
to construct FI-Lab. Blodgett et. al (Blodgett et al.
2017) considered the NHANES data set, while Howlett
et. al (Howlett et al. 2014) considered the CSHA. We
will compare our results with both of these in this pa-
per. Since a much larger sample size and a much larger
range of ages are available, we focus on the NHANES
data set. However, major results will be also validated
in the CSHA data set. Both studies’ FI-Lab consist of
many shared deficits and cutpoints, so the differences
in FI between the data sets are likely due to cohort ef-
fects. These two data sets have very different cohorts,
so by applying our methods to both we test the gener-
alizability of our approach.

The NHANES and CSHA cohorts differ in more
than just age. In supplemental Fig. S2 we show the dis-
tribution of FI-Lab for the CSHA cohort (white bars)

together with a resampled NHANES cohort with the
same (65-85 years) age distribution as the CSHA (blue
bars). We see that the NHANES cohort has a signifi-

cantly lower FI-Lab at the same age, i.e. it represents
somewhat healthier individuals. This could be due to a
large portion of the CSHA population being comprised

of institutionalized individuals (Howlett et al. 2014).

The purpose of binarizing data is to construct an
FI. The FI is intended to be an inclusive and general

indicator of individual health; it has been shown to cor-
relate well with mortality (Kojima et al. 2018) but also
with institutionalization (Rockwood, Mitnitski, Song,
Steen & Skoog 2006), postoperative complications (Ve-
lanovich et al. 2013), dementia (Song et al. 2014), recov-
ery time in hospital (Hatheway et al. 2017), and other
adverse health outcomes (Blodgett et al. 2016). Accord-
ingly, we compare our newly constructed FI with the ex-
isting FI-Lab in their ability to predict 5 year mortality
as well as by their ability to predict clinical outcomes
from laboratory data. To evaluate prediction, we use
the standard area under the curve (AUC) of the ROC
curve. We obtain similar results using mutual informa-
tion (Farrell et al. 2016), as illustrated in supplemental

Fig. S3. We also check that our new FI behave simi-
larly to the previously published FI-Lab, with respect
the clinical FI, with respect to their distributions, and
with respect the maximal observed FI in the popula-
tion.

Each new FI is tested using cross-validation. Cut-

points are generated using a random half of the popula-

a)

b)

Fig. 1 a) The distributions of systolic blood pressure mea-
surements in the NHANES cohort (Centers for Disease Con-
trol and Prevention National Center for Health Statistics Up-
dated 2014). Short horizontal lines indicate the whole popu-
lation distribution, while unfilled, orange, and blue bars show
the youngest [25, 45), middle [45, 65), and oldest [65, 85] age
groups respectively (in years). The trend during aging is an
upward shift. b) The rank normalized score x vs the corre-
sponding systolic blood pressures. The median corresponds to
x = 0.5. For this and other measures, the nonlinear mapping
between x and corresponding value is always monotonic – but
is either increasing or decreasing depending on the direction
of risk.

tion, then those cutpoints are applied to the other half
and the resulting FI are evaluated. This is repeated 100
times. Cross-validation allows us to characterize any
over-fitting of cutpoints.

Quantile-based cutpoints

We transform the biomarker data to a dimensionless
form using quantiles. For each individual subject, each
biomarker i is transformed to the proportion xi of the
population that has “less risky” values. This is illus-
trated in Fig. 1 for systolic blood pressure. If an in-
dividual has a value of 140 mmHg, which places them
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at the upper quintile of risk for blood pressure, their
systolic blood pressure score is transformed to x = 0.8,
corresponding to having a higher systolic blood pres-
sure than 80% of the population.

Quantiles are implemented on a population scale
by performing a rank normalization of the data, where
each biomarker is sorted in ascending risk, then the
ranks (position in the sorted list) are divided by the
number of individuals. The rank normalized values xi
are given by

xi =
Rank of biomarker i in the population

Number of individuals in the population
, (1)

and so xi ∈ [0, 1].

