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Abstract 

 
Borderline personality disorder (BorPD) is characterized by instability and impulsivity of 

mood, relationships and self-image. This disease is an important area of public health policy; 

compared to other psychiatric disorders, individuals with BorPD experience the most severe 

functional impairments. Nevertheless, for the patients that do recover, this recovery is stable 

and only few relapse back to psychopathology. Given its high rate of remission, the rewards 

of effective treatment options are clear. Identification of underlying anatomical and 

physiological changes is crucial to refine current treatments and develop new ones. In this 

perspective, previous magnetic resonance imaging studies have highlighted alterations 

associated with BorPD phenotype. In particular, diffusion weighted imaging (DWI) has 

identified many white matter structural alterations in individuals with this diagnosis. 

Although in its infancy, limiting this line of investigation is a lack of direction at the field 

level. Hence, the present paper aims to conduct a meta-analysis of DWI findings in 

individuals with a diagnosis of BorPD, testing the hypothesis that there are specific white 

matter alterations associated with BorPD. To this end, we performed a meta-analysis of the 

existing literature of DWI in BorPD representing a total of 123 individuals with BorPD and 

117 Controls. Our results indicated that individuals with BorPD show regions of reduced 

fractional anisotropy in the corpus callosum and fornix. These results survived all jack-knife 

reshuffles and showed no publication bias. This suggest that alterations in these structures 

may contribute to psychopathology. Further, the present results lend support to extant 

psychological and biological models of BorPD. 
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Introduction 

 
 

The Diagnostic and Statistical Manual of Mental Disorders 5 (DSM-5; American 

Psychological Association) classifies Borderline Personality Disorder (BorPD) as a cluster B 

Personality disorder. Main characteristics of an individual with BorPD are impulsivity of 

mood, unstable relationships and distorted self-image.  

Mirroring this pattern, the World Health Organisation's, International Classification of 

Diseases 10, defines the criteria for Emotionally Unstable Personality Disorder. This disorder 

is, in concept, like that of BorPD albeit has two sub categories: impulsive and borderline 

types (ICD-10, World Health Organisation). In common with DSM-5 descriptions, typical 

behaviours of this disorder include impulsivity, unpredictable mood, and disturbances of self-

image – especially in the borderline subtype. Further, and of particular concern, regardless of 

diagnosing criteria used this disease has an intimate connection with suicidal and self-

mutilating practices or actual suicide and self-mutilation (DSM-5, American Psychological 

Association; ICD-10, World Health Organisation). 

Estimates of the global prevalence of BorPD show great variation (Table 1). The 

biggest studies though estimate a prevalence between 2.7-5.9%, in the general population 

(Trull et al., 2010; Stinson et al., 2008). 

The causal factors to developing BorPD are complex (Lieb et al., 2004). It is clear 

that childhood maltreatment is a risk factor for this psychopathology. In their cohort, Zanarini 

et al. (2012) report that 62% of the BPD patients disclosed a history of childhood sexual 

abuse, and, of those, more than 50% of individuals suffered abuse on a weekly basis for at 

least one year. Though all forms of childhood maltreatment associate with BorPD, childhood 

emotional abuse confers particular risk for the development of BorPD pathology (Kuo et al., 

2015). 
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Heritability studies suggest a level of genetic influence in the development of BorPD. 

Estimates from twin studies suggest the mean heritability of BorPD to be 40% (Amad et al., 

2014). Supporting this, a large study of 4403 monozygotic twins and 4425 dizygotic twins 

estimate the heritability of BorPD to be 45%. In particular, GWAS studies report significant 

differences on chromosome 5 in the SERINC5 gene (Lubke et al. 2013) and, on a gene level 

analysis, dihydropyrimidine dehydrogenase and plakophilin-4 (Witt et al., 2017). These 

findings are particularly exceptional given that these are also implicated in schizophrenia, 

bipolar disorder, and myelination (Krueger et al., 1997; Ripke et al., 2014; Duan et al., 2014). 

Nevertheless, extrapolation of the results has to be done with caution, since the study by 

Lubke et al. (2013) comprised of individuals with borderline features assessed by self-report. 

Nevertheless, these findings suggest a role for environmental and genetic influences in 

predisposing an individual to BorPD genesis. 

Recent meta-analysis of Voxel-Based Morphometry (VBM) studies has highlighted 

several regions of abnormality in individuals with BorPD (Schulze et al., 2016). Specifically, 

the right hippocampus, right inferior frontal gyrus and bilateral middle temporal gyri all 

Table 1 | Reported prevalence of Borderline Personality Disorder amongst different cohorts. 

