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Abstract 

Somatic genomic structural variations (SVs) are promising personalized biomarkers for                   

sensitive and specific detection of circulating tumor DNA (ctDNA) in liquid biopsies.                       

However, affordable and fast identification of such SV biomarkers is challenging,                     

which hinders routine use in the clinic. Here, we developed a novel approach - termed                             

SHARC - for rapid discovery of somatic SVs as personalized tumor biomarkers. SHARC                         

combines low coverage cancer genome sketching by using Oxford Nanopore                   

sequencing with random forest classification and a dedicated filtering pipeline to                     

enrich for somatic SVs. Our method ​leverages the real-time and long-read capabilities                       

of nanopore sequencing to identify somatic SV breakpoints at nucleotide resolution                     

from a tumor tissue biopsy within three days. We applied SHARC to tumor samples of                             

high-grade ovarian and prostate cancer and validated on average ten somatic SVs per                         

sample with PCR mini-amplicons. An accompanying method for SV breakpoint                   

detection from liquid biopsies was devised based on digital PCR, enabling detection of                         

cancer in a quantitative manner. Using this method, we retrospectively monitored                     

treatment response in patients with metastatic prostate cancer. Our work                   

demonstrates that SHARC forms a universal framework for rapid development of                     

personalized biomarker assays for blood-based monitoring of any cancer type. 
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Introduction 

The pursuit of true precision medicine in oncology prompts us to improve the detection                           

of cancer recurrence as well as accurate and fast monitoring of response to treatment.                           

The current diagnostic paradigm for monitoring of cancer relies on imaging (CT/MRI                       

scans), which inherently lacks sensitivity for both the initial diagnosis and to detect                         

changes over time ​1,2​. A promising approach to improve tumor detection is the use of                           

liquid biopsies, that can be used to detect circulating cell-free DNA (cfDNA) from body                           

fluids, such as blood, in a minimally invasive manner ​3,4​. In patients with cancer,                         

apoptotic and necrotic tumor cells shed fragmented DNA into the bloodstream                     

(circulating tumor DNA, ctDNA), which contributes to the total levels of cfDNA​5​. A                         

positive linear correlation between levels of ctDNA and tumor burden has been                       

observed for multiple cancer types ​6,7​. Furthermore, previous studies successfully                 

utilized ctDNA to capture intra-tumoral genomic heterogeneity from all tumor                   

locations within one patient​8,9​. In multiple cases, ctDNA analysis identified cancer                     

recurrence months before clinical symptoms presented​10–12​. 

 

The most commonly used biomarkers to differentiate between cfDNA from normal                     

cells and ctDNA from tumor cells are somatic single nucleotide variants (SNVs).                       

However, detection of somatic SNVs in liquid biopsies requires high coverage                     

sequencing to reach sufficient sensitivity​3​. Moreover, the detection of these mutations                     

in plasma in a sensitive manner requires the design of mutation specific detection                         

assays or gene enrichment panels for ultra-deep sequencing of target loci​3,4​. Somatic                       

genomic structural variation (SV) may serve as another type of tumor-specific                     

biomarker to detect and quantify ctDNA with high sensitivity in liquid biopsies ​11–14​.                       

Most common solid cancers contain dozens to hundreds of somatic SVs ​15,16​. Besides                       

some recurrent gene fusions, like TMPRSS2-ERG in prostate cancer, the vast majority of                         

these somatic SVs are patient- and tumor-specific ​17​. Furthermore, SVs form a unique                       

breakpoint junction between two joined DNA strands and can be validated by                       

straightforward junction-spanning (quantitative) PCR assays ​12​. Personalized detection             

of somatic SVs could be a powerful addition to point-mutation based assays for                         

detection of ctDNA in patients with cancer. 

 

Somatic SVs are commonly detected with short-read paired-end next generation                   

sequencing (NGS). However, as SVs can be very large, short reads are less suited for SV                               

detection, particularly in genomic regions with low complexity or in multi-breakpoint                     
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events ​18–20​. Recently, long-read sequencing techniques from Oxford Nanopore               

Technologies (ONT) and Pacific Biosciences (PacBio) have emerged and their increased                     

power for germline and somatic SV detection has been extensively demonstrated​19–23​.                     

Moreover, ONT enables a short turnaround time and real-time data analysis for clinical                         

applications ​24​. ​We leveraged the long-read and fast sequencing capabilities of nanopore                     

sequencing to develop SHARC ( ​S​tructural c ​h​anges ​a​s bioma​r ​kers for ​c ​ancer). Our                     

approach combines ONT-based low-pass whole genome sequencing (WGS) of tumor                   

tissue with a computational method to detect somatic SVs without the need for                         

sequencing a reference control sample. The computational part of SHARC combines                     

random forest classification and germline SV filtering to enrich for somatic SVs, which                         

subsequently enables the design of tumor-specific PCR-assays within three days. We                     

demonstrate the clinical applicability of SHARC by tracking somatic SVs in longitudinal                       

cfDNA samples of patients with metastatic prostate cancer.  
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Results 

 

Detection of somatic structural variations from low coverage nanopore                 

sequencing of tumor biopsies 

To rapidly identify tumor-specific SV breakpoints, which can be used to track tumor                         

dynamics in blood, we developed SHARC. The first step of the SHARC assay involves                           

low coverage nanopore sequencing of genomic tumor-derived DNA ( ​Fig. 1A​). A single                       

nanopore run on the MinION or GridION platforms typically generates between 5-15                       

Gbs of data​25​, corresponding to 1.5-5x coverage of the human genome. Next, the low                           

coverage sequencing data are mapped to the reference genome followed by the                       

detection of SV breakpoint junctions from split read mappings ( ​Fig. 1B​) ​21​.                     