Implementing binarization is straightforward using
these quantiles. We apply a global cutpoint (GCP) as a
threshold value of the rank normalized values, XGCP ,
applied identically across all biomarkers. We build the
resulting FI as the average over these binarized deficits,

FIGCP =
N∑
i=1

di
N
, di =

{
1 if xi > XGCP

0 otherwise
. (2)

For each biomarker, a deficit di = 1 is assigned when

xi passes the threshold in the direction of risk.

Direction of risk

We determine a direction of risk for each biomarker,

before applying quantile-based cutpoints. We then bi-
narize with respect to the at-risk direction, as discussed
above. We do not assert that biomarkers only have one
direction of risk, but we do find that most biomarkers

have one direction that is most often explored by the
population, and so we assume this is the dominate di-
rection of risk during aging. This is illustrated in the
supplemental Fig. S4.

We prefer a mortality-free approach to determin-
ing direction of risk to avoid potential over-fitting. We
simply use the aging trends of the biomarkers to de-
termine the risk direction. The relation between age
and each biomarker is determined by the sign of Spear-
man’s rank correlation. A positive value indicates the
risk direction is towards large values of the biomarker, a

negative value indicates risk towards small values. This
method is effective at determining risk directions if the
population has a reasonably large distribution of ages.
Aging trends effectively classify risk direction in both
the CSHA (ages 65-104 years) and NHANES (ages 20-
85) data sets. However, we restrict the age range for
calculating risk directions to ages 35+ to calculate re-
lations based on normal aging behaviour.

Another method of determining risk direction is to
use mortality data, or some other adverse health out-
come. For each biomarker ROC curves can be generated
with respect to the binary outcome (e.g. 5 year mortal-
ity) and an AUC can be calculated. An AUC above
0.5 indicates the primary risk direction is towards high
values, an AUC below 0.5 indicates risk towards the
low end. Equivalently, one could do a logistic regres-
sion of the biomarker against an adverse outcome and
use the sign of the beta value (positive beta would in-
dicate risk towards high values). This type of approach
ensures that the risk directions generate the best FI for
predicting that outcome, but they are potentially over-
fit to that outcome. We find that risk directions from
mortality data are predominantly the same as the aging
trend directions. The predictive AUC of the resulting FI
with respect to 5 year mortality is also essentially the
same as with aging trends, as shown in supplemental
Fig. S5.

We have also considered a simple approach for two-
sided cutpoints. For simplicity, we consider symmetric

cutpoints with both xi > XGCP and xi < 1 − XGCP

assigned as deficits with di = 1. The predictive AUC of
the resulting FI is significantly worse than the one-sided

approach, as indicated by the supplemental Fig. S6. Ac-
cordingly, we focus on one-sided cutpoints in this paper.

Optimally predictive binarization

In addition to quantile binarization, we also compare
with two different FI created with cutpoints selected
for optimal prediction with respect to mortality. For

both, additional details are provided in the supplemen-
tal information.

The first, FIlogrank, based on the separation of sur-

vival curves, has been used to create an FI-Lab (Mit-
nitski et al. 2015). For each biomarker, the cutpoint is
found that maximizes the significance of separation be-
tween survival curves of individuals with and without
the deficit by minimizing the p-value from a logrank
test (Mantel 1966).

The second method for generating optimal cutpoints
is based on information theory. FIinfo uses cutpoints
selected for the highest possible mutual information
with respect to mortality at 5 years. In a manner similar
to FIlogrank every possible cutpoint is tested for every
biomarker and the cutpoints which maximize the mu-
tual information with respect to mortality are selected.

