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Abstract. Extracting patient phenotypes from routinely collected health data (such
as Electronic Health Records) requires translating clinically-sound phenotype def-
initions into queries/computations executable on the underlying data sources by
clinical researchers. This requires significant knowledge and skills to deal with het-
erogeneous and often imperfect data. Translations are time-consuming, error-prone
and, most importantly, hard to share and reproduce across different settings. This
paper proposes a knowledge driven framework that (1) decouples the specification
of phenotype semantics from underlying data sources; (2) can automatically popu-
late and conduct phenotype computations on heterogeneous data spaces. We report
preliminary results of deploying this framework on five Scottish health datasets.
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1. Introduction

Big data analytics in healthcare has great potential to reveal deep insights from health
data, which would extend our knowledge boundary in medicine and improve quality
of health service [1]. However, it is very challenging to make sense of distributed and
heterogeneous health data. The current reality is that most data is stored in different local
communities, which means they are maintained locally and stored in inconsistent formats
and languages. A key technical challenge haunting almost all data-driven clinical studies
is to extract or compute accurate patients’ phenotypes (traits of symptoms, diseases,
medications or biochemistry test results) from such a fragmented data space.

Figure 1 (Current Practice section on the left-hand side) illustrates a typical pro-
cedure of computing phenotypes from heterogeneous data sources. The first step, and
scientifically the most important, is to specify what constitutes a phenotype using clini-
cal knowledge/terminologies that the clinical research community are familiar with, e.g.
using languages in laboratory, medicine, oncology and genetics etc. These specified phe-
notypes must be computed (extracted or inferred) from the underlying health data. Their
computation (steps 2 & 3) requires (each time) significant human effort to understand
database details, good data science skills to do the querying and data manipulating, and
caution & patience to deal with data incompleteness/inconsistencies. The translations
from phenotype specifications into computations are hard to verify and debug, which
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Figure 1. System architecture. A knowledge driven phenotyping framework that frees clinical researchers
from time-consuming and error-prone translations from clinical rules to database-level queries.

poses threats to the understandability and credibility of data-driven studies. In addition,
due to the sensitive nature of health data, such translations cannot be made public, which
significantly impedes the reusability and reproducibility of clinical researches. In this
paper, we propose a knowledge driven framework to tackle these challenges.

2. Method

The main aim of this study is to realise a clinical data science framework that makes the
underlying data sources transparent to phenotype computations. Researchers only need
to specify the “meanings” of their phenotypes using their familiar terminologies and the
actual computations are automatically populated for and executed on data sources.

For example, to retrieve a cohort of patients with Type 2 Diabetes in Scot-
land, such a framework would only require researchers to provide an assertion like
Type2 Diabetes Patient(?x) without them knowing that the national Hospital Admis-
sions is the underlying database, which is a Microsoft SQL Server managed by eDRIS
team (https://www.isdscotland.org/Products-and-Services/eDRIS/) (there-
fore, they have the data dictionary) and uses both ICD 9 and 10 for diagnosis coding
due to legacy data. To realise that, the key is to decouple the formalisation of phenotype
semantics and the management/technical details of underlying data sources. We propose
an architecture (see Figure 1) to implement such a decoupling, which is roughly com-
posed of two aspects: phenotype formalisation framework (for specifying phenotype se-
mantics) and ontology/rule based data access (for automated phenotype computing on
data sources).

2.1. Phenotype Formalisation Framework

Given a phenotype such as Type2 Diabetes Patient, the computer has to understand its
semantics (i.e., computer understandable meanings) so that the right computations and
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queries can be populated and executed on the underlying data sources. The formalisation
framework has three components as follows.

• A database independent phenotype formalisation using Semantic Web knowledge
representation technologies. Specifically, we use DL Lite [2] ontologies and Se-
mantic Web Rule Language (SWRL) [3] queries to define phenotype semantics.

• A core phenotype ontology serving as the base vocabulary linking to standard
clinical terminologies available at BioPortal [4] (e.g., SNOMED CT, ICD10).

• A query formatter that generates ontology queries (SPARQL [5]) from an user in-
terface. The formatter can automatically translate phenotype definitions between
standard terminologies (e.g., READ to SNOMED CT) via UMLS [6].

We use Type 2 Diabetes as a running example to illustrate phenotype specifications
in this framework.

Phenotype Definition using Ontology The following equation defines a DL-Lite axiom
for computing the phenotype of Type 2 Diabetes, meaning anyone who had a diagnosis
of ICD10 code E11 is a Type 2 Diabete Patient.

icd10:E11(?x) ⇒ Type2 Diabetes Patient(?x) (1)

Standard Terminology Inclusion and Subsumption Inference The prefix icd10: indi-
cates that E11 is a concept of ICD10 ontology, which is then incorporated in the phe-
notype computing. This automatically includes all the semantics defined in ICD10,
such as icd10:E11.2 v icd10:E11. Based on DL-Lite logic, such a class subsumption
relation will be automatically combined with Axiom (1) to infer that icd10:E11.2 v
Type2 Diabetes Patient. Similarly, instances of all other sub-classes of E11 are inferred
as instances of Type2 Diabetes Patient.

Rule for Dealing with Incompleteness If a researcher worries the diagnosis data might
miss some Type 2 Diabetics, she might think of certain drug uses which could infer the
disease phenotype with acceptable reliability. Rule (2) infers that a patient prescribed
Sulphonylurea SR is potentially a Type 2 Diabetes patient.

hasPrescription(?x,?p)∧ prescribedDrug(?p,?d)

∧drugName(?d,“Sulphonylurea SR”)⇒ Drug In f erred Type2 Diabetes(?x)
(2)

Rule for Dealing with Inconsistency Erroneous and inconsistent facts are almost in-
evitable when using clinical data for research. For example, clinically, it is very unlikely
a person is both Type 1 and Type 2 Diabetic. The rule and axiom in (3) define a class
of DiabetesCon f lictPatient as a sub-class of PotentialCodingErrorPatient in the core
ontology, which detects potential coding errors in health data.

