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Abstract  

Background: Depressive and neurocognitive disorders are debilitating conditions that account for the 

leading causes of years lived with disability worldwide. Overcoming these disorders is an extremely 

important public health problem today. However, there are no biomarkers that are objective or easy-

to-obtain in daily clinical practice, which leads to difficulties in assessing treatment response and 

developing new drugs. Due to advances in technology, it has become possible to quantify important 

features that clinicians perceive as reflective of disorder severity. Such features include facial 

expressions, phonic/speech information, body motion, daily activity, and sleep. The overall goal of 

this proposed study, the Project for Objective Measures Using Computational Psychiatry Technology 

(PROMPT), is to develop objective, noninvasive, and easy-to-use biomarkers for assessing the severity 

of depressive and neurocognitive disorders. 

Methods: This is a multi-center prospective study. DSM-5 criteria for major depressive disorder, 

bipolar disorder, and major and minor neurocognitive disorders are inclusion criteria for the depressive 

and neurocognitive disorder samples. Healthy samples are confirmed to have no history of psychiatric 

disorders by Mini-International Neuropsychiatric Interview, and have no current cognitive decline 

based on the Mini Mental State Examination. Participants go through approximately 10-minute 

interviews with a psychiatrist/psychologist, where participants talk about non-specific topics such as 

everyday living, symptoms of disease, hobbies, etc. Interviews are recorded using RGB and infrared 

cameras, and an array microphone. As an option, participants are asked to wear wrist-band type devices 

during the observational period. The interviews take place ≤10 times within up to five years of follow-

up. Various software is used to process the raw video, voice, infrared, and wearable device data. A 

machine learning approach is used to predict the presence of symptoms, severity, and the 

improvement/deterioration of symptoms. 

Discussion: The PROMPT goal is to develop objective digital biomarkers for assessing the severity 

of depressive and neurocognitive disorders in the hopes of guiding decision-making in clinical settings 

as well as reducing the risk of clinical trial failure. Challenges may include the large variability of 

samples, which makes it difficult to extract the features that commonly reflect disorder severity. 

Trial Registration: UMIN000021396, University Hospital Medical Information Network (UMIN) 
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Background 

Depressive disorders and neurocognitive disorders are common, disabling, and debilitating psychiatric 

conditions. Major depressive disorder (MDD) affects approximately 6% of the adult population 

worldwide each year [1], and the prevalence in 2017 is estimated to have been 264.5 million people 

[95% uncertainty interval (UI) 246.3 to 286.3]. Moreover, depressive disorder is the third leading cause 

of years lived with disability (YLDs) that contributes to 43.1 million YLDs (95%UI 30.5 to 58.9) [2]. 

Pharmacotherapy is one of the mainstays of depression treatment, and many efforts to develop new 

antidepressant treatments have been made. However, clinical trials for antidepressant medications face 

tremendous difficulties. Failures in such clinical trials have even led to the unfortunate consequence 

of several pharmacological companies moving out of the psychiatric field [3, 4]. The reasons for these 

clinical trial failures may include multiple factors, such as: 1) the mechanisms of an illness are not 

fully understood; 2) the heterogeneity of the targeted population; 3) difficulty in recruiting patients 

with severe symptoms; 4) too many placebo responders; and so on. Poor reliability of measurement, 

poor interview quality, and rater bias are also important factors that contribute to a number of these 

reasons for trial failure [5, 6]. The most popular severity measurement tools for depression include the 

Hamilton Depression Rating Scale (HAM-D) [7] and Montgomery-Asberg Depression Rating Scale 

(MADRS) [8]. Although HAM-D and MADRS are clinician-rated assessment tools, these measures 

mainly depend on subjective reports by the patients. Such rating scales that rely on patients’ subjective 

feelings can be influenced by the patient’s personality and/or the interviewer’s ability/skill. It is also 

common for the anchor point to be ambiguous, among other issues. On the other hand, there are 

evaluation items in these rating scales that do not rely on the patient’s subjective opinion, such as 

psychomotor disturbances (i.e., retardation and agitation) in HAM-D, and apparent sadness in MADRS. 

