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Abstract  

 

Education and intelligence are highly correlated and inversely associated with schizophrenia. 

Counterintuitively, education genetically associates with an increased risk for the disease. To 

investigate why, this study applies a multivariable Mendelian randomization of intelligence and 

education. For those without college degrees, older age of finishing school associates with a 

decreased likelihood of schizophrenia—independent of intelligence—and, hence, may be 

entangled with the health inequalities reflecting differences in education. A different picture is 

observed for schooling years inclusive of college: more years of schooling increases the 

likelihood of schizophrenia, whereas higher intelligence distinctly and independently decreases 

it. This implies the pleiotropy between years of schooling and schizophrenia is horizontal and 

likely confounded by a third trait influencing education. A multivariable Mendelian 

randomization of schooling years and bipolar disorder reveals that the increased risk of 

schizophrenia conferred by more schooling years is an artefact of bipolar disorder – not 

education.   
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Schizophrenia is a heterogeneous neurological syndrome, typically presenting in early 

adolescence, and observationally associated with lower intelligence and lower educational 

attainment1–3.  

 

Counterintuitively, education, which is positively associated with many health outcomes4,5, is 

genetically associated with an increased risk for schizophrenia3. Intelligence and education are 

highly positively correlated both phenotypically (r=0.8)6 and genetically (r=0.7)7. The traits are 

bidirectionally causally related: higher intelligence causes more years of schooling and more 

years of schooling increases intelligence8. The interwoven traits are also pleiotropically related to 

schizophrenia: a recent genome-wide association (GWA) study found evidence of an increased 

risk for schizophrenia for the single-nucleotide polymorphisms (SNPs) tagging years of 

schooling (P = 3.2 × 10−4) and strong genetic covariance between cognitive performance and 

increased years of schooling (P = 9.9 × 10−50)9. 

 

Three possible explanations exist for the associations between intelligence, education, and 

schizophrenia: vertical, horizontal, and confounding pleiotropy (Fig. 1). Uncovering the nature 

of these relationships could inform interventional strategies. To that end, this study uses 

univariable and multivariable Mendelian randomization (MR) to appraise these pleiotropic 

relationships. 

 

 
Fig. 1. Possible explanations for the pleiotropy between intelligence, education and 

schizophrenia. An example of vertical pleiotropy would be the SNPs for intelligence influencing 

schizophrenia (only) through their effect on education. Vice versa, the SNPs for education might 

influence schizophrenia (only) through their effect on intelligence. Since education influences 

intelligence, an increase in intelligence from education might influence risk for schizophrenia 

(a). An example of horizontal pleiotropy would be if the SNPs for intelligence and/or the SNPs 



for education have independent, direct effects on schizophrenia (b). An example of confounding 

pleiotropy would be if education has no influence on schizophrenia but appears to due to strong 

association with IQ. Vice versa, IQ might not influence on schizophrenia but appears to due to 

strong association with education (c). Multivariate MR can be used to investigate these 

relationships. 

 

The MR findings show that, for those without college degrees, older age of finishing school 

(Education Age) associates with a decreased likelihood of schizophrenia—independent of 

intelligence—and, hence, may be entangled with the health inequalities reflecting differences in 

education. As such, targeted strategies to retain at-risk adolescents in school may be both 

warranted as a prevention against schizophrenia and difficult to implement societally.  

 

A different picture is observed for years of schooling inclusive of college (Education Years): 

more schooling years increases the likelihood of schizophrenia, whereas higher intelligence 

distinctly and independently decreases it. This implies the pleiotropy between schooling years 

and schizophrenia is horizontal and likely confounded by a third trait also influencing education. 

Further to this, bipolar disorder, associated observationally with both higher education and 

schizophrenia3,10,11, was investigated along with education, also using multivariable MR. The 

findings reveal that the increased risk of schizophrenia conferred by more schooling years is an 

artefact of bipolar disorder – not education.   

 

Results 

MR-Egger intercept. Tables 1 and 2 contain the results for (i) the univariable (total) effects of 

education and intelligence on schizophrenia, (ii) the univariable results for the (total) effect of 

bipolar disorder on schizophrenia, and (iii) the bidirectional effects of education and intelligence. 

