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Abstract 67 

INTRODUCTION: The presymptomatic phase of neurodegenerative disease can last many years, with 68 

sustained cognitive function despite progressive atrophy. We investigate this phenomenon in familial 69 

Frontotemporal dementia (FTD). 70 

METHODS: We studied 121 presymptomatic FTD mutation carriers and 134 family members without 71 

mutations, using multivariate data-driven approach to link cognitive performance with both structural and 72 

functional magnetic resonance imaging. Atrophy and brain network connectivity were compared between 73 

groups, in relation to the time from expected symptom onset.  74 

 RESULTS: There were group differences in brain structure and function, in the absence of differences in 75 

cognitive performance. Specifically, we identified behaviourally-relevant structural and functional network 76 

differences. Structure-function relationships were similar in both groups, but coupling between functional 77 

connectivity and cognition was stronger for carriers than for non-carriers, and increased with proximity to 78 

the expected onset of disease.  79 

DISCUSSION: Our findings suggest that maintenance of functional network connectivity enables carriers to 80 

maintain cognitive performance.   81 
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 82 

1. Introduction 83 

Across the adult healthy lifespan, the structural and functional properties of brain networks are coupled, 84 

and both are predictive of cognitive ability [1,2]. The connections between structure, function and 85 

performance have been influential in developing current models of ageing and neurodegeneration [3–5]. 86 

However, this work contrasts with the emerging evidence of neuropathological and structural changes 87 

many years before the onset of symptoms of Alzheimer’s disease and frontotemporal dementia (FTD) [6–88 

8]. Genetic FTD with highly-penetrant gene mutations provides the opportunity to examine the precursors 89 

of symptomatic disease. Three main genes account for 10-20% of FTD cases: chromosome 9 open reading 90 

frame 72 (C9orf72), granulin (GRN) and microtubule-associated protein tau (MAPT). These genes vary in 91 

their phenotypic expression and in the age of onset [9]. Despite pleiotropy [10], environmental and 92 

secondary genetic moderation [11,12] all three mutations cause significant structural brain changes in key 93 

regions over a decade before the expected age of disease onset [7,13], confirmed by longitudinal studies 94 

[14,15]. 95 

The divergence between early structural change and late cognitive decline begs the question: how do 96 

presymptomatic gene carriers stay so well in the face of progressive atrophy? We propose that the answer 97 

lies in the maintenance of network dynamics and functional organisation [16]. Across the lifespan, 98 

functional brain network connectivity predicts cognitive status [17], and this connectivity-cognition 99 

relationship becomes stronger with age [18,19]. 100 

Our overarching hypothesis is that for those at genetic risk of dementia, the maintenance of network 101 

connectivity prevents the manifestation of symptoms despite progressive structural changes. A challenge 102 

is that neither the anatomical and functional substrates of cognition nor the targets of neurodegenerative 103 

disease are mediated by single brain regions: they are distributed across multi-level and interactive 104 

networks. We therefore used a multivariate data-driven approach to identify differences in the 105 

multidimensional brain-behaviour relationship between presymptomatic carriers and non-carriers of 106 

mutations in FTD  genes. We identified key brain networks [20] from a large independent population-based 107 

age-matched dataset [21]. 108 

We tested three key hypotheses: (i) presymptomatic carriers differ from non-carriers in brain structure and 109 

brain function, but not in cognitive function, (ii) brain structure and function correlate with performance in 110 
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both groups, but functional network indices are stronger predictors of cognition in carriers, and (iii) the 111 

dependence on network integrity for maintaining cognitive functioning increases as carriers approach the 112 

onset of symptoms. 113 

2. Methods 114 

2.1. Participants 115 

Thirteen research sites across Europe and Canada recruited participants as part of an international 116 

multicentre partnership, the Genetic Frontotemporal Initiative (GENFI). 313 participants had usable 117 

structural and resting state functional magnetic resonance imaging data (MRI) [7,13]. The study was 118 

approved by the institutional review boards for each site, and participants providing written informed 119 

consent. Five participants were excluded due to excessive head motion (see below), resulting in 308 120 

datasets for further analysis. 121 

Participants were genotyped based on whether they carried a pathogenic mutation in MAPT, GRN and 122 