But even these items still depend on subjective assessments by the clinicians, and are therefore not 

truly objective. Several other biological, objective methods have been investigated with the aim of 

ensuring a more objective measurement of depression severity, such as monoamine levels in 

cerebrospinal fluids [9], cytokines [10], positron emission tomography (PET) [11], neuroendocrine 

tests [12], and magnetic resonance imaging (MRI) [13]. However, no objective biomarkers that are 

reliable and easy-to-use in clinical settings have been discovered.  

Dementia, another disease targeted by this research, is increasingly affecting people as the global 

population ages. The number of individuals who live with neurocognitive disorders world-wide is 

estimated to be 45 million (95%UI 39.7 to 50.4) [2], and these disorders contribute to 6.5 million YLDs 

(95%UI 4.7 to 8.6). Furthermore, neurocognitive disorders are the fifth leading cause of death globally, 

accounting for 2.4 million (95% UI 2.1 to 2.8) deaths [14]. It is believed that in the future, this number 

may increase to up to 82 million by 2030, and 152 million by 2050 [15]. Additionally, mild cognitive 
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impairment (MCI), which is an intermediate stage between the expected cognitive decline of normal 

aging and the decline caused by a neurocognitive disorder, has an estimated prevalence of 10%-20% 

in individuals aged ≥65 years [16]. The biological mechanisms of dementia may be better understood 

than those of depression. Based on the current understanding of those mechanisms, several early 

diagnosis methods have already been introduced in clinical settings, or have become possible at the 

research stage; for example, PET imaging, cerebrospinal fluid, and plasma for amyloid-β and/or tau 

protein detection [17–20]. However, unfortunately, the possibility of using these methods in screenings 

or illness evaluations is still far off, as these biomarkers do not necessarily reflect real-time cognitive 

decline, and the examinations required are costly or invasive such that they cannot be repeated well. 

Moreover, a biomarker may no longer play its role as a clinical marker that reflects symptom severity 

when the marker itself is the target of the medication, such as amyloid-β or tau protein. Over 100 

clinical drug trials targeting dementia have ended in failure, and currently, as treatment practices shift 

focus to target the very early stage of the illness [21], it is beneficial to develop repeatable tests for 

discovering preclinical conditions or MCI. There are several rating scales being used in clinical settings 

to test cognitive function; for example, Mini-Mental State Examination (MMSE) [22] and Montreal 

Cognitive Assessment (MoCA) [23] are ones widely used around the world. However, these 

evaluations require testing the subject’s calculation and memorization abilities, which may place an 

extra mental burden on the subject. Additionally, the subject’s education history can greatly influence 

the results of these rating scales, and scores can be affected by the tester’s ability/skill. The ceiling 

effect and floor effect are also issues, and the learning effect is most likely a large problem as well. 

This is because, as previously stated, as treatment practices shift focus to early detection, patients with 

slight cognitive impairment may end up memorizing the testing procedures, which would defeat the 

purpose of the exams. 

So far, it has been explained that there are limits to the “gold standard” rating scales used in clinical 

settings and trials, and that there are no ideal biomarkers. But at the same time, psychiatrists are able 

to infer a certain amount about a patient’s severity by the way they act in clinical settings; for example, 

how the patient enters the room, sits in a chair, or speaks to the interviewer. In this way, psychiatrists 

can observe the patient’s condition and determine if their treatment is effective. In terms of depression, 

the various domains of human expression, such as facial movements, speech, and motor movements, 

have been identified as observable features in depressed patients since Hippocrates’s era [24]. Several 

studies linked depression with less eye contact, overall sluggishness, slumping back posture, etc. [25–

28]. These observable psychomotor abnormalities continue to be regarded by experts as essential and 

critical features of depression, especially melancholic depression or melancholia [29–31]. In regard to 

neurocognitive disorders, clinicians can gain information from instances when patients hesitate in their 
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speech trying to recall a word, or when they try to gloss over the fact they cannot remember something. 