Results

To evaluate the various data-based approaches to bina-
rization, we have calculated the AUC with respect to
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a)

b)

Fig. 2 Cross-validated AUC of different data-based FI with respect to 5 year mortality for the a) NHANES and b) CSHA
cohorts. The horizontal dashed line shows the AUC of the published FI (Blodgett et al. 2017, Howlett et al. 2014). The dotted
line indicates the AUC of the quantile-based FIGCP vs the global cutpoint XGCP . Box and whisker plots display the data
from cross-validation: the boxes represent the upper and lower quartiles, the whiskers go to the 99th and 1st percentiles, and
the circles are remaining outliers. The short dashed line within each box is the median, the solid line the mean, and the star is
the AUC for the full data set without cross validation. The rightmost three columns, as indicated, show the AUC for FIinfo

constructed from maximum information cutpoints and FIlogrank constructed from logrank minimum p-value cutpoints.

five-year mortality for both the NHANES and CSHA
cohorts. The results are shown in Fig. 2. The perfor-
mance of all measures was qualitatively similar for both
the NHANES and CSHA data sets, though due to the

smaller cohort the CSHA data showed greater variabil-
ity in cross validation.

FIGCP , assembled from quantile based global cut-
points, performed well. For all tested values of XGCP

the cross-validated and full dataset results agree, indi-
cating minimal overfitting. For the extreme values of
XGCP equal to 0 (where all biomarkers are at risk)
or 1 (where none are), there is no predictive value of

FIGCP and the AUC is equal to 0.5 – as expected. Be-
tween these extremes, we see a broad maximum of the
AUC. Indeed, for global cutpoints between 0.5 − 0.9
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Fig. 3 Average FIGCP vs published FI-Clin for the
NHANES dataset, for a variety of global cutpoints XGCP

as indicated by the coloured numbers at the right of each
coloured line. The coloured markers indicate the middle of
the bins used for averaging. The black dashed lines with
stars show the published FI-Lab (Blodgett et al. 2017). The
FIGCP lines are dotted when their AUC from Fig. 2 is below
the published value, while they are solid when it is above.

the FIGCP slightly outperforms the published FI-Lab
for both the NHANES and CSHA datasets.

The binarization approaches to maximize the mor-
tality prediction for the full datasets gave compara-

ble AUC values, as indicated by the columns to the
right in Fig. 2. However, cross-validation of FIinfo and
FIlogrank showed significantly lower AUC and so indi-

cates that these methods are prone to overfitting. While
the cross-validated FIinfo, using maximum information
cutpoints, appears to perform as well as FIGCP – the
cross-validated FIlogrank does not. We have shown that
using individual cutpoints optimized for each biomarker
to predict mortality leads to an FI that is prone to
overfitting. Using such an optimized approach with-

out cross-validation should be avoided. We focus on the
quantile cutpoints for the remainder of this paper.

We were surprised that the quantile-based cutpoints
performed similarly well for both the NHANES and
CSHA datasets, despite their significantly different age,
health, and cohort sizes. Since quantile-based cutpoints
are extracted from the cohorts being characterized, we
wanted to investigate cohort effects more directly. Since
the NHANES dataset has a large population and a
large range of ages, we obtained quantile-based cut-
points from sub-cohorts of NHANES for young (25-45),

middle (45-65), or old (65-85) age groups. Remarkably,
the cutpoints obtained from any one sub-cohort worked
reasonably well applied to any other cohort. However,
the range of XGCP for best prediction decreased and
shifted closer to 1 as shown in supplemental Fig. S7.

0.5

0.6

0.7

Ever told you had coronary heart disease Doctor ever said you had arthritis

0.0 0.5 1.0
0.5

0.6

0.7

Ever told you had weak/failing kidneys

0.0 0.5 1.0

Lifting or carrying difficulty

Global Cutpoint

AU
C

Fig. 4 The blue lines indicate AUC of FIGCP vs the global
cutpoint XGCP for four clinically observable deficits in the
NHANES study. The horizontal dashed orange lines indi-
cate the AUC from published FI-Lab (Blodgett et al. 2017).
FIGCP performs at least as well as FI-Lab, although the
range of cutpoints which are most effective varies. Similar
plots for all clinical deficits are shown in supplemental Fig. S8
for NHANES and Fig. S9 for CSHA.