Subsequently, a classification and filtering pipeline is applied to enrich for somatic SV                         

breakpoints ( ​Fig. 1B​). Finally, PCR assays with mini-amplicons are designed to validate                       

somatic SVs. SVs are confirmed as either somatic or germline by breakpoint PCR on                           

tumor and corresponding lymphocyte DNA ( ​Fig. 1C​). Successful breakpoint PCR assays                     

for somatic SVs detected with SHARC can then be utilized for ctDNA-based monitoring                         

of treatment response and disease recurrence ( ​Fig. 1D​). 

 

Establishment of a somatic SV reference set to test SHARC 

To verify the ability of our pipeline to detect somatic SVs, we used genomic data from                               

the melanoma cell line COLO829​26 and the ovarian cancer organoid line HGS-3​27​. We                         

utilized short-read WGS data from both lines (90x and 30x coverage for COLO829 and                           

HGS-3, respectively) and matching reference samples (30x coverage in both cases) to                       

establish two reference sets of somatic SVs ( ​Methods​). By using state-of-the-art SV                       

detection pipelines ​16,28​, we detected 92 and 295 somatic SVs in COLO829 and HGS-3,                         

respectively. Additionally, we generated long-read nanopore sequencing data for                 

COLO829 and HGS-3, reaching high coverages of 59x ​(COLO829) and 56x ​(HGS-3)                       

( ​Suppl. Fig. 1 and Suppl. Table 1​). To simulate low coverage long-read sequencing of                           

tumor genomes, we randomly subsampled the nanopore sequencing reads to                   

coverages of 4x, 3x and 2x. The subsampling was performed 20 times independently                         

for each case, to mitigate the effect of chance on the subsampling and subsequent                           

analysis.  

Next, we tested the ability of SHARC to detect SVs from high and low coverage                             

nanopore sequencing data. SHARC uses NanoSV​21 to call SVs from the nanopore                       

sequencing data. In total, 82,918 (COLO829) and 85,039 (HGS-3) SV candidates were                       
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called in the high coverage sets and an average of 12,886 (COLO829) and 11,284 (HGS-3)                             

SV candidates were called in the low coverage subsets ( ​Suppl. Table 2)​. Based on the                             

overlap with the somatic short-read reference set, raw SV calls were classified as                         

somatic (true-positives) or non-somatic (false-positives). The vast majority of the raw                     

SV calls in all the different coverage datasets were false-positives, on average 99.84%                         

(range 99.81-99.9%, COLO829) and 99.55% (range 99.4-99.74%, HGS-3) ​(Fig. 2A)​.                   

Nevertheless, in the high coverage datasets, we identified 84 (91% of the short-read                         

reference set, 0.1% of the total calls) and 219 (74% of the short-read reference set, 0.3%                               

of the total calls) true-positive somatic SVs for COLO829 and HGS-3, respectively ( ​Fig.                         

2A and Suppl. Fig. 2A​). The fraction of true-positives with respect to the total number                             

of SV calls was similar in the low coverage subsets (average of 0.18% and 0.5% for                               

COLO829 and HGS-3, respectively) ( ​Fig. 2A​). Thus, we show that we can identify                         

somatic SVs from both high and low coverage tumor-only nanopore sequencing data,                       

despite the major fraction of SV calls being false-positives.  

 

Enrichment for true-positive SV calls from nanopore sequencing data 

To reduce false-positive SV calls, we implemented a panel of filtering steps. First, we                           

selected only “PASS” SV calls (based on default NanoSV filter flags ​21​, ​Methods ​).                       

Secondly, we excluded calls involving chromosome Y or the mitochondrial genome.                     

Finally, we removed all insertions, since the exact inserted sequence cannot be                       

accurately defined, thus hampering the final PCR assay development at a later step. As                           

a result of these filtering steps, 72.6% (COLO829) and 76.2% (HGS-3) false-positive calls                         

were removed in the high coverage sets ( ​Fig. 2B and Suppl. Table 2)​. For the low                               

coverage sets, the filtering removed on average 50.9% (COLO829) and 49.9% (HGS-3) of                         

false-positive calls ( ​Fig. 2B and Suppl. Table 2​). In contrast, the vast majority of                           

somatic true-positive SV calls was maintained following SV filtering (on average 76.9%                       

in COLO829 and 93.9% in HGS-3, ​Fig. 2B ​).  

To further reduce the number of false-positive SV calls, we employed a random forest                           

(RF) machine learning approach ( ​Methods ​), similarly as previously described for SV                     

calling of nanopore data​21​. We applied the RF classifier to the filtered high and low                             

coverage subsets of COLO829 and HGS-3. For the high coverage sets, the RF labelled                           

84% (COLO829) and 81.3% (HGS-3) of false-positive SV calls as false ( ​Fig. 2C​). For the                             

low coverage sets, on average 70.6% (COLO829) and 68% (HGS-3) of false-positive SV                         

calls were labelled as false ( ​Fig. 2C​). In addition, in the high coverage sets, 81.25%                             

(COLO829) and 97.88% (HGS-3) of true-positive SV calls were labelled as true. Similar                         
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percentages of true-positive SV calls were labelled as true in the low coverage sets, on                             

average 73.7% (COLO829) and 98.6% (HGS-3) ( ​Fig. 2C​).  

These results show that the RF classifier filters out the majority of false-positive                         

breakpoints, while maintaining true-positive somatic SV calls. However, germline SV                   

calls are also maintained at this step. Therefore, somatic true-positive SVs still                       

represent a minor fraction of the total remaining SV calls: 0.3% COLO829 high                         

coverage, 0.3% average COLO829 low coverage, 1% HGS-3 high coverage and 1%                       

average HGS-3 low coverage ​(Suppl. Fig. 2B). 

 

To reduce the number of germline SVs, we implemented a blacklist filtering step.                         