As dementia symptoms progress, patients lose their motivation, as well as interest in things around 

them, and these effects are reflected in the patients’ speech and facial expressions. But those 

observations are difficult to quantify.  

With recent developments in many technological fields, the collection and analysis of a variety of data 

sets has become easier and less expensive. For example, a subject’s pause time and speech rate during 

phone conversations [32], the intensity of a subject’s smile [33], and sensor-detected body motion [34] 

were used to diagnose and/or assess the severity of subjects’ depression. Observations are not limited 

only to clinical settings; research using actigraphy to observe subjects’ daily activities has been 

ongoing for some time, and has been able to find certain differences between depressed patients and 

healthy volunteers [35].  

Methods for automatically detecting and evaluating the severity of neurocognitive disorders include 

one based on acoustic characteristics [19, 36–40], one using linguistic information [41–43], and 

some fusing both those approaches [44, 45]. Wearable devices that gather information about activity, 

sleep, and conversation time were also used to diagnose/assess severity [46]. 

In many cases, studies that collect large amounts of data from electronic devices also use machine 

learning to estimate the presence and/or severity of illnesses. When applied to this goal, machine 

learning approaches are valuable, as data from such applications often contain complex cross-sectional 

and longitudinal patterns. These complex patterns are exhibited in the joint distribution, and in the 

linear and nonlinear relationships between all, or subsets of, the aforementioned factors. These 

relationships are further complicated when utilizing multimodal data. By collecting such data with 

diagnoses and/or severity information as labels, we can develop novel machine learning techniques to 

discover these complex patterns, which can in turn provide objective indices and predictive models for 

diagnosis (categorical classification) and severity assessment (continuous variable prediction), as well 

as for judging whether there has been an improvement/deterioration in a patient’s condition since their 

previous visit (categorical classification). Through these machine learning tasks, it is also possible to 

gain additional insights into which clinical characteristics are helpful in diagnosing and evaluating 

severity, how to identify characteristics that parallel symptom improvement, and more. 

The Project for Objective Measures Using Computational Psychiatry Technology (PROMPT), which 

is funded by the Japan Agency for Medical Research and Development (AMED), is an industry-

academia collaborative research project that aims to develop new techniques for diagnosing and 

evaluating illness severity utilizing the technology described above; such technology is already readily 

available or developed by companies in this partnership. In concrete terms, we will record subjects’ 

facial expressions, speech (acoustic analysis, speech speed analysis, natural language processing), and 
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body motion in an examination room within a simulated clinical visit setting. With subject consent, we 

will ask them to put on a wearable device to also record daily activity and sleep. The collected data 

will be combined, machine learning will be applied, and we will develop learning models based on a 

variety of objectives, with the hope that this research will prove useful in every-day clinical settings 

and clinical trials. This study was approved by the Institutional Review Board of Keio University 

School of Medicine and the participating medical facilities. Any adverse events that occur during the 

study will be reported to and managed by this same review board. 

 

Methods 

Participants 

This study is a multi-site prospective observational study. Participants are recruited at seven hospitals 

and three outpatient clinics that specialize in treating either mood disorders or dementia, or both, in 

five different prefectures in Japan. Patient recruitment is conducted in the following locations and 

hospitals: Tokyo (Keio University Hospital, Tsurugaoka Garden Hospital, Oizumi Hospital, Komagino 

Hospital); Shiga (Biwako Hospital); Yamagata (Sato Hospital); Fukushima (Asaka Hospital). 

Outpatient clinics were used for additional patient recruitment in Tokyo (Oizumi Mental Clinic, 

Asakadai Mental Clinic) and Kanagawa (Nagatsuda Ikoinomori Clinic). Healthy controls were 

recruited from the same areas as patients. Participants are inpatients or outpatients aged ≥20 years, 

who met the DSM-5 criteria for major depressive disorder, bipolar disorder, major neurocognitive 

disorder, and mild neurocognitive disorder. Patients with subjective cognitive impairment (i.e., patients 

who feel they are cognitively impaired, but when tested, are not shown to have abnormalities) are also 

included in this study. Exclusion criteria include: (1) paralysis or involuntary movement in the face or 

body; and (2) inability to speak (e.g., removal of vocal cords). Healthy controls are screened by using 

the Mini-International Neuropsychiatric Interview (M.I.N.I.) and MMSE, and are excluded if they 

have a history of psychiatric disorders or show cognitive impairment. Researchers obtain written 

informed consent from all participants. In cases where patients were judged to be decisionally impaired, 

the patients’ guardians will give consent. Participants are able to leave the study at any time. 