The MR-Egger intercept column is shaded grey, as its interpretation is different than that of the 

other tests; the MR-Egger intercept provides a test for directional pleiotropy and an assessment 

of the validity of the instrument assumptions12. If the intercept is not different than 1 on the 

exponentiated scale (or 0 on the non-exponentiated scale), that indicates a lack of evidence for 

bias in the IVW estimate, as is the case for all the univariable results.   

 

Education Years (Lee instrument) on schizophrenia. An increased (but null) effect on 

schizophrenia is observed for Education Years (odds ratio (OR) for schizophrenia per SD 

increase in years of schooling: IVW estimate 1.13; 95% CI 0.98, 1.29; P = 0.085). The 

sensitivity estimators are discrepant both in direction and magnitude of effects, indicating 

possible unwanted pleiotropy. SIMEX correction did not ameliorate this for the MR-Egger 

estimate.  

 

Education Years (Okbay instrument) on schizophrenia. In contrast, a robust increased risk 

for schizophrenia is observed for the Education Years: OR for schizophrenia per SD increase in 

Education Years: instrument estimate 1.49; 95% CI 1.23, 1.81; P<0.001). There is comportment 

in the direction of effects among the sensitivity estimators. The weak F-statistic for the Lee 

instrument may explain the discrepancy between the Lee and Okbay results.  

 

Education Age on schizophrenia. A strong protective effect against schizophrenia is observed 

for Education Age (OR for schizophrenia per SD increase in Education Age): IVW estimate 



0.46; 95% CI 0.28, 0.76; P=0.002). The sensitivity estimators align both in direction and 

magnitude of effects. 

 

Intelligence (Hill instrument) on schizophrenia. A protective effect of intelligence against 

schizophrenia is observed for both the Hill and UK Biobank instrumental variables. There is, 

however, substantial disagreement between the IVW and MR-Egger estimates for the Hill 

instrument, which was rescued by SIMEX correction (the direction of the effect is reversed 

towards that of the IVW). The remaining discordance in the sensitivity estimators for the Hill 

instrument likely indicates pleiotropy: OR for schizophrenia per SD increase in intelligence: 

IVW estimate 0.76; 95% CI 0.63, 0.93; P=0.007.  

 

Intelligence (UK Biobank instrument) on schizophrenia. A robust protective effect against 

schizophrenia is observed for the UK Biobank instrument (OR for per SD increase in 

intelligence): IVW estimate 0.86; 95% CI 0.78, 0.95; P=0.006. The sensitivity estimators align.  

 

Table 1 Univariable estimates of the effect of education, intelligence, and bipolar disorder 

on schizophrenia 

IQ=intelligence; UKBB=UK Biobank; EduYears=Education Years; EduAge=Education Age; 

P=P-value; F=F-statistic; OR=odds ratio; CI=confidence interval. 

 

Bipolar disorder on schizophrenia. An increased risk for schizophrenia is observed per genetic 

liability to bipolar disorder (IVW estimate 1.17; 95% CI 1.09, 1.26; P<0.001). The effect 

estimate is reversed for the MR-Egger estimator, and the magnitudes of the various estimators 

vary, possibly indicative of some unwanted pleiotropy.  

 

Test  Strength IVW analysis MR-Egger MR-Egger 

intercept 

Weighted 

median 

Weighted 

mode 

SIMEX 

 
R2 F 

 

OR 

(95% CI) 

P OR 

(95% CI) 

P OR 

(95% CI) 

P OR 

(95% CI) 

P OR 

(95% CI) 

P OR 

(95% CI) 

P 

EduYears 

(Lee) 

0.013 4.7 1.13 

(0.98, 

1.29) 

0.085 0.86 

(0.53, 

1.39) 

0.533 1.00 

(1.00, 

1.01) 

0.254 1.11 

(0.90, 

1.37) 

0.318 1.31 

(0.74, 

2.33) 

0.361 0.82 

(0.44, 

1.52) 

0.528 

EduYears 

(Okbay) 

0.006 11.3 1.49 

(1.23, 

1.81) 

<0.001 1.06 

(0.41, 

2.75) 