Therefore, the remaining SV calls were overlapped with two databases (DBFilter): (i)                       

SharcDB, containing SV calls from nanopore sequencing of 12 samples ( ​Methods​) to                       

remove both germline SVs and nanopore-specific false-positives, and (ii) RefDB,                   

containing germline SV calls from 63 control samples previously sequenced using                     

Illumina WGS in our group ( ​Methods ​). Following this filtering step, 100% of                       

true-positive somatic SV calls from both the COLO829 and HGS-3 high and low coverage                           

sets were retained ( ​Fig. 2D​). In contrast, 88.6% (COLO829, high coverage), 76.2%                       

(HGS-3, high coverage) and on average 89.9% (COLO829, low coverage) and 84.5%                       

(HGS-3, low coverage) of remaining false-positive SV calls were filtered out ( ​Fig. 2D​).                         

Due to this filtering, the fraction of true-positive somatic breakpoints in the remaining                         

SV calls in the high coverage set increased to 11.2% (COLO829) and 18.7% (HGS-3) and                             

to an average 6.6% (COLO829) and 15.6% (HGS-3) for the low coverage subsets ( ​Fig. 2E                             

and Suppl. Fig. 2A​).  

Finally, to further enrich for somatic SVs, we implemented a ranking method. Based on                           

the observation that large SVs are more likely to be somatic than germline SVs ( ​Suppl.                             

Fig. 3​), we ranked the remaining events based on length. Selecting the Top20 largest SV                             

calls increased the percentage of true-positive somatic SVs to 85% (COLO829) and 65%                         

(HGS-3) in the high coverage sets, and to on average 43% (COLO829) and 64.1% (HGS-3)                             

in the low coverage sets ( ​Fig. 2E​).  

Altogether, our SV filtering pipeline strongly enriches for true-positive somatic                   

breakpoints and filters out the majority of false-positives and germline SVs. We                       

demonstrate a total enrichment of true-positive somatic SV calls from 0.1% in the raw                           

calls to 85% in the final Top20 ranked calls (17/20, COLO829, high coverage), 0.26% to                             

65% (13/20, HGS-3, high coverage), on average 0.18% to 41.7% (8.3/20, COLO829, low                         
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coverage sets) and on average 0.49% to 64.2% (12.8/20, HGS-3, low coverage sets) ( ​Fig.                           

2F and Suppl. Fig. 4​).  

 

Validation of SHARC in tumor tissue from patients with ovarian and prostate                       

cancer  

Next, we tested SHARC on four high-grade serous ovarian cancer (Ova1-4) and six                         

prostate cancer (Pros1-6) samples. We sequenced tumor DNA on one nanopore flow                       

cell per sample. The ovarian cancer samples and three prostate cancer samples                       

(Pros1-3) were sequenced on commercial ONT flow cells. For the ovarian cancer                       

samples, we started library preparation with minimally 1 µg of DNA. For the prostate                           

cancer samples limited material was available, and we started library preparation with                       

250 ng of DNA. For one sample (Pros3), not enough sequencing data was produced to                             

confidently detect somatic SVs and this sample was therefore excluded from all                       

subsequent analyses ( ​Suppl. Table 1)​. Three additional prostate cancer samples                   

(Pros4-6) were sequenced on ONT research prototype flow cells with higher sequencing                       

sensitivity, thus requiring less DNA input material. In these cases, library preparation                       

was started with an average of 108 ng (80-128 ng) of DNA and an average of 10 ng of                                     

library was loaded for sequencing ( ​Suppl. Table 1)​. We obtained an average sequence                         

coverage of 2.3x (range: 1.8 - 4.0) ( ​Fig. 3A and Suppl. Table 1) and average read                               

lengths of 7.8 Kbp (range: 4.2-16.3 Kbp) ( ​Fig. 3B and Suppl. Table 1​). The sequencing                             

throughput was not affected by the lower DNA input when using the high-sensitivity                         

prototype flow cells. ( ​Suppl. Table 1)​. 

On average we identified 8,488 (range 5,024-19,695) raw SV calls in these samples ( ​Fig.                           

3C). Following the pre-filtering, the RF classification and the database filtering steps, an                         

average 2.8% (range of 1.0%-4.4%) of SVs per sample were retained ( ​Fig. 3C​). We                           

performed breakpoint PCR assays on lymphocyte and tumor DNA for the Top20 ranked                         

SVs and validated an average of 50% (range 25-80%) somatic SVs per sample ( ​Fig. 3D ​).  

We investigated the recall of validated somatic SVs at different timepoints during the                         

sequencing run. We found that, on average, 81.6% (range 50-100%) of validated                       

somatic SVs were already detected within the first 24 hours of sequencing ( ​Suppl. Fig.                           

5)​. This offers the opportunity to reduce the sequencing time, accelerating our SHARC                         

assay with one day.  
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Detection of SVs, identified by SHARC, in cfDNA from patients with ovarian and                         

prostate cancer  

To show the applicability of SHARC to detect clinically relevant biomarkers, we next                         

tested if we could detect the validated somatic SVs in cfDNA of patients. Ascites fluid,                             

which is known to contain cfDNA and ctDNA​29 was available for Ova2 at time of                             

recurrence. We extracted cfDNA from the ascites and tested all 16 validated somatic                         

SVs by PCR. 100% of somatic SVs could be detected within the cfDNA from ascites                             

( ​Suppl. Fig.6​), and not in the germline or water controls. Next, we tested whether SVs                             

identified and validated by SHARC, could be detected in cfDNA from blood. Therefore,                         

we selected two patient-specific SVs for each of the four prostate cancer patients (Pros1,                           

4, 5 and 6) based on a high signal to noise ratio observed in qPCR assays for SV                                   

breakpoints ( ​Fig. 4A and Methods ​).  