 

Assessments 

All assessments are undertaken by trained research psychiatrists and/or psychologists. Clinical 

characteristics (e.g., age, sex, duration of illness), past medical history, and currently prescribed 

medications are collected using patients’ medical charts. RGB and infrared video recordings 

[RealSense R200 (Intel Corporation)/ Microsoft Kinect for Windows v2 (Microsoft Corporation)], and 

voice recordings using an array microphone [Classis RM30W (Beyerdynamic GmbH & Co. KG)/ 
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PRO8HEx Hypercardioid Dynamic Headworn Microphone (Audio-Technica Corporation)], are 

captured during a 10-minute interview with a psychiatrist and/or psychologist. During the interview, 

conversations between the interviewer and patient cover topics that arise in normal clinical practice, 

such as mood, daily living, sleep, events in the past week, concerns, etc. After the 10-minute clinical 

interview, a semi-structured interview using the clinical assessment tools is conducted (Table 1). In 

addition to participating in the above-mentioned interview recordings, participants are asked to wear 

wearable devices [Silmee W20 (TDK Corporation)] until their next assessment. Silmee is a wristband-

type wearable monitor equipped with an accelerometer, gyrometer, pulse sensor, thermometer, and UV 

meter. We make the use of wearable devices optional, as it is possible that some participants will see 

it as a burden. In order to collect various data from the same patients in different states, assessments 

are done up to 10 times for each patient during the study period. Visit intervals are not fixed, but we 

attempt to time them for when patients’ clinical symptoms have changed from the last visit (e.g., if we 

learn from the treating psychiatrist that a patient has recovered, we attempt to see the patient at that 

time), so that we can input datasets reflecting various illness severities into the machine learning 

program. The minimum interval sets are one week for patients with depression and one month for 

healthy volunteers. The Structural Clinical Interview for DSM-5 (SCID) is performed to the greatest 

degree feasible to confirm the diagnoses during the follow up period. Normal treatment is continued 

during the study period. The documents pertaining to this research are only stored in cabinets that lock 

within a research room of the Keio University School of Medicine's Department of Neuropsychiatry. 

We assign research numbers to data that will be used in the study, and from there on, the data are 

managed using those numbers. Once numbers are assigned, all data are completely separated from any 

personal identifiers. Additionally, case report forms are managed using electronic data capture. 

All these data are stored securely in Microsoft Azure. Microsoft Azure is a highly reliable cloud-based 

system, and it has wide compliance with industry-specific and global regulations, such as: adherence 

to ISO 27001, an international regulation for information security management systems; adherence to 

FedRAMP, a cloud-computing security standard in the United States; and adherence to ISO/IEC 27018, 

the international performance standard for regulating how personal information is handled by cloud 

service providers. 

 

Analysis 

The machine learning models for PROMPT are trained to perform the following tasks: 1) predict 

whether a subject has or does not have depression/neurocognitive disorders for screening purposes; 2) 

predict the severity of a subject’s depression/cognitive decline based on results from severity rating 

scales such as HAM-D (including the 21, 17, and 6 item versions’ scores), MADRS, Beck Depression 
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Inventory, Second Edition (BDI-II), and MMSE with a known margin of error for the predicted rating; 

3) predict the improvement or deterioration of a subject’s depressive state/cognitive function with 

respect to a previously recorded state if the subject has had a prior assessment by the system; and 4) 

predict the scores of individual items in a depression/cognitive rating scale that are indicators of 

different aspects of a subject’s depression/cognitive states, such as depressed mood, anhedonia,  

insomnia, anxiety, and psychomotor retardation/agitation for depression, or orientation to time and 

place, memory, attention and calculation, language, and visuospatial perception for neurocognitive 

disorders. 