STUDY SAMPLE LOCATION ASSESSMENT BorPD PREVALANCE (%) 

Torgersen et al. (2001) Oslo SIDP-R 0.7% 

Samuels et al. (2002) Baltimore IPDE 0.5% 

Lewin et al. (2005) NSMHWB IDPE 9.8% 

Coid et al. (2006) British National Survey SCID-II 0.7% 

Lenzenweger et al. (2007) NCS-R IDPE 1.6% 

Grant et al. (2008) NESARC AUDADIS-IV 5.9% 

Trull et al. (2010) NESARC AUDADIS-IV 2.7% 

Dereboy et al. (2014) Aydin DIP-Q 13.5-15% 

Abbreviations | NSMHWB: National Survey of Mental Health and Well-Being, NCS-R: National Comorbidity Survey Replication, 

NESCAR: National Epidemiological Survey on Conditions Related to Alcohol, SIDP-R: Structured Interview for Disorders of Personality-

Revised, IDPE: International Personality Disorder Examination, SCID: Structured Clinical Interview for DSM-IV, AUDADIS: The Alcohol 

Use and Associated Disabilities Interview Schedule, DIP-Q: DSM-IV and ICD-10 Personality Questionnaire 
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exhibited grey matter (GM) volume reductions (Schulze et al., 2016). These regions are of 

particular note as they are robust, surviving all jackknife resamples (Schulze et al., 2016). 

Individuals with BorPD exhibited increased GM volume in the right supplementary motor 

area (10/10 jackknife resamples; Schulze et al., 2016). Adding weight to these findings, 

another VBM meta-analysis performed around the same time, including essentially the same 

studies (plus an additional one) noted similar findings (Yang et al., 2016). GM volume 

reductions surviving all 11 jakckknife reshuffles were evident in the left middle temporal 

gyrus and right inferior frontal gyrus (Yang et al., 2016). Moreover, individuals highlighted 

increased GM volumed in the right supplementary motor area (Yang et al., 2016). These 

alterations are further supported by cortical thickness studies. Boen and colleagues et al. 

(2014) show reduced cortical thickness of the left inferior frontal gyrus, and bilateral 

paracentral lobule in the individuals with BorPD. Finally, meta-analysis has revealed 

significantly smaller bilateral amygdala and hippocampi in adults with BorPD (Nunes et al., 

2009). Together, these studies suggest that there are structural grey matter differences 

between BorPD and controls. 

Besides grey matter structural differences, functional differences between BorPD and 

controls have also been analysed. BorPD is often viewed as a disorder of dysregulated 

emotional responses. In this light, functional magnetic resonance imaging (fMRI) studies, in 

many cases, utilise behavioural and psychological paradigms, such as sensitivity, emotion 

regulation and impulsivity paradigms, to probe the neural correlates associated with BorPD 

(van Zutphen et al., 2015). Indeed, across these three major classes of paradigms, the most 

robust finding in individuals with BorPD is amygdala hyperactivity in response to 

emotionally sensitive stimuli (van Zutphen et al., 2015). Schulze et al. (2016)—performing a 

meta-analysis of neutral vs. negative emotional stimuli—noted hyperactivation in individuals 

with BorPD in left posterior cingulate gyrus and left middle temporal gyrus. Both of these 
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regions survived all jackknife reshuffles and did not show significant heterogeneity. 

Conversely, individuals with BorPD exhibit hypoactivation in the left dorso-lateral prefrontal 

cortex, right dorsal-lateral/medial prefrontal cortex, and left lingual gyrus (Schulze et al., 

2016). Again these regions all survive jackknife reshuffles and confirmed no heterogeneity 

(Schulze et al., 2016). Further, a frequent finding is hypoactivity, in comparison to controls, 

in the Anterior Cingulate Cortex (ACC) during emotional regulation paradigms whilst 

impulsivity paradigms yield little direction—most attributed to the deficiency and diversity of 

studies (van Zutphen et al., 2015). Overall, though, these studies, which the conclusions 

above are drawn, require an element of vigilance, given that they have low statistical power 

(van Zutphen et al., 2015). 