To enable sensitive and quantitative detection, we designed digital PCR (dPCR) assays                       

for the eight selected SVs ( ​Fig. 4B​). For each SV, we aimed to design a probe for both                                   

wild-type alleles (up- and downstream) and for the mutant allele (across the breakpoint                         

junction). For five SVs we could design an assay that quantified both the wild-type                           

upstream and the wild-type downstream allele. For the three other SVs, primers/probes                       

for only one of the wild-type alleles were designed, as appropriate primer design for                           

the other allele was hindered by repetitive sequences at the target site. As the amount                             

of cfDNA within one liquid biopsy is limited, we used a conditional breakpoint                         

detection approach: (i) if dPCR on pre-amplified cfDNA (input pre-amplification: 0.2-1                     

ng cfDNA) confirmed the presence of the SV within cfDNA, (ii) then subsequent dPCR                           

on non-preamplified cfDNA (stock cfDNA) (input dPCR: 5 ng cfDNA) was performed.                       

The latter enabled calculation of both the variant allele frequency (VAF) and the                         

number of mutant molecules per milliliter plasma (MM/mL plasma). First, we selected                       

two timepoints per patient, one at baseline and one at progression of disease and                           

confirmed the presence of all eight SVs with dPCR on pre-amplified cfDNA ( ​Suppl Fig.                           

7​). Thereafter, dPCR on the stock cfDNA successfully detected all SVs in the four                           

patients, both in baseline and progression samples ( ​Fig. 4C and 4D​). Despite the fact                           

that the VAF in pre-amplified cfDNA correlates to the VAF in stock cfDNA (r ​s ​= 0.928),                               

they should be considered two separate outcome measurements (regression coefficient                   

= 0.72 ≠ 1) ( ​Suppl. Fig. 8A​). Moreover, VAF based on the wild-type upstream allele was                               

highly similar to VAF based on the wild-type downstream allele in stock cfDNA (r ​s ​=                             

0.996, regression coefficient = 1.05) ( ​Suppl. Fig. 8B​), suggesting no significant                     

imbalances between the two sides of the breakpoint.  
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Monitoring treatment response in patients with prostate cancer 

In addition to the detection of SVs in cfDNA at baseline and progression of disease, we                               

explored the capacity to use SVs, identified with SHARC, to monitor treatment response                         

over time. To enable reliable response monitoring, measurements should be accurate                     

and repeatable. As VAFs are ratios and in principle not influenced by technical                         

variations between timepoints, we chose to report VAFs only. To verify the accuracy of                           

dPCR, we performed two technical replicates for all pre-amplified samples of Pros5 and                         

Pros6 and confirmed a high correlation of VAFs between the replicates (r ​s ​= 0.987,                           

regression coefficient = 0.918) ( ​Suppl. Fig. 8C​). Finally, we quantified the eight SVs of                           

the four prostate cancer patients in the longitudinally collected samples from before,                       

during and after treatment. For Pros1, SV-A shows the potential to improve response                         

evaluation as its dynamics corresponds to the response to treatment with cabazitaxel                       

and increases towards the end of treatment, resulting in the highest levels at clinical                           

progression of disease ( ​Figure 4E​). These changes also seem to correlate with other                         

blood biomarkers, including PSA and ALP. In addition, SV-B in Pros1 similarly                       

correlates with response to treatment ( ​Figure 4E​). Also for Pros5 both SV-A and SV-B                           

show clear changes over time correlating with clinical parameters, and Pros4 and                       

Pros6 have less compelling dynamics of the detected SVs ( ​Suppl. Fig. 9A-C ​).  
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Discussion 

 

Recent studies have described the use of somatic SVs for tracking tumor burden from                           

liquid biopsies ​11–14​. Although these studies showed the potential of this methodology,                     

they lacked sufficient turn-around time to have personalized biomarkers ready before                     

the initiation of patient treatment. This is a result of lengthy short-read WGS                         

approaches for SV detection and an associated substantial number of false-positive                     

somatic SVs, requiring laborious testing to validate SVs. To overcome these limitations,                       

we developed SHARC. SHARC utilizes the real-time and long-read capabilities of                     

nanopore sequencing combined with a machine learning approach to efficiently                   

identify somatic SVs from tumor tissue within three days. The rapid nature and simple                           

workflow of SHARC offers great potential for routine monitoring of cancer treatment                       

response or detection of recurring disease. We demonstrate the applicability of SHARC                       

to measure tumor burden by using a series of longitudinally gathered blood samples                         

from metastatic prostate cancer patients. SHARC provides a universal method that can                       

be applied for any cancer that is rich in somatic SVs. 

Obtaining enough tumor material for DNA isolation is often a limiting factor for                         

next-generation sequencing assays ​12​. We show that nanopore sequencing and somatic                   

SV detection is possible from limited amounts of DNA that can be extracted from a                             

tumor needle biopsy. DNA input can be decreased even further to as little as 80 ng                               

when using flow cells with increased sensitivity for DNA (research prototype flow cells                         

provided by ONT). Thus, our assay can also be applied to patients with metastatic                           

cancer that undergo a needle biopsy for diagnostic purposes, which is an important                         

requisite for clinical viability.  

Long-read sequencing is an excellent method for the detection of SVs at nucleotide                         

resolution, even at low sequencing depth, because each long-read that bridges a                       

breakpoint-junction provides direct information on the breakpoint position and                 

sequence ​21​. Sequencing of a tumor sample on a single GridION/MinION nanopore flow                       

cell generates insufficient sequencing data to establish an accurate genomic profile.                     

However, using the SHARC pipeline developed here, we efficiently enriched for somatic                       

SVs despite very low coverage and without germline sequencing data. These assets                       

make SHARC a cost-efficient assay for detection of somatic SVs as personalized cancer                         

biomarkers. Furthermore, on average 50% of the SVs resulting from our pipeline are                         

somatic, which minimizes the hands-on effort needed for validation purposes. For all                       

analyzed tumors in this study, we identified at least five somatic SV biomarkers per                           
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patient, which is within the range described in previous work​11,13,30​. With expected                       

increases in sequencing throughput from ONT sequencing, the performance from the                     

SHARC pipeline will improve significantly. Furthermore, the use of cheap disposable                     

flow cells (Flongle) could reduced assay costs to ⅕ of the current sequencing price of                             

800€​31​. The minimal costs of this assay would enable the broader application of such                           

individualized SV tracing in patients with cancer. 