The data used to train these machine learning models are multimodal in nature, including facial 

expression and eye blinking features extracted from RGB video recordings, body motion features 

extracted from infrared recordings, and voice features extracted from audio recordings. We first 

perform data cleaning and feature engineering to construct feature vectors in which the machine 

learning algorithms can more easily find patterns that can correctly identify healthy and depressed 

subjects or predict a fine gradient of depression severity from a subject’s physical symptoms. 

 

Extracted Data 

In audio engineering, phonic data are often used to describe the sound generation from the vocal cord 

and sound modulation from the shape of the mouth and the position of the tongue. To use these physical 

properties in our machine learning models, we extract phonic data from audio recordings with software 

such as Praat [47] and openSMILE [48] at 10-ms intervals. These phonic data include: fundamental 

frequency (F0); first, second, and third formant frequencies (F1, F2, F3); cepstral peak prominence 

(CPP); and mel-frequency cepstrum coefficients (MFCC). 

To discover patterns at a higher level, prosodic speech data are extracted from audio recordings, 

including: rate of speech, which measures the number of syllables spoken per minute; delay of reply, 

which measures the length of delay between the end of the physician’s sentence and the beginning of 

the subject’s subsequent sentence; and pause time, which measures the length of delay between two 

consecutive sentences spoken by the subject. 

Facial features are extracted from video recordings with software such as OKAO Vision and Openface 

[49, 50]. The data extracted include predicted facial expressions of the subject in each frame of the 

video recording, and the inverse distance between the upper and lower eye lids. 

Regarding body motion, the speed statistics and angles formed by four joints in XYZ dimension, 

namely Spine Shoulder, Head, Shoulder Right, and Shoulder Left, are utilized as features. These joints 

are extracted either by Kinect V2 joint map, or from Intel RealSense. 

We collect daily activity data for the subjects using wearable devices as described above. Daily activity 
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data targeted for collection include number of steps taken, energy expended, body motion, sleep state, 

skin temperature, heart rate, and UV exposure index. 

 

Feature Engineering 

For some machine learning models, we need to perform feature engineering to summarize the time-

course data extracted from the raw audio and video recordings, and to capture the relationship between 

pairs of time-course data. The following feature engineering approaches are used to construct features 

from the multi-modal data as input to the machine learning models for predicting a subject’s 

depression/cognitive status and/or severity using the following methods: 1) space-delay matrix [51] 

that computes all pair-wise similarities between the extracted data (space) at each delay from a set of 

different delay scales (delay); 2) distribution statistics (5-, 25-, 50-, 75-, 95-quantile and mean and 

standard deviation); 3) Markov transition probabilities for the state change between two adjacent time-

series samples; 4) similarity measures between different data; and 5) decision-tree-based quantization 

of data. 

 

Machine Learning Architecture 

We take two approaches to the machine learning architecture: one based on non-deep-learning machine 

learning algorithms, utilizing feature selection of the engineered features and meta-models; and one 

based on deep-learning algorithms. 

For the non-deep-learning-based machine learning architecture, we first perform feature selection to 

choose a subset of the engineered features to build our models. The parameters obtained through 

feature engineering are passed to an elastic-net model [52] for feature selection. The labels of the 

dependent variables are regressed on the feature vector and an elastic-net model is fitted. The fitted 

model has a sparse set of coefficients; i.e., many of the features’ coefficients will be forced to zero 

during fitting and contribute nothing to the prediction of the labels. The features in the feature vector 

that have non-zero coefficients are retained as selected features and used to build the next layer of the 

machine learning algorithm. 

Next, the selected features from the elastic-net feature selection layer are used to train the first layer 

models of the meta-model. Models used in the second layer include algorithms such as Support Vector 

Regression (SVR) [53], Support Vector Machine (SVM) [54], XGBoost [55], Random Forest (RF) 

[56], Adaptive Boosting (Adaboost) [57], and Adaptive Bagging (Adabag) [58]. The same selected 

features (features with non-zero coefficients) are used in each of the machine learning models and the 

labels predicted by each model are passed as features to the second layer of the meta-model. 