C9orf72. In this study, we focus on non-carriers (NC, N=134) and presymptomatic carriers (PSC, N=121), i.e. 123 

gene carriers with normal cognitive function based on a neurocognitive assessment (see below). 124 

Participants and site investigators were blinded to the research genotyping, although a minority of 125 

participants had undergone predictive testing outwith the GENFI study. See Table 1 for demographic 126 

information of both groups. In keeping with other GENFI reports, the years to expected onset (EYO) were 127 

calculated as the difference between age at assessment and mean age at onset within the family [7]. 128 

 129 

2.2. Neurocognitive assessment 130 

Each participant completed a standard clinical assessment consisting of medical history, family history, 131 

functional status and physical examination, in complement with collateral history from a family member or 132 

a close friend. In the current study 13 behavioural measures of cognitive function were correlated with 133 

neuroimaging measures. These included the Uniform Data Set [22]: the Logical Memory subtest of the 134 

Wechsler Memory Scale-Revised with Immediate and Delayed Recall scores, Digit Span forwards and 135 

backwards from the Wechsler Memory Scale-Revised, a Digit Symbol Task, Parts A and B of the Trail Making 136 

Test, the short version of the Boston Naming Test, and Category Fluency (animals). Additional tests included 137 

three subscores of the Letter Fluency and Wechsler Abbreviated Scale of Intelligence Block Design task, 138 

and the Mini-Mental State Examination. Latency measures for the Trail Making Test were inverted so that 139 

higher values across all tests reflect better performance. 140 
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 141 

2.3. Neuroimaging assessment 142 

Figure 1 provides a schematic representation of imaging data processing pipeline and the analysis strategy 143 

for linking brain-behaviour data. MRI data were acquired using 3T scanners and 1.5T where no 3T scanning 144 

was available from various vendors, with optimised scanning protocols to maximise synchronisation across 145 

scanners and sites [7,13]. A 3D-structural MRI was acquired on each participant using T1-weighted 146 

Magnetic Prepared Rapid Gradient Echo sequence. The co-registered T1 images were segmented to extract 147 

probabilistic maps of 6 tissue classes: grey matter (GM), white matter (WM), cerebrospinal fluid (CSF), 148 

bone, soft tissue, and residual noise. The native-space GM and WM images were submitted to 149 

diffeomorphic registration to create equally represented gene-group template images [DARTEL; 23]. The 150 

templates for all tissue types were normalised to the Montreal Neurological Institute template using a 12-151 

parameter affine transformation. The normalised images were smoothed using an 8-mm Gaussian kernel.  152 

For resting state fMRI measurements, Echo-Planar Imaging data were acquired with at least six minutes of 153 

scanning. The imaging data were analysed using Automatic Analysis [AA 4.0; ,24] pipelines and modules 154 

which called relevant functions from SPM12 [25]. To quantify the total motion for each participant, the root 155 

mean square volume-to-volume displacement was computed using the approach of Jenkinson et al [26]. 156 

Participants with 3.5 or more standard deviations above the group mean motion displacement were 157 

excluded from further analysis (N = 5). To further ensure that potential group bias in head motion did not 158 

affect later analysis of connectivity, we took three further steps: i) fMRI data was further postprocessed 159 

using whole-brain Independent Component Analysis (ICA) of single subject time-series denoising, with 160 

noise components selected and removed automatically using a priori heuristics using the ICA-based 161 

algorithm [27], ii) postprocessing of network node time-series (see below) and iii) a subject-specific 162 

estimate of head movement for each participant [26] included as a covariate in group-level analysis [28]. 163 

2.4. Network definition 164 

The location of the key cortical regions in each network was identified by spatial-ICA in an independent 165 

dataset of 298 age-matched healthy individuals from a large population-based cohort [21]. Full details 166 

about preprocessing and node definition are described previously [29]. Four networks commonly affected 167 

by neurodegenerative diseases including FTD [20] were identified by spatially matching to pre-existing 168 

templates [30]. The node time-series were defined as the first principal component resulting from the 169 
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singular value decomposition of voxels in an 8-mm radius sphere, which was centred on the peak voxel for 170 

each node [18]. Visual representation of the spatial distribution of the nodes is shown in Figure 2.  171 