ICD10:E11(?x)∧ ICD10:E10(?x) ⇒ DiabetesCon f lictPatient(?x).

DiabetesCon f lictPatient v PotentialCodingErrorPatient
(3)
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2.2. Ontology Based & Rule Driven Data Access

To automatically compute the above formalised phenotypes on actual data, we adopt on-
tology based data access (OBDA) techniques [7]. The OBDA system in our framework
(on the right of Figure 1) is composed of three components: an ontology for specifying
user queries, a data mapping system for translating ontology predicates into relational
database schema/constructs and an OBDA reasoner conducting the translation and op-
timisation, for which we use an open source OBDA reasoner - OnTop [8].

Phenotype computations are heavily rule driven for two reasons: (1) most phenotyp-
ing semantic constraints are hard to represent using OWL Lite constructs (e.g., the rules
described previously); (2) the semantics of most phenotypes are not fixed - they either
change with research focuses or different researchers might have different opinions about
certain rules related to a phenotype. Therefore, comparing to ontological formalisation,
phenotype semantics needs more customisable/flexible specification approaches like rule
languages. However, the current official release of OnTop does not support SWRL rules.

For this reason, in our framework, we minimise the core ontology. A core mapping
from this ontology to the underlying data sources is manually created to initiate the
data mapping system. To support rule-driven phenotype specification, a rule engine is
implemented. The engine can automatically convert SWRL rules into new data mappings
by utilising the core mapping and the ontology semantics. The populated mappings are
then merged with the core mapping in the rule engine, which will be loaded in the OBDA
component on the fly to do phenotype computations.

3. Deployment and Evaluation

This study is supported by Health Data Research UK (https://www.hdruk.ac.uk/
projects/graph-based-data-federation-for-healthcare-data-science/)
as an exemplar to create a federation of distributed health data in Scotland. The above
described framework has been deployed on 5 synthetic data sets (as shown at the bottom
of Figure 1) generated using BadMedicine (https://github.com/HicServices/
BadMedicine), which represents data/schema characteristics learnt from real data.

Due to space limitations, we put the full benchmark and evaluation details on
a Github page: https://github.com/Honghan/KGPhenotyping/tree/master/

evaluation. In Table 1, we compares the ontology queries (SPARQL) and SQL queries
for three exemplar phenotype definitions (in simplified forms; actual queries are at
https://bit.ly/2oZK5rK).

1. (Terminology Mapping) The first phenotype is defined using SNOMED CT
(321949006) to specify a prescription. Scottish Prescription data is using Bnf-
Code for drug identifiers. Our framework can take the SNOMED CT code as the
input and translate it into BnfCode automatically, while in Current Practice the
user has to understand that BnfCode is used in the data and need to get equivalent
BnfCode (0403030E0AAAAAA) for the given code.

2. (Inference) The second phenotype is to get patients with Type 2 Diabetes de-
fined as ICD10 E11 and its sub-codes. However, in Scottish Hospital Admissions
dataset, both ICD10 and ICD9 are used. Therefore, using SQL, it requires us to
give an exhaustive list of codes ( 20 codes). In our framework, the ICD9/10 hier-
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Phenotype Definition SPARQL SQL

patients prescribed Fluoxetine (SNOMED CT
code: 321949006)

?x hasPrescription ?p .
?p a snomed:321949006
.

select CHI from Prescription
where BnfCode = ’0403030E0AAAAAA’

patients diagnosed as Type 2 Diabetes (ICD10
E11 and its sub-codes)

?x a icd10:E11 . select CHI from Admissions where maincondition like
’E11%’ or maincondition in (’-25000’, ’-25002’, ...)

patients with potential Diabetes coding errors -
diagnosed as both Type 2 Diabetes (ICD10 E11
and its sub-codes) and Type 1 Diabetes (ICD10
E10 and its sub-codes)

?x a DiabetesConflictPa-
tient .

select h1.CHI from HospitalAdmissions h1, Hospital-
Admissions h2 where (h1.maincondition like ’E11%’
or h1.maincondition in (’-25000’, ’-25002’, ...)) and
(h2.maincondition like ’E10%’ or h1.maincondition
in (’-25001’, ’-25003’, ...)) and h1.CHI = h2.CHI

Table 1. SPARQL vs. SQL queries for the three phenotype definitions on 5 Scottish Health Datasets

archies and their mapping are automatically utilised for doing inferences. There-
fore, only a simple icd10:E11 predicate will be sufficient for the computation.

3. (Inconsistency Checking) The third phenotype is to detect potential Diabetes cod-
ing errors in the data (Type 1 and 2 are exclusive). With Rule 3, our framework
only needs one predicate DiabetesCon f lictPatient, while SQL will need around
40 codes and a inner join operation on the Hospital Admission table.

4. Conclusion

To overcome obscure phenotype computation, which makes experiments difficult to un-
derstand and reproduce, we developed a new framework to allow clinical researchers
to formalise phenotype semantics independently to the data and, more importantly, in a
computer understandable way so that its computation can be automated on the under-
lying data sources. We implemented a knowledge-driven (based on ontologies and rule
languages) approach to define an interlingua in which practitioners can represent the phe-
notype semantics they want to use and automatically translates this to computations as
database queries on participating data sources.
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