0.910 1.01 

(0.99, 

1.02) 

0.475 1.47 

(1.08, 

1.99) 

0.013 1.13 

(0.60, 

2.12) 

0.709 1.13 

(0.14, 

9.10) 

0.906 

IQ (Hill) 0.018 14.9 0.76 

(0.63, 

0.93) 

0.007 1.36 

(0.59, 

3.12) 

0.467 1.01 

(1.00, 

1.02) 

0.292 0.83 

(0.71, 

0.97) 

0.022 1.17 

(0.64, 

2.14) 

0.603 0.52 

(0.25, 

1.07) 

0.075 

IQ 

(UKBB) 

0.005 26 0.86 

(0.78, 

0.95) 

0.006 0.83 

(0.56, 

1.24) 

0.386 1.00 

(0.98, 

1.03) 

0.863 0.89 

(0.77, 

1.03) 

0.127 0.92 

(0.68, 

1.24) 

0.587 0.80 

(0.45, 

1.42) 

0.448 

EduAge 

(UKBB) 

0.001 13.3 0.46 

(0.28, 

0.76) 

0.002 0.63 

(0.13, 

3.11) 

0.592 0.99 

(0.97, 

1.02) 

0.692 0.43 

(0.22, 

0.85) 

0.016 0.41 

(0.15, 

1.17) 

0.134 0.56 

(0.03, 

9.01) 

0.680 

Bipolar 

disorder 

0.008 34.5 1.17 

(1.09, 

1.26) 

<0.001 0.99 

(0.77, 

1.28) 

0.943 1.03 

(0.99, 

1.08) 

0.314 1.16 

(1.05, 

1.27) 

0.003 1.11 

(0.98, 

1.25) 

0.195 1.00 

(0.33, 

3.05) 

0.999 



Multivariable results. Fig. 2 contains the comparison of the univariable and multivariable 

(adjusted) estimates for the effects of education and intelligence, and bipolar disorder and 

education on schizophrenia.  

 
Fig. 2. Comparison of univariable and multivariable (adjusted) estimates of the effects of 

education and intelligence and bipolar disorder and education on schizophrenia. IQ=intelligence; 

EduYears=Education Years; EduAge=Education Age; SZ=schizophrenia; UKBB=UK Biobank; 

OR=odds ratio; CI=confidence interval. 

 

Intelligence, adjusting for Education Age. The impact of intelligence on schizophrenia 

attenuates to the null when adjusting for Education Age (adjusted OR for schizophrenia per SD 

increase in intelligence: IVW estimate 0.92; 0.82, 1.04; P=0.219). One explanation for the 

difference observed between the univariable and multivariable MR estimates for the effect of 

intelligence on schizophrenia is that intelligence affects schizophrenia through its effect on 

Education Age, rather than through a direct effect on schizophrenia.  

 

Intelligence, adjusting for Education Years. The protective effect of intelligence remains after 

adjusting for Education Years (adjusted OR for schizophrenia per SD increase in intelligence: 

IVW estimate 0.84; 95% CI 0.74, 0.94). This suggests intelligence has a robust and direct 

protective effect against schizophrenia. The effect attenuates some in comparison to the 

univariable model, perhaps reflecting the loss of the contribution of Education Years to 

intelligence (Table 3 and Fig. 7).  



   

Education Age, adjusting for intelligence. A direct protective effect against schizophrenia is 

observed for Education Age (adjusted OR for schizophrenia per SD increase in Education Age: 

IVW estimate 0.51; 95% 0.30, 0.89; P=0.02).  

  

Education Years, adjusting for intelligence. An increased risk for schizophrenia is observed 

for Education Years (adjusted OR for schizophrenia per SD increase in Education Years: IVW 

estimate 1.95; 95% 1.43, 2.67; P<0.001). Together with the multivariable results for intelligence 

when adjusted for Education Years, these findings strongly suggest that the underlying 

pleiotropy between intelligence and Education Years is horizontal in relationship to 

schizophrenia (Fig. 1) and that the relationship is additionally caught up by the presence of an 

unmeasured confounder. The horizontal pleiotropy and opposing directions of effect for 

education and intelligence prompted a univariable investigation of bipolar disorder and 

schizophrenia and a multivariable Mendelian randomization of bipolar disorder and education on 

schizophrenia. The proposed hypothesis is seen in Fig. 3. 