We aimed to further reduce the effects of noise confounds on functional connectivity effects of node time-172 

series using general linear model (GLM) [28]. This model included linear trends, expansions of realignment 173 

parameters, as well as average signal in WM and CSF, including their derivative and quadratic regressors 174 

from the time-courses of each node. The WM and CSF signals were created by using the average signal 175 

across all voxels with corresponding tissue probability larger than 0.7 in associated tissue probability maps 176 

available in SPM12. A band-pass filter (0.0078-0.1 Hz) was implemented by including a discrete cosine 177 

transform set in the GLM. Finally, the functional connectivity (FC) between each pair of nodes was 178 

computed using Pearson’s correlation on postprocessed time-series. 179 

 180 

2.5. Statistical analysis 181 

2.5.1. Group differences in brain structure, function and cognition 182 

To assess the group-differences in neuroimaging and behavioural dataset we used multiple linear 183 

regression with a well-conditioned shrinkage regularization [31,32] and 10-Fold Cross–Validation [33]. In 184 

the analysis of brain structure we used as independent variables the mean grey matter volume (GMV) of 185 

246 brain nodes [34]. In the analysis of brain function, we used the functional connectivity between 15 186 

nodes, which were part of the four large-scale functional networks described above. In the analysis of 187 

cognitive function, the independent variables comprised the performance measures on the 13 188 

neuropsychological tests performed outside of the scanner. In all three analyses the dependent variable 189 

was the genetic status (PSC vs NC) including age as a covariate of no interest. In addition, in the analysis of 190 

neuroimaging data we included scanner site and head motion as additional covariates of no interest. 191 

2.5.2. Brain-behaviour relationships 192 

For the brain-behaviour analysis, we adopted a two-level procedure. In the first-level analysis, we assessed 193 

the multidimensional brain-behaviour relationships using partial least squares [35]. This analysis described 194 

the linear relationships between the two multivariate datasets, namely neuroimaging (either GMV or FC) 195 

and behavioural performance, by providing pairs of latent variables (Brain-LVs and Cognition-LVs) as linear 196 

combinations of the original variables which are optimised to maximise their covariance. Namely, dataset 197 

1 consisted of a brain feature set, which could be either grey matter volume (GMV dataset) or functional 198 
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connectivity strength between pairs of regions for each individual (FC dataset). Dataset 2 included the 199 

performance measures on the 13 tests (i.e. Cognition dataset), as considered in the multiple linear 200 

regression analysis of group differences in cognition. Covariates of no interest included head motion, 201 

scanner site, gender and handedness. 202 

Next, we tested whether the identified behaviourally-relevant LVs of brain structure and function were 203 

differentially expressed by NC and PSC as a function of expected years to onset. To this end, we performed 204 

a second-level analysis using multiple linear regression with robust fitting algorithm as implemented in 205 

matlab’s function “fitlm.m”. Independent variables included subjects’ brain scores from first level PLS 206 

(either Structure-LV or Function-LV subject scores), group information, expected years to onset and their 207 

interaction terms (e.g. brain scores x group, brain scores x years to expected onset, etc.). The dependent 208 

variable was subjects’ cognitive scores from the first level analysis in the corresponding PLS (Cognition-LV). 209 

Covariates of no interest included gender, handedness, head movement and education (Figure 1).  210 

3. Results 211 

3.1. Group differences in neuroimaging and cognitive data 212 

Brain structure 213 

The multiple linear regression model testing for overall group differences in grey matter volume between 214 

PSC and NC was significant (r=.14, p=.025), reflecting expected presymptomatic differences in brain-wide 215 

atrophy. The frontal, parietal and subcortical regions had most atrophy in PSC (Figure 3). As expected, the 216 

group difference in grey matter volume of these regions increased as EYO decreased, see Supplementary 217 