In resting state functional MRI (rsfMRI), Visintin et al. (2016) provided similar 

results. Individuals with BorPD displayed resting state hyperactivity in regions of the medial 

prefrontal cortex (mPFC), ACC and in the precuneus/posterior cingulate cortex (PCC), and 

exhibited hypoactivation in the right lateral and inferior temporal gyri and bilateral 

orbitofrontal cortices (Visintin et al., 2016). Having said that, the seven studies included into 

their meta-analysis were significantly heterogeneous. Other researchers have criticised the 

paper selection by Visintin et al. (2016). Specifically, Amad and Radua (2017) questioned the 

inclusion of Soloff et al. (2005) and exclusion of Juengling et al. (2003). The criticisms in 

large relate to the medication status of the participants in each study, respectively (Amad & 

Radua, 2017). Therefore, Amad and Radua (2017) replicated the meta-analysis with the 

altered study list. Agreeing with Visintin et al. (2016), Amad and Radua (2017) noted that 

individuals with BorPD displayed increased resting state activity in the ACC and in the left 

inferior and superior frontal gyri compared to controls (Amad & Radua, 2017). However, and 

contrasting with the results of Visintin et al. (2016), they found that individuals with BorPD 

showed hypoactivity in the right PCC/precuneus (Amad & Radua, 2017). 
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From the above, it is clear, even on trend level, that subcortical and frontal regions 

play a role in BorPD. From this perspective, as noted in fMRI studies, clinical symptoms may 

arise from functional alterations. Functional alterations and structural alterations are, by 

nature, linked (Schulze et al., 2016). In addition to functional alternations and grey matter 

volume differences, impairment of white matter (WM) structures has been demonstrated to 

affect cognition and behaviour (O'Doherty et al., 2017). Indeed, similar cluster B personality 

disorder—including: antisocial (Jiang et al., 2017), schizotypal (Yueji et al., 2016) and 

narcissistic (Nenadic et al., 2015) personality disorders—exhibit WM abnormalities. Given 

its potential efficaciousness on cognition and behaviour, it is important to analyse if WM 

abnormalities are also present in the individual with BorPD. 

WM structures are studied using diffusion-weighted MRI, also called diffusion-

weighted imaging (DWI). DWI gives image contrast based on the differential diffusion of 

water molecules inside the brain (Huisman, 2010). Diffusion tensor imaging (DTI) 

decomposes diffusion images into a set of tensors to model the shape of this diffusion 

(Huisman, 2010), i.e. DTI is a particular way of modelling the DWI data (Soares et al., 2013). 

From this data, one can then calculate the degree of Fractional Anisotropy (FA) of a 

particular tissue, which gives us information about white matter tracts (Huisman, 2010). The 

idea behind it is that in white matter tracts the diffusion of water is made primarily over the 

main axis of the fiber, and much less so in the other directions, i.e. the diffusion is very 

anisotropic (high FA, appears bright in the image). By contrast, diffusion of water in the 

cerebrospinal fluid (CSF) is done more homogeneously across all directions, i.e. the diffusion 

is isotropic (low FA, appears dark in the image) (Huisman, 2010). Based on this, many 

people have been using DWI/DTI and FA measures to explore the white matter architecture 

in living humans, including differences in connectivity of the brain areas, white matter fiber 
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orientation and density, as well as myelination (Huisman, 2010; Carrasco et al., 2012; Soares 

et al., 2013). 

Several studies have sought to understand WM abnormalities in BorPD using 

DWI/DTI (e.g. Grant et al., 2007; Carrasco et al., 2012; Ninomiya et al., 2018). This line of 

investigation shows promise. Nonetheless, the extant literature has not been discerned as a 

whole. Indeed, to date (and to our knowledge), no meta-analysis or systematic review of DTI 

alterations in BorPD exists. In consequence, the principle aim of this study was to scrutinize, 

at a meta-analysis level, FA changes in individuals with BorPD. 

As expressed above, VBM and rs-/fMRI research pointed to the involvement of the 

subcortical and frontal regions in the psychopathology of BorPD. Accordingly, if any WM 

alterations exist, they should be in structures connecting these regions. In this view, the 

principle WM tracts connecting subcortical structures to cortical regions include the superior 

longitudinal fasciculus, uncinate fasciculus and cingulum bundle (O'Doherty et al., 2017; 

Schmahmann & Pandya, 2009). Hence, this study aims to test the hypothesis that individuals 

diagnosed with BorPD will show reduced FA in these structures. 

 

Methods 

 

The current study was conducted, in large, according to the guidelines set out by Müller et al. 

(2018). Data sharing is not applicable to this article as no new data were created or analysed 

in this study. 