 

 
Fig. 3. Hypothesized relationships between Education Years, intelligence, bipolar disorder, and 

schizophrenia suggested by the multivariable analysis of education and intelligence on 

schizophrenia. DAG=directed acyclic graph. 

 

Education Years on schizophrenia, adjusting for bipolar disorder. The increased risk for 

Education Years on schizophrenia attenuated to the null when accounting for bipolar disorder 

(adjusted OR: IVW estimate 1.31; 95% CI 0.87, 1.98; P=0.207).  

 

Bipolar disorder on schizophrenia, adjusting for Education Years. A direct, increased risk is 

observed for genetic liability to bipolar disorder on schizophrenia (adjusted OR for 

schizophrenia: IVW estimate 1.16, 95% CI 1.01, 1.33; P=0.033).  

 

Bidirectional relationship between Education Years and intelligence. Table 2 and Fig. 4 

depict the results for the bidirectional analysis of Education Years and intelligence. A SD-unit 

higher intelligence causes more Education Years (β 0.45, 95% CI 0.42, 0.48; P<0.001) and a SD-

year more of Education Years increases intelligence (β 1.90, 95% CI 1.80, 1.99; P<0.001). These 

findings replicate those of Anderson et al. (2018)8.    

 



Table 2 Bidirectional relationship between Education Years and intelligence 

EduYears=Education Years; EduAge=Education Age; IQ=intelligence; F=F-statistic; β=beta 

coefficient; P=P-value; CI=confidence interval 

 

 

 
Fig. 4. Bidirectional relationship between intelligence (IQ) and Education Years (EduYears). 

LD=linkage disequilibrium.   

 

Discussion 

Educational attainment has been described as feature of the bipolar disorder10,11. Bipolar disorder 

shares some cognitive deficits and genetic overlap with schizophrenia, but also predisposes to 

cognitive adeptness and creativity that distinguish it from the more neurodevelopmental aspects 

of schizophrenia3. This complex picture is reflected in the horizontal and confounding pleiotropy 

uncovered by the multivariate analyses here. Specifically, when bipolar disorder is not accounted 

for, it appears that more years of schooling increase risk for schizophrenia. Hence, bipolar 

Test Strength IVW 

analysis 

MR-Egger MR-Egger 

intercept 

Weighted 

median 

Weighted 

mode 

SIMEX 

 
R2 F 

 

β 

(95% 

CI) 

P β 

(95% 

CI) 

P Β 

(95% 

CI) 

P β 

(95% 

CI) 

P β 

(95% 

CI) 

P β 

(95% CI) 

P 

EduYears 

(Lee) on 

IQ 

(UKBB) 

0.02 5.8 1.90 

(1.80, 

1.99) 

<0.001 2.10 

(1.76, 

2.44) 

<0.001 -0.003      

(-0.007, 

0.002) 

0.236 1.97 

(1.82, 

2.12) 

<0.001 2.02 

(1.58, 

2.46) 

<0.001 2.55 

(2.19, 

2.92) 

<0.001 

IQ (Hill) 

on 

EduYears 

(Lee) 

0.005 42.2 0.45 

(0.42, 

0.48) 

<0.001 0.53 

(0.36, 

0.70) 

<0.001 0.000        

(-0.002, 

0.002) 

0.806 0.42 

(0.36, 

0.47) 

<0.001 0.39 

(0.28, 

0.49) 

<0.001 0.83 

(0.42, 

1.23) 

<0.001 



disorder is a confounder of the relationship between education and schizophrenia. Since more 

years of schooling increase intelligence and higher intelligence strongly protects against 

schizophrenia, these findings imply that staying in school is neuroprotective.  

 

For those without college degrees, education—not intelligence—acts as the mechanism 

conferring protection. The implications of this are uncertain, since the protective effect is likely 

to be entangled with the social inequalities linked to educational attainment. Nonetheless, efforts 

to retain at-risk adolescents in school, especially those beginning to show features of cognitive 

impairment, may be worth exploring.   