We retrospectively applied SHARC to four patients with prostate cancer tracing levels                       

of ctDNA by using SVs and compared tumor-dynamics to clinical biomarkers such as                         

PSA and ALP. The quantitative measurement of SVs in ctDNA suggest that VAFs of SVs                             

correlate with tumor load (Pros1 and Pros5). Moreover, the SVs would have indicated                         

progression of disease earlier than PSA did in some patients (Pros1 and Pros 4). This                             

clearly illustrates the potential clinical utility of quantifying ctDNA with SVs identified                       

by SHARC to monitor response to treatment. However, further studies are needed to                         

determine the universal applicability of the methods and the characteristics of the SVs                         

that are particularly suitable for such strategies. Furthermore, SV-selection requires                   

further improvement, to not only select tumor-specific SVs, but also SVs that represent                         

the dominant disease clone. The approach of combining machine learning algorithms                     

and experimental data could prove useful in optimizing this part of the assay. Larger                           

prospective studies should confirm that indeed measuring SVs improves clinical                   

decision making in patients with metastatic prostate cancer.  

These data open the way to contemplate true individualized diagnostic platforms that                       

are affordable in the current day clinical practice. The use of ONT or other desktop                             

sequencing platforms combined with DNA printing machines that could provide                   

individualized primers as needed, would enable such individualized approaches. The                   

main barrier in curing cancer remains a lack of dynamic knowledge acquisition. We                         

are very well aware of the dynamic response of cancer to treatment but lack the tools                               

to monitor these changes in real time and thus generally respond to alterations too late                             

for true treatment success. Individualizing disease monitoring could increase                 

sensitivity to such levels that more intelligent treatment approaches could be                     

envisioned.  
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Materials and methods 

 

Patients 

Tumor samples of four patients with high-grade serous ovarian cancer (OC) and six                         

patients with metastatic castration resistant prostate cancer (PC) were used in this                       

study. Patients with OC participated in the HUB-OVI study, in which tumor tissue and                           

blood were obtained for organoid culture (tumor) and whole genome sequencing                     

(WGS) (tumor and blood). Clinical data was extracted from the patient file in                         

collaboration with the Dutch Cancer Registration. Patients with PC participated in both                       

the CPCT-02 study (NCT01855477) and the CIRCUS study (NTR5732), in which tumor                       

tissue from a metastatic lesion for WGS and longitudinal cfDNA samples were                       

obtained. Longitudinal ctDNA quantification was performed for four patients with PC.                     

Informed consent was obtained within all studies. Clinical data for patients with PC                         

were collected in an electronic case report form (ALEA Clinical). All studies were                         

performed according to the guidelines of the European Network of Research Ethics                       

Committees (EUREC) following european, national and local law. 

 

DNA Isolation and nanopore sequencing: 

COLO829 (ATCC® CRL-1974™) cell line was obtained from the American Type Culture                       

Collection (ATCC) and grown according to standard procedures as recommended by                     

ATCC. DNA was isolated using a phenol chloroform protocol​32​. For some nanopore                       

sequencing runs, DNA was sheared using g-tubes (Covaris). DNA was size selected on                         

the PippinHT (Sage Science). Library preparation was performed using the Lib                     

SQK-LSK109 kit (Oxford Nanopore Technologies) and DNA was then sequenced in 49                       

separate runs using R9.4 flow cells (Oxford Nanopore Technologies) on the MinION                       

(44), GridION (3) and PromethION (2) instruments ​(Suppl. Table 1)​.  

HGS-3 organoid line was cultured following the ovarian cancer organoid culture                     

protocol​27​. DNA was isolated by using a phenol chloroform protocol​32​. DNA was size                         

selected on the PippinHT (Sage Science). Library preparation was performed using the                       

Lib SQK-LSK109 kit (Oxford Nanopore Technologies) and DNA was then sequenced in                       

40 separate runs using R9.4 (23) and R9.5 (17) flow cells (Oxford Nanopore                         

Technologies) on the MinION (35) and GridION (5) instruments ​(Suppl. Table 1) ​. 

Tumor DNA from patients with ovarian cancer was isolated with the Genomic-tip kit                         

(Qiagen), following the manufacturer's protocol for tissue samples. DNA was prepared                     
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for nanopore sequencing with the Lib SQK-LSK109 (Oxford Nanopore Technologies).                   

The library from one tumor sample was loaded on one revD (Ova1) or R9.4 (Ova2-4)                             

flow cell (Oxford Nanopore Technologies). Sequencing was performed on a MinION                     

(Ova2, Ova4) or GridION (Ova1, Ova3) instrument (Oxford Nanopore Technologies)                   

(Suppl. Table 1)​. Lymphocyte DNA for PCR validation assays was isolated from blood                         

with the DNeasy Blood & Tissue Kit (Qiagen).  

Tumor and germline DNA from patients with prostate cancer were obtained from a                         

fresh frozen core needle biopsy of a metastatic lesion and blood, respectively. DNA was                           

isolated on an automated setup with the QiaSymphony according to the supplier's                       

protocols (DSP DNA Midi kit for blood and DSP DNA Mini kit for tissue). In the context                                 

of the CPCT-02 study, WGS was performed by the Hartwig Medical Foundation,                       

Amsterdam, The Netherlands ​33​. Residual tumor DNA (80-250 ng) was used for nanopore                       

sequencing. DNA was prepared for nanopore sequencing with the Lib SQK-LSK109                     

(Oxford Nanopore Technologies). The library from one tumor sample was loaded on                       

one R9.4 (Pros1), revD (Pros2,3) or high-sensitivity research prototype (Pros4-6) flow                     

cell (Oxford Nanopore Technologies). Sequencing was performed on a GridION                   

instrument (Oxford Nanopore Technologies) ( ​Suppl. Table 1​). 