This supports our observation that cohort effects are
not large with quantile-based cutpoints.

A crucial test of FI-Lab behavior is how well it cor-

responds to an established FI-Clin. The coloured lines
in Fig. 3 shows average FIGCP values binned by their
corresponding FI-Clin values. For intermediate values

of XGCP , we see that FIGCP is monotonically increas-
ing with FI-Clin. Indeed, the published FI-Lab appears
to correspond to XGCP values between 0.8 and 0.9

– where the FIGCP also performs well with respect
to both AUC and cohort effects. Conversely, for much
larger or smaller values of XGCP , where the AUC is sig-
nificantly worse than for the published FI-Lab, we see

that the FIGCP is not strongly dependent on FI-Clin
or even becomes non-monotonic.

We test the versatility of the FI by its ability to
predict outcomes other than mortality. In Fig. 4 we
evaluate the prediction of four binary clinical deficits,
where the blue lines indicate the AUC for FIGCP vs

the global cutpoint XGCP . The corresponding AUC of
the published FI-Lab (Blodgett et al. 2017) is indicated
by the horizontal orange lines. We see that FIGCP is
as good as FI-Lab for a range of cutpoints – approxi-
mately where mortality prediction also performs best.
(All clinical deficits are tested in supplemental Fig. S8
for NHANES and Fig. S9 for CSHA.).

We illustrate the distribution of FIGCP in supple-
mental Fig. S10 for XGCP = 0.85 and for XGCP = 0.4.

Both perform as well as FI-Lab in terms of predicting
mortality (see Fig. 2). However they have very different
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Fig. 5 The upper 1% (light blue) and lower 1% (dark blue)
of FIGCP vs the global cutpoint XGCP for the NHANES
dataset. The dashed black lines show the 1st and 99th per-
centiles of FIGCP in the CSHA dataset. The dotted diagonal
black line shows the average FIGCP . The ranges and average
for the published FI-Lab are indicated in red (Blodgett et al.
2017).

distributions when using the same NHANES popula-

tion. While XGCP = 0.85 has a similar distribution as
the published FI-Lab,XGCP = 0.4 leads to significantly
higher FI values. While this is not unexpected, since the

extreme value of XGCP = 0.0 would lead to all FI be-
ing equal to 1, it does lead us to examine the upper and
lower limits of FI. In Fig. 5 we show the upper (light

blue) and lower (dark blue) 1% of the FIGCP distribu-
tions in the NHANES dataset vs XGCP . We see that
as XGCP increases both the maximum and the mini-
mum FIGCP decrease. For XGCP & 0.7 the minimum

is zero. For XGCP = 0.85 the range of maximal FI ap-
proximately corresponds to the range observed for the
published FI-Lab (indicated in red, and labeled “Blod-
gett”). We also show that the 1st and 99th percentiles of
FIGCP in the CSHA dataset (black dashed lines) are
similar to those of the NHANES dataset, despite the
large differences in, e.g., the age distribution between
these cohorts.

Discussion

For a large range of global cutpoints we have shown
FIGCP to predict mortality and adverse clinical out-
comes as well or better than FI-Lab created using estab-
lished clinical risk thresholds. This result was replicated
in the NHANES and CSHA data sets. Furthermore,
FIGCP was as informative in cross-validation, where
cutpoints were calculated in one cohort and tested on
another. Indeed, even applying cutpoints calculated in

one age group to a cohort 20 to 40 years older re-
mained effective. These results show FIGCP is an ef-
fective method for generating an FI from biomarkers
without prior knowledge of cutpoints, at least for co-
horts of thousands of individuals or more.