Materials. 218 

Brain Function 219 

The multiple linear regression model testing for overall group differences in functional connectivity 220 

between PSC and NC was marginally significant (r=.12, p=.049). The pattern of connectivity indicated mainly 221 

increased connectivity between SN-DMN and SN-FPN in presymptomatic carriers, coupled with decreased 222 

connectivity within the networks and DMN-FPN connectivity (Figure 3). 223 

Cognitive Function 224 

We did not identify group differences in cognition and behaviour (r=.002, p=.807), confirming the 225 

impression of “healthy” status among presymptomatic carriers. However, in the next section, we consider 226 
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the relationships between structure, function and cognition that underlie this maintenance of cognitive 227 

function.  228 

3.2. Brain-behaviour relationships  229 

Structure-cognition 230 

Partial least squares analysis of grey matter volume and cognition identified one significant pair of latent 231 

variables (r = .40, p = .009). This volumetric latent variable expressed negative loadings in frontal (superior 232 

frontal gyrus, precentral gyrus, paracentral lobule), parietal (postcentral gyrus, precuneus, superior and 233 

inferior parietal lobule) and occipital (lateral and medial occipital cortex) regions and positive loadings in 234 

parahippocampal and hippocampal regions (Figure 4). The Cognition-LV profile expressed positively a large 235 

array of cognitive tests, with strongest values on delayed memory, Trail Making, Digit Symbol, Boston 236 

Naming and Fluency tests. The positive correlation between volumetric and cognitive LV’s confirms the 237 

expected relationship across the cohort as a whole, between cortical grey matter volume and both 238 

executive, language and mnemonic function (Figure 4). 239 

To understand the structure-cognition relationship in each group and in relation to the expected 240 

years of onset, we performed a second-level moderation analysis using a regression model: we entered 241 

Cognition-LV subject scores as dependent variable, and grey matter volume LV subject scores, genetic 242 

status (i.e. carrier or non-carrier), expected years to onset and their interactions as independent variables 243 

in addition to covariates of no interest. The results indicated that the relationship between grey matter 244 

volume and cognition could not be explained by genetic status, expected years to onset or their interactions 245 

with grey matter volume LV subject scores. There was no evidence for genetic status- and onset-dependent 246 

differences (over and above ageing and other covariates) in the associations between grey matter volume 247 

and cognition in this analysis (Figure 4). 248 

Connectivity-Cognition 249 

PLS analysis of functional connectivity and cognition also identified one significant pair of LVs (Function-LV 250 

and Cognition-LV, r=.32, p=.020), see Figure 5. This Function-LV reflected weak between-network 251 

connectivity, coupled with strong within-network connectivity. This pattern indicates the segregation or 252 

modularity of large-scale brain networks. The Cognition-LV expressed all tests, with positive loading values 253 

indicating that higher performance on a wide range of cognitive tests is associated with stronger functional 254 

network segregation. Cognitive deficits were associated with loss of segregation, with increased between-255 

network connectivity and decreased within-network connectivity.  256 
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To further test whether the observed behaviourally-relevant pattern of connectivity is differentially 257 

expressed between genetic status groups and expected years of onset, we constructed a second-level 258 

regression model with robust error estimates by including Function-LV subject scores, genetic status, 259 

expected years of onset and their interaction terms as independent variables and Cognition-LV as 260 

dependent variable in addition to covariates of no interest (Figure 5). 261 

We found evidence for significant interaction between expected years of onset and Function-LV (r=.21, 262 

p<.001) and between group and Function-LV (r=.15, p=.003) explaining unique variance in Cognition-LV. 263 

We used the Dawson and Richter approach [36] to test formally for differences in the relationship (i.e. 264 

simple slopes) between Function-LV and Cognition-LV for PSC and NC. The relationship between Function-265 

LV and Cognition-LV was stronger for PSC relative to NC (r=.15, p=.003), indicating the increasing 266 

importance of functional connectivity between the large-scale networks for PSC participants to maintain 267 

performance (Figure 5). 268 

For ease of interpretation and illustration, we also computed the correlation between Cognition-LV and 269 