 

Literature Search 

Literature search was conducted in April 2018. This search included the PubMed and Web of 

Science databases with the search terms: (i) borderline personality disorder, (ii) BPD, (iii) 
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diffusion tensor, (iv) diffusion weighted, (v) white matter, and (vi) DTI. Further, combining 

these keywords produced the string: 

(((borderline personality disorder) OR BPD)) AND ((((diffusion tensor) OR diffusion 

weighted) OR white matter) OR DTI) 

The above search retrieved 181 titles (see Figure 1). At this stage, studies were 

selected for full text reading if: (i) they were not a duplicate across databases, and (ii) they 

examined BorPD cohorts. Although a coarse first pass filter, this method proved effective due 

to the large overlap across databases and the common use of the abbreviation BPD. Indeed, it 

is worth noting that BPD is common in the extant literature to abbreviate borderline 

personality disorder, bipolar disorder and bronchopulmonary dysplasia. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
This first pass identified 41 articles to be considered for full text reading. 

Figure 1 | Meta-analysis article selection flowchart. 
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Articles read in full were rejected if: (i) the article was not an original article i.e. review, 

opinion, etc. (ii) the article was a duplicate (iii) the article utilised methodology other than 

DTI e.g. fMRI (iv) the article studied non-BorPD cohorts. This final filtration left 11 articles 

for consideration (Carrasco et al., 2012; Gan et al., 2016; Grant et al., 2007; Lischke et al., 

2015; Lischke et al., 2017; Maier-Hein et al., 2014; New et al., 2013; Rusch et al., 2007; 

Salvador et al., 2016; Whalley et al., 2015; Ninomiya et al., 2018). 

Of the 11 articles matching the inclusion criteria, 4 of these articles (Carrasco et al., 

2012; Gan et al., 2016; Salvador et al., 2016; Whalley et al., 2015) thereafter matched the 

inclusion criteria for meta-analysis. That is, 4 articles conducted whole brain, Tract-Based 

Spatial Statistics (TBSS) and contained FA results. 

 

Note: We contacted the authors of the 7 articles that conducted region-of-interest or did not 

report fractional anisotropy measures in order to obtain the FA values. However, 6 of the 

authors did not reply (even after multiple attempts), and the one that did reply did not have 

the data available. Hence, only the 4 articles that contained FA results were included.   

 

Statistical Tests 

We conducted meta-analysis of the whole brain, TBSS, FA alterations between healthy 

controls (HC) and individuals with BorPD. Meta-analysis was conducted using Seed-Based 

D Mapping (SDM v. 5.12; Radua & Mataix-Cols, 2012). Hence, where articles reported p or 

z-values, these were first converted into t-values using an online tool 

(http://www.sdmproject.com/utilities/?show=Statistics). Subsequently, standardised SDM 

operations were performed. Pre-processing utilised a TBSS template (included with SDM v. 

5.12; Radua et al., 2011; Peters et al., 2012) with a fractional anisotropy correlational 

template. Moreover, pre-processing used an anisotropy value of 1, Isotropic Full-Width at 
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Half- Maximum FWHM) = 20mm, TBSS mask, and permutation testing with 500 

randomisations. 

Next, the weighted mean difference of regional TBSS FA results was calculated with 

the jack-knife reshufflings. Mean differences were then thresholded at a previously optimised 

level (Muller et al., 2018; Radua et al., 2012) of p = 0.005, peak height threshold = 1, and 

extent threshold = 10. Finally, to examine heterogeneity amongst articles, visual estimates 

and Ebber tests were performed. 

 

 

 Power Analysis 

Post-hoc power analysis was conducted using the software: G*Power (version 3.1.9.3;  

http://www.gpower.hhu.de/en.html; Faul et al., 2007; Faul et al., 2009). As this was a post hoc 

analysis, the one-tailed power was calculated with α=0.005 to match the threshold used in 

SDM. 

Table 2 | Demographic characteristics of included studies. 

Study 
BorPD 

# 

BorPD 

(F/M) 

BorPD 

Age 

Comorbidities 

(#) 

Medication 

(#) 

HC 

# 

HC 

(F/M) 

HC 

Age 

Template 

Space 

Carrasco 

et al. 

(2012) 

30 17/13 

25.5 

(19-

44) 

No major 

depression, 

schizophrenia, 

bipolar or 

organic mental 

disorders 

Medication 

withdrawn 

during 

study 

25 14/11 

25.17 

(21-

32) 

MNI 

Gan et 

al. 