The FI created using optimal cutpoints for each
biomarker, FIlogrank and FIinfo, although highly in-
formative, did not fare as well in cross-validation. Us-
ing these methods in one cohort did not yield an FI
which was equivalently predictive in another cohort.
Both the logrank and maximum-information based cut-
points strongly depend on the mortality of the particu-
lar cohort used and, as a result, do not represent general
risk thresholds. Without extensive cross-validation we
suggest these approaches be avoided.

An important question to address when implement-
ing FIGCP is which global cutpoint is appropriate. We
suggest that the cutpoint be selected such that the FI
has good predictive value with respect to both health
outcomes and mortality. However, in both the NHANES

and CSHA data-sets there is a large range of cutpoints
which are similarly predictive across many of these mea-
sures. Close study of Fig. 2 indicates that XGCP of 0.6
or 0.7 would build FIGCP that best predicts mortal-

ity, though this range of optimal XGCP may depend
on the cohort. Indeed, when we consider which XGCP

best predicts clinical deficits, the ranges of optimal cut-

points vary significantly (see supplemental Figs. S8 and
S9, particularly). It appears that there is no one “best”
global cutpoint for general prediction of health out-
comes, or that applies equally well across cohorts.

Another criterion for picking the global cutpoint is

the interpretability of the FI within and across studies.
Within the range of cutpoints which are highly predic-
tive there are large differences in the distributions of

FIGCP . Changing how the FI is constructed changes
how individual values of the FI are assessed. For exam-
ple, an FI of 0.2 has very different meaning depending
on how biomarkers are binarized (see supplemental Fig.
S10).

In the context of current FI studies, an appropri-
ate global cutpoint appears to be XGCP = 0.85. The
resulting FI0.85 is highly predictive of both mortality
and many of the clinical outcomes. Furthermore, the
maximum, minimum, and mean of FI0.85 are similar to
the previously published medical threshold FI-Lab. As
a result, individual values of FI0.85 can be more easily
interpreted between studies.

FIGCP also provides a framework for investigating
many aspects of the FI. Indeed, we find that some com-
mon characteristics of the FI are not generally applica-
ble. One of the results of changing XGCP is the system-
atic change of the extremely high (or low) FI observed
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in a population, as shown in Fig. 5. Variations of the
maximum FI has been observed in FI-Clin (Searle et al.
2008, Gu et al. 2009, Bennett et al. 2013, Hubbard et al.
2015, Armstrong et al. 2015), FI-Lab (Blodgett et al.
2017, Howlett et al. 2014), between SHARE and SAGE
multi-nation studies (Harttgen et al. 2013), in FI assem-
bled from electronic health records (Clegg et al. 2016)
or primary care data (Drubbel et al. 2013), and were
found to be necessary in network models of the FI (Far-
rell et al. 2016). We have shown that any explicit choice
of binarization changes the observed FIGCP limits. In-
deed, any evaluation of binarized deficits – whether
biomarker or clinical – should have similar effects. Be-
cause of the broad AUC maximum with respect toXGCP

we have shown that such variations of the FI-max do
not imply that the quality of predictions of mortality or
adverse health should be adversely affected. While co-
hort effects contribute to observed differences of FI-max
between studies, we suggest that binarization effects
may dominate. In Fig. 5, the difference between the

upper and lower 1% of FIGCP between the NHANES
and CSHA cohorts is less than when XGCP is changed
by only 0.1.

How might we compare FI that use different bina-

rization approaches within the same cohort? Perhaps
we shouldn’t: since the ability of FI to predict vari-
ous clinical outcomes sometimes improves and some-

times degrades asXGCP is changed, we can’t expect one
FI to behave exactly like another. However, qualitative
comparisons may be possible with reference to extremal

values of FI such as shown in Fig. 5. For quantile cut-
points, we also have a formal relationship between the
global cutpoint and the population average of the FI
that should facilitate such qualitative comparisons:

〈FIGCP 〉 = 1−XGCP . (3)

This follows since it is precisely the fraction 1−XGCP

of the biomarkers which are labelled at risk, across

all biomarkers. This relationship is shown as a dashed
black line in Fig. 5 and appears to hold approximately
for the published NHANES data as well. This remains
to be better explored in future work.