Function-LV for high and low levels of expected years to onset (EYO) within each group separately, where 270 

the levels were taken to be 1 standard deviation above and below the mean values of EYO. The two EYO 271 

subgroups were labelled “near” and “far”, with “near” for EYO values close to zero (i.e. participant’s age is 272 

“near” the age at which disease symptoms were demonstrated in the family), and “far” for EYO being a 273 

largely negative value (i.e. participant’s age is “far” from the age at which disease symptoms were 274 

demonstrated in the family). The analysis indicated that as the EYO decreases (i.e. participant’s age is 275 

reaching the years of onset of symptoms) the relationship between functional connectivity and 276 

performance becomes stronger (moderation effects: r=.14, p=.021 and r=.28, p<.001 for NC and PSC, 277 

respectively). Interestingly this relationship was stronger in each EYO subgroup for PSC relative to NC (PSC-278 

Near vs NC-Near: r=.28, p<.001; PSC-Far vs NC-Far: r=.22, p=.001). These findings indicate that the 279 

relationship between FC and cognition is stronger in PSC relative to NC, and that this relationship increases 280 

as a function of EYO. 281 

 282 

4. Discussion 283 

In the present study, we confirmed previous findings of group differences in brain structure and function, 284 

in the absence of differences in cognitive performance between non-carriers and presymptomatic carriers 285 
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of FTD-related genetic mutations. But, while the relationship between structure and cognition was similar 286 

in both groups, the coupling between function and cognition was stronger for presymptomatic carriers, 287 

and increased as they approached the expected onset of disease.  288 

These results suggest that people can maintain good cognitive abilities and successful day-to-day 289 

functioning despite significant neuronal loss and atrophy. This disjunction between structure and function 290 

is a feature of healthy ageing, but we have shown that it also characterises presymptomatic FTD, over and 291 

above the age effects in their other family members, despite widespread progressive atrophy. The 292 

multivariate approach reveals two key findings: (i) presymptomatic carriers express stronger between-293 

network and weaker within-network functional connectivity than age-matched non-carriers, and (ii) as 294 

carriers approach their estimated age of symptom onset, and atrophy becomes evident, the maintenance 295 

of good cognition is increasingly associated with sustaining balance of within- and between-network 296 

integration. 297 

This balance of within- and between-network connectivity is characteristic of segregated and specialized 298 

network organization of brain systems. Such functional segregation varies with physiological ageing 299 

[17,18,37], with cognitive function [18] and in individuals at risk for Alzheimer’s disease [38]. Graph-300 

theoretic quantification of network organisation confirms the relevance of modularity and efficiency to 301 

function in FTD [16]. Conversely, the loss of neural systems’ modularity mirrors the loss of functional 302 

specialization with age [39] and dementia [38]. Here, we show the significance of the maintenance of this 303 

functional network organisation, with a progressively stronger correlation with cognitive performance as 304 

seemingly healthy adults approach the age of expected onset of FTD. 305 

The uncoupling of brain function from brain structure indicates that there may be independent and 306 

synergistic effects of multiple factors leading to cognitive preservation. This is consistent with a previous 307 

work in healthy ageing where brain activity and connectivity provide independent and synergistic 308 

predictions of performance across the lifespan [19]. Therefore, future studies need to consider the 309 

independent and synergistic effects of many possible biomarkers, based on MRI, computed tomography, 310 

positron-emission tomography, CSF, blood and brain histopathology. For example, functional network 311 

impairment may be related to tau expression and tau pathology, amyloid load, or neurotransmitter deficits 312 

in neurodegenerative diseases, independent of atrophy [29,40–42]. Importantly, studies need to recognise 313 

the rich multivariate nature of cognition and of neuroimaging in order to improve stratification procedures, 314 

e.g. based on integrative approaches that explain individual differences in cognitive impairment [29,43].  315 
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We also recognise the difficulty to determine a unique contribution of each factor (e.g. brain structure and 316 

brain function), given the increasing interaction between factors in advanced stages of disease [44]. This is 317 

further complicated by these alterations becoming irreversible with progression of neurodegeneration 318 