 

The primary strength of this study is that it capitalizes on the power of seven large GWA studies 

to probe these complexly related traits. It is the most detailed and comprehensive joint 

investigation of them to date. An unintended benefit of doing so demonstrates the value of these 

massive public datasets for etiologic discovery. 

 

The study has several limitations. MR critically relies on the validity of the instrumental 

variables. As such, measures were taken to assess the robustness of the analyses to potential 

unwanted pleiotropy, including the use of instruments lacking between-SNP heterogeneity and 

comparison of the IVW estimate with a battery of sensitivity estimators, each making different 

assumptions.  

 

Another possible limitation, which, like unwanted pleiotropy, cannot be entirely ruled out, is the 

possible introduction of bias caused by some instances of the same individuals being included in 

the GWA studies of both the exposures and the outcomes. The greatest overlap is likely to be for 

the Lee Education Years instrument on intelligence and the Hill intelligence instrument on Lee’s 

Education Years. However, since that bidirectional appraisal is a replication of Anderson et al.’s 

(2018) study that used non-overlapping samples with comparable results, the impact of the bias 

is likely to be minimal.   

 

Methods 

Conceptual approach. MR is an instrumental variables technique, analogous to a randomized 

control trial. It capitalizes on several features of the genome for causal inference: 1) the random 

assortment of alleles (Mendel’s Laws of Inheritance dictating that alleles segregate randomly 

from parents to offspring) and 2) pleiotropy (genes influencing more than one trait)13–15. Two-

sample MR (Fig. 5) uses summary statistics from two genome-wide association (GWA) 

studies12,16–20, and multivariable MR is a further extension of the procedure that permits 

adjustment21.   

 



 
Fig. 5. Two-sample Mendelian randomization testing the causal effect of intelligence or 

education on schizophrenia. Estimates of the SNP-intelligence (or SNP-education) associations 

(𝛽̂𝑍𝑋) are calculated in sample 1 (from GWA study of intelligence or GWA study of education). 

The association between these same SNPs and schizophrenia are then estimated in sample 2 

(𝛽̂𝑍𝑌) (from a schizophrenia GWA study). These estimates are combined into Wald ratios 

(𝛽̂𝑋𝑌=𝛽̂𝑍𝑌/𝛽̂𝑍𝑋). The 𝛽̂𝑋𝑌 estimates are meta-analyzed using the inverse-variance weighted 

analysis (𝛽̂IVW) method. The IVW method produces an overall causal estimate of intelligence 

and/or education on schizophrenia. 

 

Mendelian randomization assumptions. In order for MR to be valid, three assumptions must 

hold: (i) the SNPs acting as the instrumental variables must be strongly associated with the 

exposure; (ii) the instrumental variables must be independent of confounders of the exposure and 

the outcome; and (iii) the instrumental variables must be associated with the outcome only 

through the exposure18,22. When violated, assumption (iii) describes horizontal (Fig. 1b) 

pleiotropy, which can invalidate causal inference from vertical (Fig. 1a) pleiotropy probed in 

univariable MR designs.  

 

GWA study data sources for instruments 

Education Age on schizophrenia. Two measures of education were selected to instrument 

education: age at completion of full-time schooling without a college degree (Education Age) 

and years of schooling inclusive of college (Education Years). The Education Age measure was 

obtained from field 845 in the UK Biobank project23,24. Participants were asked if they had a 

college or university degree. Those without a college or university degree were asked what age 

they left continuous full-time education. Summary statistics for a GWA study of Education Age 

(adjusted for sex and 10 principal components), including 226,899 UK Biobank participants who 

answered field 845, are publicly available; the GWA study was performed by the Neale lab, after 

transforming the item into a normally distributed quantitative variable25 (SNP coefficients per 

standard deviation (SD) units of Education Age). Because the instrument for Education Age 

captures only those without college or university degrees, the inference from the use of 

Education Age as an instrument is restricted to without college or university degrees.  

 



The F-statistic, a function of how much variance in a trait is explained by an instrument (R2), the 

sample size, and the number of SNPs in an instrument, provides an indication of instrument 

strength26. F-statistics <10 are conventionally considered to be weak27. The F-statistic for the 

Education Age instrument is 13.3. 