Cohort effects become evident when the same cut-
point approaches are used between studies. While FIGCP

behaved qualitatively similarly in the NHANES and
CSHA cohorts, it does show significant quantitative
differences (see e.g. Fig. 2) – indicating cohort effects.
FIGCP is convenient for exploring cohort effects since

it allows a complete separation of the cohorts at the
level of biomarker binarization. For example, in previ-
ous work on FI-Lab in the CSHA and NHANES stud-
ies (Blodgett et al. 2017, Mitnitski et al. 2015) some
cutpoints were sex specific (blood pressure, creatinine,

blood urea, and hemoglobin) and some were not. Using
FIGCP we could treat all biomarkers in a generic sex
specific manner by first separating the population by
sex then calculating the rank normalized scores. This
approach does not require previous knowledge of the
cohort dependence of the biomarkers, and should be
useful in future studies of general cohort dependence of
the FI – including sex differences.

More generally, we have shown that FI created us-
ing population-based approaches can effectively treat
biomarkers without prior medical knowledge. The same
data-based approaches could also be useful in approach-
ing FI for metabolomics, proteomics, and other omics-
style applications. There is no Henry’s clinicians hand-
book (McPherson 2017) to select omics cutpoints from,
and the large number of measurements in an omics
dataset necessitates an automated method for treating
potential deficits. An FI based on omics data (FI-omics)
would provide insight into how frailty manifests itself on
the most fundamental levels, and a quantile approach

should facilitate FI-omics.

Similarly, a general method of creating the FI from
biomarker measurements opens the door to many more
animal model applications. Previous work has been done
to create an FI-Lab in laboratory mice (Kane et al.

2019). Since there is no clinical guide for treating mice,
cutpoints were selected in reference to measurements in
young mice. This requirement of having a healthy co-

hort to use as a benchmark is incompatible with studies
where there is no clearly defined healthy group avail-
able. A generic approach which can be applied to any

set of biomarker measurements allows the FI to be used
more generally, and should then facilitate comparisons
of health and aging between organismal models and hu-
man studies.

We have explored an effective quantile-based method
of creating FI from biomarker data. These methods are
applicable to any set of continuous valued data where
information on the age or mortality of the population is
available. Our results support previous approaches us-

ing quantile-based cutpoints, including allostatic load
(Juster et al. 2010) and the frailty phenotype (Fried
et al. 2001). The use of global quantile cutpoints min-
imizes the effects of overfitting and leads to similarly
predictive FI for both health and mortality over a large
range of cutpoints. We found that a global cutpoint
XGCP = 0.85 recapitulates earlier FI-Lab results. Nev-
ertheless there is no unique “best” global cutpoint, and
the chosen cutpoint affects properties of the FI such as
the maximum FI or the shape of the distribution of FI
over the population.
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Supplemental

Optimal cutpoints

Optimal cutpoints are calculated by testing binariza-
tion at every possible cutpoint in the data for every
biomarker with respect to mortality at 5 years.

Mutual information can be calculated following (Far-
rell et al. 2016). The information entropy with respect
to binary mortality M ∈ {0, 1} is calculated as

S(M) = −m ln(m)− (1−m) ln(1−m), (S1)

where m is the proportion of the population dead at
5 years. The information entropy conditional on the
presence of a deficit is the average of the entropy con-
ditioned on each state of the deficit:

S(M |D) = p(d = 1)S(M |d = 1)+p(d = 0)S(M |d = 0),

(S2)

where p(d) is the proportion of the population with
(d = 1) or without (d = 0) the deficit. The mutual
information gained by knowing the status of a given

deficit is then

I = S(M)− S(M |D). (S3)