For the second layer, we can use an algorithm with logistic regression or SVM for classification, or 
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one with a linear model or SVR for regression. The features for this layer are the predicted labels from 

the previous machine learning layer, and the true labels are regressed against these predicted labels to 

train the machine learning model. 

For deep-learning-based models, we use deep-learning architectures such as Convolutional Neural 

Networks (CNN) [59, 60], Gated Convolutional Neural Networks (GCNN) [61], Bayesian Neural 

Networks (BNN) [62], and Long Short-Term Memory Networks (LSTM) [63]. For these models, the 

time-course features extracted from the raw video and audio data are used directly as input, instead of 

the engineered features. It should be noted that for either deep-learning or non-deep-learning-based 

architectures, the models are not limited to those listed above. 

For the improvement/deterioration model we use the non-deep-learning machine learning models, 

where each input feature vector is constructed from the data of two separate interviews with the same 

subject. For each of the interviews with the same subject, the feature vector is constructed as described 

above. To construct the feature vector for the improvement/deterioration model, the feature vector of 

the prior interview is divided elementwise by the feature vector of the latter interview. This new vector 

of element-wise ratios of the feature vectors of the two interviews is used as the feature vector for the 

improvement/deterioration model. The machine learning architecture for the 

improvement/deterioration model is the same as the model presented above. 

 

Sample Size 

To predict the sample size required for the supervised learning performances, we use learning curves 

to estimate the number of samples required to reach 90% accuracy for classification tasks. An inverse 

exponential model is fitted to pairs of sample size and cross-validation accuracy to predict the number 

of samples necessary. For depression, based on the preliminary data that we collected, we estimated a 

need for approximately 200 patients and 100 healthy volunteers; for dementia, we estimated a need 

for 100 patients and 100 healthy volunteers. Assuming an average of three assessments per individual 

participant, we therefore set a target of 1,500 datasets from 500 participants. 

 

Discussion 

The PROMPT study is unique in its purpose and integrative approach. The main purpose of PROMPT 

is to develop objective digital biomarkers for the assessment of depression/neurocognitive disorders 

in the hopes of guiding clinical decision-making in clinical settings. There will be tremendous value 

in noninvasive and easy-to-use methods that do not put additional burdens on clinical practice, and 

which can be repeatedly conducted not only in daily clinical settings, but also in clinical trials. In this 

project, we collect systematically observable features of patients (including facial, speech, and 
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movement expressions) during clinical interviews, as well as daily activity measurements for the time 

between clinical interviews. We follow and assess each participant up to 10 times longitudinally, so 

that the machine can learn different severities of the diseases. This approach is also helpful to avoid 

overfitting in machine learning. Based on the collected datasets, we aim to develop a machine learning 

model to screen these disorders, assess severity, and reveal whether or not the symptoms improved 

since the last visit. 

Specifically, observable signs of patients, such as facial expression and speech rate, are important 

characteristics of depressive disorders, but psychomotor disturbances in particular have been 

considered one of the most fundamental features of depression, especially melancholic depression [30]. 

They are also one of the diagnostic symptoms of major depressive episodes and manic episodes [64]. 

Psychomotor disturbances may have predictive value for antidepressant treatments, especially for 

electroconvulsive therapy [27]. Some rating scales have been developed for psychomotor disturbances, 

including the CORE measurement [65] and the Motor Agitation and Retardation Scale (MARS) [66]. 

However, these measurements rely on the subjective judgment of the clinicians, and no reliable and/or 

validated objective measurement methods for psychomotor disturbances have been developed. 

Therefore, PROMPT strives to overcome these historical issues. In addition, our model could be used 

as an assessment tool for psychomotor disturbances, and for distinguishing melancholic depression 

from heterogeneous DSM-defined major depression. It could also be used for investigating the 

underlying neurobiology of psychomotor disturbances in collaboration with 

neuroimaging/neurophysiological measurements in future studies. 