(2016) 

30 14/16 
22.10 

± 1.31 

No axis I or 

axis II 

comorbidities 

- 31 17/14 

22.38 

± 

1.62 

MNI 

Salvador 

et al. 

(2016) 

43 43/0 
31.55 

± 7.32 

No axis I 

comorbidities, 

no bipolar 

comorbidity, 

no psychotic 

comorbidities 

Yes 43 43/0 
32.40 

±11.8 
MNI 
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Results 

Study Characteristics 

Demographic data are displayed in Table 2; 4 studies matched the inclusion criteria. 

Together, these studies represent 123 individuals with BorPD and 117 HCs.; within the 123 

individuals with BorPD, 91 were female and 32 were male. This is, in comparison to the HC 

individuals wherein there were 92 female participants and 25 males. Across the 4 studies, the 

mean age of individuals with BorPD was 28.74 years old and 28.71 years old for the HC 

group. Overall, studies utilised mixed participants with regards to comorbid psychological 

diagnoses and medication use. Of particular interest, only one study (Whalley et al., 2015) 

included participants with comorbid psychological diagnoses. 

Meta-Analysis 

Figure 2 | Results of meta-analysis. Meta-analysis was conducted in Seed-based D Mapping using 

standardised operations. Pre-processing used a tract-based spatial statistics template and a fractional 

anisotropy correlational template with an anisotropic value of 1 and smoothing kernel of 20mm full width at 

half maximum. Meta-analysis indicated two foci of significant reductions. (Top) Individuals with borderline 

personality disorder show reduced fractional anisotropy (SDM-Z = -1.473; p = 0.000068665) in the corpus 

callosum (MNI: -16, 22, 22; voxels = 248) compared to control. (Bottom) Individuals with borderline 

personality disorder show reduced fractional anisotropy (SDM-Z = -1.368; p = 0.00143230) in the fornix 

(MNI: 0, -6, -16; voxels = 49) compared to control. 
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Results of meta-analysis are presented in Figure 2 and Table 3. Results highlighted 

two clusters of FA reductions. The first foci of reduction, located in the corpus callosum, 

peaked at MNI coordinates: -16, 22, 22 (Fig. 2, SDM-Z = -1.473, Voxels = 248, p = 

0.00007). Further, this result survived all jack-knife reshuffles and showed no publication 

bias (Fig. 3, bias = -0.07, t = -0.02, p = 0.986). A second peak of reduction was seen in the 

fornix at MNI coordinates: 0, -6, -16 (Fig. 2, SDM-Z = -1.368, Voxels = 49, p = 0.0001). 

Similar to the first result, this cluster survived all jack-knife reshuffles and showed no 

publication bias (Fig. 3, bias = -5.28, t = -1.97, p = 0.188) 

 

 
  

Table 3 | Results of meta-analysis 

 

MNI Coordinates (x, 

y, z) 

SDM-

Z 

P Voxels (#) Description 

-16, 22, 22 -1.473 0.000068665 248 Corpus Callosum (Genu) 

0, -6, -16 -1.368 0.000143230 49 Fornix (Body/Column) 

Abbreviations | MNI: Montreal Neurological Institute, SDM: Seed-Based d Mapping 

Figure 3 | Funnel plots of publication bias. (Left) MNI coordinates: -16, 22, 22 (Right) MNI coordinates: 0, -

6, -16. These funnel plot of the 4 studies (Carrasco et al., 2012; Gan et al., 2016; Salvador et al., 2016; Whalley 

et al., 2015) included in the meta-analysis were produced using the Egger test. The symmetry of the plots 

suggests an absence of publication bias. This confirmed by the results of the Egger test for both clusters. (Left) 

bias = -0.07, t = -0.02, p = 0.986 (Right) MNI bias = -5.28, t = -1.97, p = 0.188 
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Power Analysis 

The results of the post hoc power analysis are presented in Figure 4. The results 

suggest that with the present sample (n=240), and α=0.005, meta-analysis results were 

sufficient to detect an effect of d= 0.5 with a power of 0.849. 

 
 

Discussion 

 

The aim of the present study was to conduct a meta-analysis of fractional anisotropic 

alterations in BorPD. Hence we hypothesised that FA alterations would be noted in the 

superior longitudinal fasciculus, uncinate fasciculus, and cingulum bundle. Instead, the 

results of the present study suggest a significant decrease in FA values in the corpus callosum 

(CC) and fornix. Owing to this result, we reject our original hypothesis. 