Illumina sequencing and analysis (COLO829 and HGS-3): 

Short read WGS was obtained for matched tumor and normal DNA from the COLO829                           

cell line ​34​ and the HGS-3 organoid line ​27​.  

SV calling was performed by using GRIDSS (v. 2.0.1) ​28 in joint calling mode                         

(tumor+reference) for COLO829 and HGS-3 separately. Somatic SV calls were filtered as                       

in​34 

( ​https://github.com/hartwigmedical/pipeline/blob/master/scripts/gridss_somatic_filter.R

) 

 

SV calling and filtering pipeline: 

The SHARC pipeline is available through ​https://github.com/UMCUGenetics/SHARC​.  

Mapping is performed in parallel for each FASTQ file by using minimap2 (v. 2.12) ​35                           

with settings “-x map-ont -a --MD”. The reference genome used is version GRCh37.                         

Sorting and merging of BAM files was done by using sambamba (v. 0.6.5) ​36​. SV calling                             

was performed by using NanoSV (v. 1.1.2) ​21​. Default NanoSV settings were used except                         

a minimum read count of 2 (cluster_count=2) and minimum mapping quality of 20                         

(min_mapq=20).  

14 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 15, 2019. ; https://doi.org/10.1101/19011932doi: medRxiv preprint 

https://paperpile.com/c/mDhxaF/OooT4
https://paperpile.com/c/mDhxaF/oSUm
https://paperpile.com/c/mDhxaF/1XXWy
https://paperpile.com/c/mDhxaF/7P59z
https://paperpile.com/c/mDhxaF/oSUm
https://github.com/hartwigmedical/pipeline/blob/master/scripts/gridss_somatic_filter.R
https://github.com/UMCUGenetics/SHARC
https://paperpile.com/c/mDhxaF/7MO2i
https://paperpile.com/c/mDhxaF/w4Hzl
https://paperpile.com/c/mDhxaF/7w1kW
https://doi.org/10.1101/19011932
http://creativecommons.org/licenses/by-nc/4.0/


 

VCFs are filtered by using the command `awk ‘$7 == "PASS" && $1 !~ /(Y|MT)/ && $5 !~                                   

/(Y|MT):/ && $5 != "<INS>"’` to select PASS calls and remove insertions and SVs                           

involving chromosomes Y or MT.  

VCFs are then annotated with the distance to the closest single repeat element in the                             

reference genome ​37,38​, the closest gap element in the reference genome ​38,39​, and the                       

closest segmental duplication element in the reference genome ​38​. These elements were                     

taken from the UCSC genome browser ( ​http://genome.ucsc.edu/ ​) ​38​, using the                 

GRCh37/hg19 genome version.  

We trained a random forest (RF) model to filter out false-positive SV calls from                           

nanopore data, similarly as previously described​21​. We expanded the selection of input                       

features for the RF, by including read length, SV calling features, and overlap with                           

repeat features in the reference genome ( ​Suppl. Table 3​). We trained the classifier on                           

the well-characterized NA12787 Genome in a Bottle (GIAB) sample ​25,40,41​, for which                     

high-quality germline SV call sets have been obtained by using Illumina​41 , PacBio ​40 and                           

Nanopore ​25 sequencing. The GIAB SV truth set was generated by intersecting these                       

three GIAB SV sets resulting in a set of 1,515 germline SVs. We used ⅔ of the GIAB truth                                     

set as a training set and ⅓ as a test set. We established a precision-recall curve from 100                                   

bootstrapping runs ( ​Suppl. Fig. 3)​, where the training data were split into 90%-10%                         

train-test subsets. Based on the precision-recall curve, we defined an operating point of                         

96% ​precision and 99.5% recall ( ​Suppl. Fig. 3). The final model was then re-trained on                             

the whole training set and tested on the ⅓ test set. The performance on the test set was                                   

95.1% precision and 99.6% recall, representing an accuracy of 97.2% ( ​Suppl. Fig. 3)​. SV                           

candidates are classified as “true” or “false” based on this RF model.  

We set up two databases of SV calls: (i) SHARCDB: containing raw NanoSV calls from                             

nanopore sequencing data of 14 samples: COLO829-T, COLO829-BL, HGS-3, VCAP                   

(prostate cancer cell line ​42​), GIAB​25​, Ova1, Ova2, Ova3, Ova4, Pros1, Pros2, Pros4, Pros5                         

and Pros6 and (ii) RefDB: containing germline calls obtained from WGS short-read data                         

of 59 controls: 19 blood controls from patients with ovarian cancer ​27​, where germline                         

SVs were called with Manta (v. 1.0.3) ​43 with default parameters and 40 healthy                         

individuals (biological parents of individuals with congenital abnormalities) ​44 where                 

germline SVs were called with Manta (v. 0.29.5) ​43​ with default parameters. 

SV calls from tumor samples are overlapped with those two databases by using                         

VCF-explorer ( ​https://github.com/UMCUGenetics/vcf-explorer ​).  

Only samples classified as “true” by the RF model and that do not overlap with any                               

sample in the databases qualify for primer design.  
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Primer design for filtered SV calls is automatized by using Primer3 (v. 1.1.4) ​45 with a                             

product size range of 30-230 bp. 

SVs with a successful primer design are ranked based on SV length and the 20 largest                               

are selected for PCR validation. 

 

Breakpoint PCR 

To validate SVs, breakpoint PCR with AmpliTaqGold (Applied Biosystems) was                   

performed according to the manufacturer's protocol. 10 ng primary tumor DNA                     

(somatic) and 10 ng lymphocyte DNA (germline) per primer-pair were used as input.                         

PCR products were loaded and visualized on a 2% agarose gel.  