[45]. This suggests that the critical interplay between multiple factors (including brain structure and 319 

function) may be better studied in the asymptomatic and preclinical stages as well as across the healthy 320 

lifespan, which could still be modifiable and their influences are likely to be more separable. 321 

Our findings agree with the model of compensation in the presymptomatic and early phases of 322 

Huntington’s disease, where network coupling predicted better cognitive performance [46]. In a recent 323 

longitudinal study a non-linear concave-down pattern of both brain activity and behaviour was present,  324 

despite a linear decline in brain volume over time, [47]. Similar effects have been observed also in healthy 325 

ageing and amnestic mild cognitive impairment, where greater connectivity with the default-mode network 326 

and weaker connectivity between default-mode network and dorsal-attention network was associated with 327 

higher cognitive status in both groups [48]. Network integrity may also play a role in compensatory 328 

mechanisms in non-cognitive symptoms, such as motor impairment in Parkinson’s disease [49]. 329 

Accordingly, increased network efficiency and connectivity has been shown in prodromal phases, followed 330 

by decreased local connectivity in symptomatic phases, suggesting the emergence and dissipation of neural 331 

compensation [50]. 332 

The current study has several limitations. First, despite the large sample of subjects included, we did not 333 

analyse each gene separately, as it may have resulted in too small and unbalanced samples, lowering 334 

statistical power and robustness. Moreover, genetic FTD is also characterised by multiple mutations within 335 

these genes and pleiotropy of clinical phenotypes even for the same mutation [10]. Pleiotropy in terms of 336 

clinical phenotype is avoided by the study of presymptomatic carriers, but we cannot rule out pleiotropy 337 

of intermediate phenotypes expressed as say neural network diversity. Furthermore, clinical heterogeneity 338 

is modified by environmental factors such as education [which may be a surrogate of cognitive reserve, 51], 339 

in FTD as in other dementias [12]. Genetic modifiers such as TMEM106B [52], APOE [53], have also been 340 

identified. Further work, with larger cohorts, will be able to test the potential effect of these moderators 341 

on the relationships between brain structure, functional networks and cognition. Future studies will benefit 342 

from using brain measures that reflect differences in neural connectivity directly from neurophysiology or 343 

separation of neurovascular from neuronal contributors to BOLD fMRI variance [18,54], which can 344 

confound the effects of age, drug or disease [55]. 345 
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The current study is cross-sectional. Therefore, we cannot infer longitudinal progression within subjects as 346 

the unambiguous cause of the effects we observe in relation to expected years of onset. Accumulating 347 

evidence suggests that network integrity serves to maintain performance with either physiological ageing 348 

or pathological conditions. However, longitudinal mediation studies and pharmacological or electroceutical 349 

interventions would be needed to prove its causal role in cognitive preservation. Finally, our findings are 350 

limited to autosomal dominant FTD, which represents a minority of FTD: generalisation to sporadic forms 351 

of disease would be speculative.  352 

In conclusion, we used a multivariate data-driven approach to demonstrate that brain functional integrity 353 

can enable presymptomatic carriers to maintain cognitive performance in the presence of progressive brain 354 

atrophy for years before the onset of symptoms. The approach and the findings have implications for the 355 

design of presymptomatic disease-modifying therapy trials and the study of unique and synergistic effects 356 

of risk factors and biomarkers in health and disease, which are otherwise increasingly interacting and 357 

irreversible with progression of neurodegeneration. 358 

  359 
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 528 

7. Tables 529 

Table 1. Demographics of participants included in the analysis, grouped by genetic status 530 

as non-carriers (NC) and presymptomatic carriers (PSC). * denotes whether demographics vary 531 

between NC and PSC groups. 532 

  533 

NC PSC X2 or F-test P -value

N 134 121

2.68 0.103

Mean / SD 49 / 14 46 / 11

Range [Min/Max] 19 / 86 20 / 70

0.01 0.908

Men 53 (39.6) 47 (38.8)

Women 81 (60.4) 74 (61.2)