For the logrank cutpoints we use a Python imple-
mentation of the logrank test (Mantel 1966) from the

survival analysis package Lifelines (Davidson-Pilon et al.
2019). Since its use of χ2 statistics for estimating p-
values underestimates them systematically for small sam-
ple sizes, the logrank test has a bias to select cutpoints

with extremely few individuals in one group so as to ar-
tificially decrease p-values. To compensate for this bias,
we imposed a minimum group size of 20 individuals.
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Fig. S1 Age distributions of the CSHA (Canadian Study
of Health and Aging Working Group 1994) (grey fill) and
NHANES (Centers for Disease Control and Prevention Na-
tional Center for Health Statistics Updated 2014) (no fill)
data sets. The NHANES data set has 8881 individuals with
an age range of 20 to 85 years, and is considerably larger than
the CSHA study with 973 individuals. The CSHA study was
limited to older individuals with ages from 65-104.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Frailty Index

0

25

50

75

100

125

150

175

200

Co
un

t

NHANES
CSHA

Fig. S2 FI distributions of individuals between the ages of
65 to 85. The NHANES data (Blodgett et al. (2017)) has been
randomly resampled to have the same age distribution as the
CSHA data set within this age range (Howlett et al. (2014)).
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Fig. S3 Mutual information with respect to mortality at 5
years in the NHANES (top) and CSHA (bottom) datasets for
FIGCP (blue lines) vs the global cutpoint XGCP . The orange
dashed lines show the mutual information of the published FI-
Lab (Blodgett et al. 2017, Howlett et al. 2014). The behavior
is qualitatively like that of AUC in Fig. 2.

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.07.20016816doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.07.20016816
http://creativecommons.org/licenses/by/4.0/


12 Garrett Stubbings et al.

Deficits
0.0

0.1

0.2

0.3

0.4

0.5

Pr
ev

al
en

ce
 o

f D
ef

ici
t

NHANES

Deficits
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ev

al
en

ce
 o

f D
ef

ici
t

CSHA

Fig. S4 Deficit prevalence for each deficit included in the
published FI-Lab (circles) broken down into proportion at
risk in high (+) and low (-) categories. Most of the deficits
are predominantly on a single side of the risk direction.
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Fig. S5 Comparing the differences in predictive value of
the FI using directions of primary risk calculated with re-
spect to mortality (dotted line) and the aging trend method
(solid line) for NHANES (top) and CSHA (bottom). Note,
for NHANES the age conditions are calculated only in indi-
viduals age 35 or greater, while predictive value includes the
whole population. The AUC of the published FI (horizontal
dot-dashed line) is provided as a benchmark.
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Fig. S6 The predictive value of a symmetric two-sided bi-
narization approach (solid line), cutpoints move out from 0.5
symmetrically. The dotted line shows the AUC of FIGCP ,
while the horizontal dashed line shows the AUC of the pub-
lished FI-Lab.
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Fig. S7 Predictive value of FIGCP when cutpoints are calculated in one age group and used in another. AUC with respect
to 5 year mortality is shown on top. The bottom plot shows information with respect to mortality at 5 years. Note that the
information captures the poor predictive value of any FI for the youngest age group, which has very few mortality events,
while the AUC does not.
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Fig. S8 Using FIGCP to “predict” clinical deficits (solid blue lines) is at least as effective as using the published FI-Lab
(horizontal dotted lines) for all deficits in the NHANES study.
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Fig. S9 Using FIGCP to “predict” clinical deficits (solid blue lines) is at least as effective as using the published FI-Lab
(horizontal dotted lines) for most deficits in the CSHA study. The horizontal black line shows the benchmark AUC of 0.5 for
visual reference.
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Fig. S10 FI distributions in the NHANES (top) and CSHA
(bottom) using the published FI (no fill), FIGCP with cut-
point at the minimum cutpoint with similar prediction to
the published FI (0.4 and 0.25, for NHANES and CSHA re-
spectively, in green), and FIGCP with cutpoint where the
distributions are most similar to the published FI (0.85 and
0.7, for NHANES and CSHA respectively, in blue).
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