              The CC is the major interhemispheric pathway in the brain (Schmahmann and 

Pandya, 2009).  Main current theories state that its main function is to integrate and facilitate 

communication between the cerebral hemispheres, although it is not yet clear if this is done 

through excitatory or inhibitory effects (Toyama et al., 1974; Karayannis et al., 2007; van der 

Knaap & van der Ham, 2011). However, there is ample evidence that alterations to the CC 

might be related with a number of psychopathologies. For example, meta-analysis of TBSS 

results in major depressive disorder and bipolar disorder suggest reduced FA values in the 
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Figure 4 | Plot of power vs. effect size. Post hoc power analysis of meta- analysis. Figure highlights the power 

for various effect sizes for 2-tail, α=0.005, n=240. 
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genu of the CC (Chen et al., 2016; Wise et al., 2016). Additionally, alterations to the genu of 

the CC have  been distinguished in personality disorders, namely the cluster A personality 

disorder: schizotypal personality disorder (Lener et al., 2014); and the cluster C personality 

disorder: Obsessive-Compulsive disorder (Radua et al., 2014; but see Fan et al., 2016). 

Further, and more analogous to BorPD, alterations in CC FA values are noted in another 

cluster B personality disorder: Anti-Social Personality disorder (Sundram et al., 2012; but see 

Jiang et al., 2017). Altogether, this suggests an association between differences in white 

matter structure in the CC and different psychopathologies.  

 

Figure 5 | Proposed model of borderline personality disorder. In light of the present results, we propose that 

white matter alterations in the corpus callosum and fornix may contribute to psychopathology. In particular, 

abnormal hippocampal/prefrontal connectivity via the fornix may underscore many of the behavioural 

characteristics of the disorder. Exacerbating this are reductions in corpus callosum integrity. These reductions 

diminish interhemispheric connectivity and may further contribute to borderline personality disorder 

behaviours. 
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Taking into the consideration the available relevant literature, our results argue for a 

crucial role of the CC in psychopathology. Moreover, we hypothesise that CC alterations, 

especially in anterior segments of the CC, may show some specificity for personality 

disorders. It is crucial to emphasize that we do not claim that alterations in anterior segments 

of the CC represent a biomarker for BorPD. This exaggeration is twofold: first, we advocate 

the view that personality disorders are complex disorders, potentially with numerous 

biomarkers. Second, although our result is strong it remains at odds with some previous 

literature. In fact, a recent study by Niomiya et al. (2018) noted no FA differences in any 

region of the brain between healthy controls and individuals with BorPD. One factor that 

could explain this discrepancy is sampled population differences. In the cohort of individuals 

with BorPD, 68% were male (Niomiya et al., 2018), while in our study 73% of individuals in 

the BorPD group were female. Furthermore, the average age on our pooled sample was 

higher (28.7 years old for both BorPD and Controls) compared to their sample (23.3 and 25.8 

years old for BorPD and Controls, respectively). Both age and gender can have an effect on 

the CC thickness (Luders et al., 2010). In addition, the Niomiya and colleagues (2018) study 

may have been underpowered (only 35 BorPD individuals included, compared to 123 

included in our meta-analysis). Further studies should look at the effects of both gender and 

age on the CC differences (or lack thereof) between BorPD and Controls. 

Our meta-analysis did not include region of interest studies. Hence, we turn our 

attention to these studies. From the outset, it is important to note that, to the best of our 

knowledge, no study in the context of BorPD has investigated the CC as a whole. However, 

two studies (Lischke et al., 2017; New et al., 2013) have investigated differences of the CC in 

BorPD per subregion of the CC. In this context, Lischke and colleagues (2017) report mild, 

though significant, FA reductions in those with BorPD in the splenium–but not genu or 

body–of the CC. Further, New et al. (2013) did not observe any FA differences in forceps 
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major or minor between the BorPD and control groups. A critical appraisal of these studies 

and the current meta-analysis highlights an important point that may underscore the 

heterogeneity amongst these results. Lischke et al. (2017), New et al. (2013), and the present 

meta-analysis investigated different elements of BorPD. Contrasting the wide inclusion 

criteria of the studies included in the meta-analysis, and by extension the meta-analysis itself, 

Lischke and colleagues (2017) differentiate between those with BorPD without suicidal 

behaviour and those with BorPD and suicidal behaviour. Moreover, regardless of suicidal 

behaviour, individuals with BorPD also had to meet DSM-IV criteria for Attention Deficit 

Hyperactivity Disorder (Lischke et al., 2017). Finally, this study excluded individuals with 

BorPD who took antipsychotics (Lischke et al., 2017). Overall then, we agree with the 

authors that this creates a group of individuals with extraordinary homogeneity (Lischke et 

al., 2017). However, we question the authors using this as a "representative" sample and 

suggest that, although homogeneous, differences in the present results with those of Lischke 

et al. (2017) may stem from their overly specific profiling. 