 

cfDNA isolation 

cfDNA was isolated from ascites fluid of Ova2 by using the ​QIAamp Circulating Nucleic                           

Acid Kit ​(Qiagen) according to the manufacturer's protocol. Plasma samples from                     

patients with prostate cancer were obtained longitudinally during treatment in 3x10                     

ml CellSave preservative tubes (Menarini Silicon Biosystems, Huntingdon Valley, PA,                   

USA) and processed within 96 hours as previously described​46​. Circulating DNA was                       

isolated with the QIAsymphony® DSP Circulating DNA Kit (Qiagen) according to                     

manufacturer’s protocol with some minor modifications ​47​. All cfDNA samples were                   

quantified by Qubit​TM​ fluorometric quantitation (Invitrogen). 

 

Quantitative PCR 

As primer specificity is essential for reliable interpretation of an end-point assay like                         

dPCR, primers for the detection of structural variants were validated by quantitative                       

PCR (qPCR) on whole genome amplified (WGA) tumor and germline DNA. In brief,                         

qPCR was performed by using the CFX96 Touch™ Real-Time PCR Detection System                       

(Bio-Rad Laboratories) and the final reaction mix consisted of 10 µL SensiFAST​TM SYBR                         

® Lo-Rox mix (Bioline), 0.5 µM forward and reverse primers, 10 ng of WGA DNA and                               

Ultrapure DNas/RNAse free H​2​O to bring up the reaction volume to 20 µL. The Cycle                             

conditions were as follows: 14 cycles of 10s at 95°C and 30s at from 65-58°C                             

(touchdown), followed by 20-40 cycles of 10s at 95°C and 30s at 60°C. In addition, a melt                                 

curve was generated from 56°C to 95°C to assess the generated PCR products. Based on                             

qPCR results, two primer sets for the detection of SVs in each patient were selected for                               

quantification by digital PCR (dPCR). Primer sets were excluded from use with dPCR                         
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when one of the following ocurred: >1 PCR product, Cq​germline​- Cq​tumor <5 and/or Cq​tumor ​>                             

20.  

DNA sonication and fragment size analysis 

To mimic the length of cfDNA and improve DNA molecule partition, WGA DNA of both                             

tumor and germline were sonicated to a peak size of ~150 bp with the S220                             

Focused-ultrasonicator (Covaris) according to the manufacturer’s protocol. The               

sonication conditions were as follows; 200-250 ng WGA DNA (concentration                   

determined by Qubit​TM fluorometric quantitation) in 50 µL Ultrapure DNas/RNAse free                     

H​2​O, Peak Incident Power: 175 W, Duty Factor: 10 %, Cycles per Burst: 200, Treatment                             

Time: 280 s, Temperature: 7°C, and Water Level: 12. After sonication DNA fragment                         

sizes were analyzed with the High Sensitivity DNA kit (Agilent Technologies) on the                         

Bioanalyzer (Agilent Technologies) and the sample concentration was re-quantified by                   

Qubit​TM​ fluorometric quantitation (Invitrogen, Life Technologies, Carlsbad, CA, USA).  

Design of digital PCR assays for absolute quantification of SVs in cfDNA 

To quantify SVs in cfDNA, dPCR was performed. First, the exact position of the                           

breakpoint as determined by nanopore sequencing was validated. We used already                     

available sequenced Illumina data from the CPCT-02 study (Pros1, Pros4, Pros5 and                       

Pros6), but Sanger sequencing of the particular qPCR product could be used as well. To                             

enable quantification of both mutant and wild-type alleles, additional primers for the                       

detection of wild-type upstream (WT-U) allele and wild-type downstream (WT-D) allele                     

of the breakpoint and fluorescent probes for both mutant and wild-type alleles were                         

developed by using the Primer Express Software v3.0 (ThermoFisher) and the online                       

tool Primer3Plus ​45​. All primers and fluorescent probes ( ​Suppl. Table 4​) were ordered                       

from Eurogentec. 

 

Pre-amplification of cfDNA 

To enable sensitive detection of multiple SVs in limited amounts of cfDNA, two SVs per                             

patient were pre-amplified with 0.2-1 ng of cfDNA. Pre-amplified tumor and germline                       

DNA samples were used as respectively positive and negative control.                   

Pre-amplification was performed by using 4 µL of TaqMan™ PreAmp Master Mix                       

(cat.no: 4488593, Life Technologies), 2 µL primer pool (0.25 µM) consisting of SV                         

forward (SV-F) and reverse (SV-R) primers and upstream (WT-U) and downstream                     

(WT-D) wild-type primers, and 2 µL (cf)DNA for a total volume of 8 µL.                           

Pre-amplification cycle conditions were: 10 min at 95°C followed by 14 cycles of 15 s at                               
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95°C and 4 min at 60°C, and finally pause at 4°C. After the pre-amplification reaction, 72                               

µL of Ultrapure DNase/RNAse free H​2​O was added to each sample. Next, pre-amplified                         

cfDNA was diluted 40x per 1 ng input, used for the pre-amplification, to prevent                           

overloading of the dPCR chips. 

 

Absolute quantification of SVs in cfDNA with digital PCR 

For the quantification of SVs in (cf)DNA, dPCR was performed with the Naica Crystal                           

PCR system (Stilla Technologies) by using the following optimized reaction mix: 1 µL of                           

diluted pre-amplified (cf)DNA sample, 5.6 µL PerfeCTa Multiplex qPCR ToughMix                   

(Cat.No: 733-2322PQ, Quantabio). 0.25 µM probes (SV​FAM​, WT-U​HEX​, WT-D​CY5​), 0.75 µM of                       

the SV forward (SV-F) and reverse primer (SV-R), 0.25 µM of the WT-U and WT-D                             

primers, 0.1 µM Fluorescein (Cat.No: 0681-100G, VWR) and Ultrapure DNAse/RNAse                   

free H​2​O to bring up the total volume to 28 µL. Samples were loaded onto Stilla                               

Sapphire chips (Cat.no. C13000, Stilla Technologies) and dPCR was performed with the                       

same cycle conditions as for the primer validation with qPCR. Median number of                         

analyzable droplets was 21,357, inter quartile range 19,837-22,736. dPCR reactions                   

were optimized with 10 ng sonicated tumor and germline WGA DNA. When an SV                           

could be detected in pre-amplified cfDNA samples, a dPCR of all longitudinal cfDNA                         

samples was performed on 5 ng of stock (no pre-amplification) cfDNA to enable                         

absolute quantification of mutant molecules in plasma.  