 

Education Years on schizophrenia. The primary years of schooling measure was obtained from 

the Lee et al. (2018) GWA study of 1,131,881 participants of European ancestry from 71 cohorts 
28. Education Years was measured for those who were at least 30 years of age, and International 

Standard Classification of Education (ISCED) categories were used to impute a years-of-

education equivalent (SNP coefficients per SD units of years of schooling). The F-statistic for 

the Lee Education Years instrument is 4.7, indicating the instrument may be weak. Due to this, a 

second measure of Education Years from a smaller GWA study of years of schooling was used 

to construct a second instrument for Education Years9. The Okbay et al. (2016) GWA study used 

the same construction of Education Years as did Lee et al. (2018) GWA study and contained 

293,723 participants of European ancestry9. The Okbay Education Years instrument has an F-

statistic of 11.3. Because it is aptly strong, the Okbay Education Years instrument was used in 

the multivariate model of intelligence and education on schizophrenia.  

 

Education Years on intelligence (Bidirection 1). The Lee et al. (2018) GWA study was used to 

extract SNPs for the first part of the bidirectional analysis of education on intelligence. The 

instrument has an F-statistic of 5.8, indicating it may be inadequately strong. However, a 

bidirectional appraisal of Education Years and intelligence using the Okbay et al. (2016) GWA 

study for instrumental variables was previously reported8. The Anderson et al. study is treated as 

a natural-history sensitivity analysis, since they included fewer and (likely) stronger SNPs (148 

compared to 299, respectively), which can increase the F parameter29. (See Table 3 for a list of 

the number of selected SNPs for each of the instrumental variables).  
 

Intelligence on schizophrenia (Hill instrument). Two GWA studies were used to create 

instruments for intelligence. The first came from the Hill et al. (2019), which included 248,482 

individuals of European ancestry (SNP coefficients per one SD increase in intelligence test 

scores7. The instrument’s F-statistic is 14.9.  

 

Intelligence on schizophrenia (UK Biobank instrument). A second instrument for intelligence 

was constructed from a GWA study performed by the Neale lab using the UK Biobank measure 

for fluid intelligence (field 20016) (n=108,818). The participants answered 13 logic questions 

within two minutes and the number of correct answers were summed. The data were transformed 

into a normally distributed quantitative variable (SNP coefficients per one SD unit increase in 

fluid intelligence score)25. The instrument’s F-statistic is 26. 

 

Intelligence on education (Bidirection 2).  

The Hill et al. (2019) GWA study of intelligence was used for the second part of the 

bidirectional analysis of intelligence and education. The instrument has an F-statistic of 42.2. 

 

Bipolar disorder on schizophrenia. A GWA of bipolar disorder containing 16,731 participants 

of European descent (of which 7,481 were cases) was available for the instrument for bipolar 

disorder30. The instrument has an F-statistic of 34.5. 



 

GWA study data sources for outcomes 

Intelligence. Because the full GWA study summary data were unavailable for the Hill GWA 

study of intelligence, the UK Biobank GWA study of intelligence (n=108,818) was used as the 

outcome GWA study for the tests of Education Years and Education Age on intelligence. 
 

Education (Education Years). Full summary data were available for 766,345 participants in the 

Lee et al. Education Years GWAS.  

 

Education (Education Age). Full summary data were available for 226,899 participants in the 

UK Biobank Education Age GWAS. 

 

Schizophrenia. Full summary data were available for a schizophrenia GWA study dataset 

containing 82,315 participants of European ancestry, of which 35,476 were cases31.  

  

Instrument construction. For each instrument (𝛽̂𝑍𝑋), independent (those not in linkage 

disequilibrium, LD; R2 < 0.01) single-nucleotide polymorphisms (SNPs) associated at genome-

wide significance (P < 5 x 10-8) with a trait were extracted from within their respective GWA 

study. The summary statistics for the instrument-associated SNPs were then extracted from an 

outcome GWA study (𝛽̂𝑍𝑌). SNP-exposure and SNP-outcome associations were harmonized 

with the “harmonization_data” function within the MR-Base “TwoSampleMendelian 

randomization” package within R16. Harmonized SNP-exposure and SNP-outcome associations 

were combined with the IVW method (Fig. 2).  