Besides the CC, our meta-analysis also found significant FA differences between 

BorPDs and controls in the fornix (FOR). The FOR is the principle WM bundle that connects 

the hippocampus to extra-temporal regions, such as the ventral striatum and the prefrontal 

cortex (PFC) (Christiansen et al., 2016). An exploratory study by Hayes et al. (2015) suggests 

that DTI reductions in the FOR correlate to the affective elements of anorexia nervosa, 

including depressive and anxiety symptoms. Building on this idea, our result, is consistent 

with extant knowledge of classic affective disorders. For example, FOR alterations are a 

consistent observation in bipolar disorder (Barysheva et al., 2013; Emsell et al., 2013). 

Forbye, based on lesion observations, some authors have gone so far as to suggest a causal 

link between FOR alterations and bipolar disease (Rasmussen et al., 2007). Regardless, this 

conclusion extends from a single case report and, as such, requires circumspection. Finally, in 
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the case of a major depressive disorder, a large-scale study of 150 participants by 

Hoogenboom and colleagues (2012) supports a role for FOR alterations. From their study, 

Hoogenboom et al (2012) show reduced FA values in the medial fornix when comparing 

individuals with non-remitting major depressive disorder to healthy controls. Particularly 

related to BorPD, adolescents with depression also exhibit the reduced FOR FA compared to 

healthy controls (Hoogenboom et al., 2012). In all, this may imply an association between 

FOR alterations and psychopathology. 

The antecedent sections have highlighted the function and pathological aspects of the 

CC and FOR. Now, we will concentrate on the behavioural consequences of CC/FOR 

pathology. As mentioned above, the FOR is the principle WM tract between the hippocampus 

and thalamus/PFC (Christiansen et al. (2016). Further, anterior regions of the CC 

originate/terminate in regions of the PFC (Zarei et al. (2006). The hippocampus is commonly 

implicated with the encoding of spatial, temporal, object and behavioural memory 

(Eichenbaum & Cohen, 2014). The PFC is well known for playing a role in emotional 

regulation; studies have implicated increased PFC activity in attenuating emotional responses 

(Hariri et al., 2003), voluntary suppression of sadness (Lévesque et al., 2003), and higher 

order control of emotional responses (Stein et al., 2007). Given that a characteristic element 

of BorPD is emotional dysregulation, the alterations in PFC function should be evident. 

Consistently, numerous studies have identified abnormal PFC function during emotional 

tasks in the ventromedial PFC (Silbersweig et al., 2007), left dorsolateral PFC (Dudas et al., 

2017) and bilateral dorsolateral PFC (Ruocco et al., 2013). This might suggest that disrupted 

connectivity of the CC and FOR may underscore the disrupted functioning of these regions. 

In support of this, suggestions for similar schema exist in other disorders with 

elements of emotional instability and dysregulation. For example, discriminating the Post-

Traumatic Stress Disorder (PTSD) is a pattern of hyperarousal (DSM-5, American 
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Psychological Association) and an inability to inhibit fear and emotional responses 

(O'Doherty et al., 2017). Recent findings revealed FA reductions in the genu of the CC, in 

individuals with PTSD, that are more severe than in trauma exposed and healthy individuals, 

respectively (O'Doherty et al., 2017). Moreover, FA reductions in the genu of the CC 

correlate with grey matter reductions in the rostral anterior cingulate gyrus (O'Doherty et al., 

2017). The parallels between BorPD and PTSD extend to resting state functional magnetic 

resonance imaging findings. Meta-analysis findings in PTSD report hyperactivity in the 

ventromedial PFC (PTSD<TEC), and hypoactivity in the dorsomedial PFC (PTSD>NTC; 

Wang et al., 2016). These regions overlap with regions of altered rsfMRI activity in BorPD 

(Visintin et al., 2016; Amad & Radua, 2017).  In the studies of animal models, Bennet and 

colleagues (2016) show that the core synaptic circuitry implicated in non-human animal 

models of PTSD involves the amygdala, hippocampus and PFC. In the context of this 

circuitry (Bennett et al., 2016), our results fit within this model. Considering these together, it 

can be proposed that the relationship between the hippocampus and PFC may underscore the 

common affective aspects of these disorders. 