 

Statistics 

qPCR experiments were analyzed with Bio-Rad CFX Manager version 3.1. dPCR                     

experiments were analyzed with Crystal Miner™ software, version 2.1.6 (Stilla                   

Technologies). Thresholds for positive fluorescence were determined per primer pair                   

based on positive and negative controls. Variant allele frequency (VAF) was calculated                       

according to the following formula:  

number of mutant molecules per µl in chip (as defined by Crystal Miner™ software) /                             

(number of mutant molecules per µl in chip + number of wild-type molecules per µl in                               

chip) * 100%.  

Absolute number of mutant molecules per mL plasma was calculated as follows:                       

number of mutant molecules per µl in chip * 28 µl (input in chip) / (used eluate/total                                 

volume of eluate * volume of plasma used for isolation).  

To correct for zero values on a log scale, +1 was counted to every value and axes were                                   

corrected with -1. Spearman’s correlation coefficient was calculated for comparisons of                     
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VAF based on upstream wild-type allele vs downstream wild-type allele, two replicates                       

and pre-amplified vs non-pre-amplified cfDNA samples. Corresponding slope was                 

calculated by using linear regression analysis. 

 

Code availability: 

SHARC is available through ​https://github.com/UMCUGenetics/SHARC 

 

Data availability 

Nanopore sequencing data is available in ENA and EGA as follows: 

● COLO829 cell line: ENA accession ​ERX2765498​. 

● HGS-3 organoid line: EGA dataset accession EGAD00001005476 

● Patient material: EGA study accession EGAS00001003963 
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Figures 

 

Figure 1: Schematic overview of SHARC 

( ​A​) (Needle) biopsy or resection from a tumor as well as blood are obtained from a                               

patient at initial diagnosis. Germline DNA (red) and cfDNA (blue) isolated from blood                         

and tumor DNA (brown) from tumor material. Tumor DNA is sequenced on one ONT                           

flow cell. ( ​B​) Tumor-specific SV detection and filtering is performed with the                       

bioinformatic SHARC pipeline. ( ​C ​) SV-specific breakpoint spanning primers are                 

designed. Breakpoint PCR with SV-specific primers is performed on germline and                     

tumor DNA to confirm somatic SVs. ( ​D​) Somatic SVs are used as biomarkers and traced                             

within cfDNA from a patient to monitor disease dynamics in a longitudinal manner.  
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Figure 2 : Detection of somatic SVs with the SHARC pipeline based on high and low                               

coverage nanopore data.  

High coverage nanopore sequencing data from COLO829 (melanoma cell line) and                     

HGS-3 (ovarian cancer organoid) were subsampled to low coverages. Outer circles                     

represent the high coverage sets (59x for COLO829 and 56x for HGS-3) and inner circles                             

represent low coverage subsets (4x 3x, 2x). ​A​) Median percentage of non-somatic (red)                         

and somatic (blue) breakpoints in the raw NanoSV calls for COLO829 (top) and HGS-3                           

(bottom). ( ​B​) Median percentage of non-somatic (left) and somatic (right) SV calls kept                         

(green) or removed (brown) in the pre-filtering step for COLO829 and HGS-3. ( ​C​)                         

Median percentage of non-somatic (left) and somatic (right) SV calls kept (green) or                         

removed (brown) by the Random Forest SV classifier for COLO829 and HGS-3. ( ​D​)                         

Median percentage of non-somatic (left) and somatic (right) SV calls kept (green) or                         

removed (brown) by the database filtering for COLO829 and HGS-3. ( ​E​) Median                       

percentage of non-somatic (red) and somatic SV (blue) calls in the complete SHARC                         

output (left) and top 20 largest SVs (right) for COLO829 and HGS-3. ( ​F​) Total number of                               

non-somatic (red) and somatic (blue) SV calls at each step of the pipeline for both                             

COLO829 and HGS-3. In low coverage subsets, all data points are shown and the square                             

box represents the median value. RF: Random forest; DBFilter: Database filter. 
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Figure 3: SHARC identifies and validates tumor-specific SV biomarkers from                   

low-pass nanopore tumor sequencing data 

Plots showing the distribution of ( ​A​) coverage and ( ​B​) read length for the nine tumor                             

samples sequenced on one flow cell each. Dashed lines represent averages for each                         

sample. ( ​C​) Total number of somatic SVs present at each of the steps throughout the SV                               

calling and filtering pipeline. RF: Random forest; DBFilter: Database filter ( ​D​) The                       

Top20 ranked breakpoints for each sample were tested by breakpoint PCR using tumor                         

and germline DNA. Graph depicts the number of breakpoints validated as somatic                       

(blue), germline (green) or breakpoints that could not be validated (red).  
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Figure 4: dPCR-based quantification of SVs in blood ​( ​A​) Schematic overview of                       

quantification of tumor-specific SVs, identified by SHARC, in cfDNA from blood by                       

using qPCR and dPCR. ( ​B ​) Primer and probe design for dPCR. The wild-type upstream                           

and wild-type downstream allele share each one primer with the mutant allele. Three                         

probes with different fluorescents were designed to specifically detect the mutant allele                       

or one of the wild-type alleles. ( ​C​) Detection of two tumor-specific SVs in cfDNA from                             

blood from four patients with prostate cancer at baseline and at progression of disease                           

with dPCR. Shown are VAF and ( ​D ​) mutant molecules per mL plasma. ( ​E​)                         
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Quantification of SVs in longitudinal cfDNA samples from blood of patient Pros1. Graph                         

depicts VAFs of SVs, treatment, laboratory parameters (prostate specific membrane                   

antigen (PSA), alkaline phosphatase (ALP)) and clinical progression of disease (PD).  
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