For neurocognitive disorders, the importance of early intervention and prevention of disease through 

the modification of therapy methods is being emphasized more and more. However, examinations such 

as amyloid PET or cerebrospinal fluid tests are not practical in terms of the invasiveness and cost, as 

well as the facility equipment requirements. In addition, when performing cognitive assessments at the 

preclinical stage, it is difficult to distinguish between disease-related changes and changes caused by 

normal aging, since cognitive impairment is still comparatively minor at that stage. As mentioned 

previously, learning effects can also be a significant problem when a patient is assessed repeatedly, 

especially in the early phase of a disorder. It would be highly beneficial if a new approach is developed 

that can identify high risk patients without these issues. 

Challenges of the study are as follows. First, the large variability of the subjects makes it difficult to 

extract the features that commonly reflect disorder severity. For example, if we learn that one’s 

conversational response time is slower than a healthy control’s, we still do not know if he/she has 

psychomotor retardation, because we do not know his/her original speed of speech. But at the same 

time, psychiatrists can judge if someone has psychomotor retardation even if they do not know what 
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he/she was like before the onset of illness. Psychiatrists most likely gather multimodal information 

from patients for a comprehensive judgement, and a machine may be able to do the same, as long as it 

is given the same modalities. Nevertheless, the variability of the samples is the most concerning matter 

for this study, and though this could be resolved to a certain degree by gathering a larger number of 

datasets, we may still see the machine learning models’ accuracy hit a ceiling at some point. Second, 

recruiting severe patients is difficult. As this study does not focus on intervention, recruitment may not 

be as large a problem in this case, but recruiting severe patients is an inherent difficulty in clinical 

studies. Imbalanced samples for different severities caused by recruitment difficulties may prohibit the 

machine learning algorithms from achieving a high prediction accuracy. Third, it is very important to 

keep inter-rater reliability high when diagnosing and/or assessing patients, as assessment scale scores 

will be the labels for machine learning. Anticipating this issue, the study team developed educational 

modules to maintain a high quality of ratings, and the inter-rater reliability will be tested using random 

sampling during the study period. Finally, since data will be collected from typical clinical settings, 

the recordings may contain a significant amount of optical and acoustic noise from the background, or 

due to inconsistent instrument setup. Well-designed preprocessing and data cleaning steps will be 

important to provide high quality features for the machine learning algorithms. 
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Table 1. A semi-structured interview using clinical assessment tools 

Type of assessment 
Time 

administered 

Healthy 

controls 
MDD BD 

Neurocognitive 

disorder 

HAM-D Every visit ✓ ✓ ✓  

MADRS Every visit ✓ ✓ ✓  

YMRS Every visit ✓ ✓ ✓  

BDI-II Every visit ✓ ✓ ✓  

PSQI Every visit ✓ ✓ ✓  

MMSE 
Screening, 

every visit 
✓   ✓ 

CDR Every visit ✓   ✓ 

LM (Immediate/Delayed) Every visit ✓   ✓ 

CDT (copying/free-drawing) Every visit ✓   ✓ 

NPI Every visit ✓   ✓ 

GDS Every visit ✓   ✓ 

M.I.N.I. Screening ✓   ✓ 

SCID 
Once during the 

follow up 
✓ ✓ ✓ ✓ 

MDD: Major depressive disorder, BD: Bipolar disorder, HAM-D: Hamilton Depression Rating Scale, MADRS: 

Montgomery-Asberg Depression Rating Scale, YMRS: Young Mania Rating Scale, BDI-II: Beck Depression 

Inventory Second Edition, PSQI: Pittsburgh Sleep Quality Index, MMSE: Mini-Mental State Examination, 

CDR: Clinical Dementia Rating, LM: Wechsler Memory Scale-Revised Logical Memory, CDT: Clock Drawing 

Test, NPI: Neuropsychiatric Inventory, GDS: Geriatric Depression Scale, M.I.N.I.: Mini-International 

Neuropsychiatric Interview, SCID: Structural Clinical Interview for DSM-5 
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