 

For the bidirectional associations between intelligence and schooling years, SNPs tagging both 

traits at genome-wide significance and/or SNPs that were in LD between intelligence and 

schooling years were excluded. This is because overlapping SNPs can invalidate bidirectional 

MR findings20. In addition, for all instrumental variables, RadialMR regression32 was run to 

detect SNP outliers. Outlier SNPs were removed. All instrumental variables included in this 

analysis have Cochrane’s Q-statistic P-values indicating no evidence for heterogeneity between 

SNPs33 (heterogeneity statistics are provided in Supplementary Tables 4, 7, 10, 13, 16, 21, 24, 

27, and 30). 

 

Sensitivity analyses. To address possible violations to MR assumption (iii), MR-Egger 

regression, weighted median, and weighted mode MR methods were run as complements to the 

IVW method for the univariable models. When the magnitudes and directions of the various MR 

methods comport across estimators, this lack of heterogeneity is a screen against pleiotropy. The 

reason for this is that various MR sensitivity estimators make different assumptions about the 

underlying nature of pleiotropy. It is unlikely there would be homogeneity in the direction and 

magnitudes of their effect estimates if there were substantial violations to the pleiotropy 

assumption. An extensive description of the different MR methods and the different assumptions 

they make about pleiotropy have been previously reported34–36. In addition, a SIMEX correction 

was performed for all univariate tests to correct potentional regression to the null in the MR-

Egger estimates37 (Supplementary Tables 5, 8, 11, 14, 17, 22, 25, 28, 31).  

  



Number of tests. In total, 14 MR tests were run. Table 3 contains a list of the tests and the 

number of instrumental variables (detailed characteristics for the individual SNPs used in each 

model are provided in Supplementary Tables 3, 6, 9, 12, 15, 20, 23, 26, and 29). These 14 tests 

are not independent; a false-discovery rate (FDR)-correction was applied to the raw P-values to 

assess whether the penalization changed the inference (Supplementary Table 2). As it did not, the 

raw P-values are reported for the following reasons: the inference remained unchanged, the 

FDR-adjustment is overly conservative in this case, and P-values alone are not the best guide for 

causal inference38.  

 

Table 3 Univariable, multivariable, and bidirectional Mendelian randomization models 

Type  Mendelian randomization model (source GWAS) SNPs 

Univariable Intelligence (Hill) on schizophrenia 150 

Univariable Intelligence (UK Biobank) on schizophrenia 17 

Multivariable Intelligence (UK Biobank), adjusting for Education Years (Okbay) 13 

Univariable Education Years (Lee) on schizophrenia 238 

Univariable Education Years (Okbay) on schizophrenia 45 

Multivariable Education Years (Okbay), adjusting for intelligence (UK Biobank) 36 

Univariable Education Age (UK Biobank) on schizophrenia 9 

Multivariable 

Intelligence (UK Biobank) on schizophrenia, adjusting for Education 

Age (UK Biobank) 17 

Multivariable 

Education Age (UK Biobank) on schizophrenia, adjusting for 

intelligence (UK Biobank) 9 

Bidirection 1 Intelligence (Hill) on Education Years (Lee) 35 

Bidirection 2 Education Years (Lee) on intelligence (UK Biobank) 299 

Multivariable 

Education Years (Okbay) on schizophrenia, adjusting for bipolar 

disorder 51 

Multivariable Bipolar disorder on schizophrenia, adjusting for Education Years 3 

Univariable Bipolar disorder on schizophrenia 4 

 

Statistical software. SIMEX corrections were perfomed in Stata SE/16.0. All other described 

analyses were performed in R version 3.5.2.  

 

Data availability 

All data sources used for SNP-exposure and SNP-outcome associations are publicly available. 

The data for the Hill intelligence7 and Lee Education Years28 instruments were obtained directly 

from the supplementary files accompanying their primary papers. The remaining data used for 

these analyses are accessible within MR-Base http://www.mrbase.org/16. 

 

Code availability 

A copy of the code used in this analysis is available at  
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