0.23 0.631

Mean / SD -10 / 12 -11 / 11

Range [Min/Max] -25 / 10 -25 / 10

0.05 0.826

Mean / SD 14 / 3 14 / 3

Range [Min/Max] 5 / 24 5 / 22

0.39 0.532

Mean / SD 29 / 1 29 / 1

Range [Min/Max] 25 / 30 23 / 30

Education

Gene Carrier Group Statistical tests*

Age

Gender, n (%)

Expected Years to Onset

Mini-Mental State Examination
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8. Figures 534 

 535 

 536 

Figure 1. Schematic representation of data processing and analysis pipeline to test for 537 

brain-behaviour differences between presymptomatic carriers (PSC) and non-carriers (NC) as a 538 

function of expected years to onset (EYO) of symptoms, while controlling for covariates of no 539 

interest (Covs). Brain structural measures were based on the mean grey matter volume (GMV) in 540 

246 nodes, as defined in the Brainnetome atlas [34]. Brain functional measures were based on the 541 

functional connectivity between 15 nodes as part of four large-scale networks, which were defined 542 

in an independent cohort of 298 age-matched individuals part of the Cam-CAN dataset 543 

(Passamonti et al 2019 BioArxiv). 544 
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 545 

Figure 2. Visualisation of spatial localisation of the nodes part of the four large-scale 546 

networks and their mean functional connectivity (circular plot) across all participants in this study. 547 

Nodes and networks were defined in an independent cohort of 298 age-matched individuals part 548 

of the Cam-CAN dataset (Passamonti et al 2019).The default mode network (DMN) contained five 549 

nodes: the ventral anterior cingulate cortex (vACC), dorsal and ventral posterior cingulate cortex 550 

(vPCC and dPCC), and right and left inferior parietal lobes (rIPL and lIPL). The salience network 551 

(SN) was defined using right and left anterior insular (rAI and lAI) and dorsal anterior cingulate 552 

cortex (dACC). The frontoparietal network (FPN) was defined using right and left anterior superior 553 

frontal gyrus (raSFG and laSFG), and right and left angular gyrus (rAG and lAG). The dorsal 554 

attention Network (DAN) was defined using right and left intraparietal sulcus (rIPS and lIPS). 555 

 556 

 557 

  558 
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 559 

Figure 3. Group differences between PSC and NC in grey matter volume (left panel) and 560 

functional connectivity between nodes within four large scale networks (right panel). Hot colour 561 

scheme indicates the strength of effect size of PSC showing higher GMV and FC than NC, while cold 562 

colour scheme indicates the opposite effect (i.e. NC > PSC).  563 
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 564 

Figure 4. PLS analysis of grey matter volume (GMV) and cognition indicating the spatial 565 

distribution of GMV loading values (a), where hot and cold colour schemes are used for the strength 566 

of positive and negative correlations with the profile of Cognitive LV (b). (c) The scatter plot on the 567 

left represents the relationship between subjects scores of GMV LV and Cognition LV for 568 

presymptomatic carriers (PSC) and non-carriers (NC). The scatter plots in the middle and right 569 

hand-side represent GMV-Cognition LV relationship as a function of expected years to onset (EYO, 570 

split in two groups, Near and Far, see text) in each gene group separately.  571 
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 572 

Figure 5. PLS analysis of functional connectivity and cognition indicating the connectivity 573 

pattern of loading values (a), where hot and cold colour schemes are used for the strength of 574 

positive and negative correlations with the profile of Cognitive LV (b). (c) The scatter plot on the 575 

left represents the relationship between subjects scores of Function LV and Cognition LV for 576 

presymptomatic carriers (PSC) and non-carriers (NC). The scatter plots in the middle and right 577 

hand-side represents Function-Cognition LV relationship as a function of expected years to onset 578 

(EYO split in two groups, Near and Far, see text) in each gene group separately, which is also 579 

represented using a bar chart in (d). * denotes significant test at p-value < 0.05.  580 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted November 22, 2019. ; https://doi.org/10.1101/19012203doi: medRxiv preprint 

https://doi.org/10.1101/19012203
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 | P a g e  
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