Given that literature presented above, especially the phenomenological overlap and 

consistency of neuroimaging results, we suggest that the neurocircuitry model for PTSD 

proposed by Rauch and colleagues (2006) can be extrapolated, and combined, with models of 

BorPD. Overall then, we propose a model of behavioural dysregulation wherein the 

emotional aspects of BorPD behaviour originate from a breakdown in hippocampus/PFC 

circuitry, similar to that proposed by Rauch et al (2006) for PTSD. Further, we hypothesise 

that the breakdown stems from alterations in the CC and FOR as suggested by our results. 

This model is attractive as it fits the behavioural aspects of BorPD with extant neurocircuitry 

models and supports the psychological model of BorPD proposed by Linehan et al. (1993) 

and Fonagy et al. (1996). 
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Finally, a history of childhood maltreatment is often reported in by individuals with 

BorPD. As such, we cannot disregard the influence of childhood maltreatment on our results. 

On this point, there is little doubt about association between experiencing of any form of 

childhood abuse and brain alterations (Teicher et al., 2016). For example, children exposed to 

parental verbal abuse—but no other form of abuse—show increased GM density in the 

primary auditory cortex (Tomoda et al., 2011). In a similar manner, children who witness 

inter-parental domestic violence show reduced GM volume and thickness in the primary 

visual cortex (Tomoda et al., 2012). More specific to the current study, childhood 

maltreatment shows adverse effects on WM integrity, too. It is interesting that WM 

alterations also seem to follow a modality specific pattern. Children exposed to inter parental 

domestic violence show reduced FA in the inferior longitudinal fasciculus (Choi et al., 2012), 

whereas children exposed to parental verbal abuse show FA reductions in the arcuate 

fasciculus and, most noteworthy in the context of the present results, the fornix (Choi et al., 

2009). Further, CC alterations are one of the most prominent and reliable findings in 

childhood maltreatment (Teicher et al., 2016). Indeed, children exposed to maltreatment 

appear to have 17% reduction in CC area compared to non-exposed children (Teicher et al., 

2004). Further, children exposed to maltreatment show an 11% reduction in the CC area 

compared to other children with psychiatric disorders but no history of maltreatment (Teicher 

et al., 2004). This finding is further reinforced by Paul et al. (2008), who note FA alterations 

in the genu of the CC in adults with history of early life stress. 

With these considerations in mind, it is vital to annotate that the model we have 

proposed for BorPD, shares many commonalities with the childhood maltreatment model 

suggested by Teicher and colleagues (2016). Both of these models highlight the importance 

of the amygdala, hippocampus, prefrontal cortex and fornix. Further, CC alterations are a 

prime candidate to unveil behaviours seen in BorPD. Teicher and colleagues (2016) suggest 
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that a breakdown of interhemispheric connectivity, resultant from reduced CC integrity, may 

underscore splitting behaviours in individuals with BorPD. 

Limitations & Conclusion 

The present analysis included 4 articles representing 123 individuals with BorPD and 

117 control individuals. This is a very small sample size and questions the necessity of a 

meta-analysis. However we propose that, although a small sample size for a meta-analysis, 

the presented meta-analysis has much greater statistical power than any of the included 

studies. Furthermore, the Egger tests of heterogeneity were not significant. i.e. no evidence of 

publication bias, and the results of the meta-analysis remained significant following jacknife 

shuffles. This suggest that, whilst the sample size is ungenerous, the results extending from 

this study are robust and acceptable. 

Furthermore, the heterogeneity of the participants within each study deserves 

mentioning. In a statistical sense, there was no publication bias or heterogeneity amongst the 

studies included (Fig. 3). Yet, in a demographic sense, Table 2 highlights that there is an 

element of heterogeneity between individual cohorts. From this perspective, some elements 

merit particular deliberation: first is gender. In the meta-analysis, of the 123 individuals 

represented in the BorPD group, 91 (73.9%) were female. There is a long-held view that the 

ratio of female-to-male BorPD diagnoses is 3:1 (DSM-5, American Psychological 

Association). The DSM-5 suggests that 75% of individuals with BorPD are female (DSM-5, 

American Psychological Association).  Thus, while gender could be a potential confound to 

the results, this is debateable. Females have greater odds of a BorPD diagnosis than males 

(Trull et al., 2010). Further, more females are more keen to seek help with mental health 

issues than males (Tomko et al., 2014). Hence, it can be argued that this skew is 

representative of the existing BorPD population. 
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Finally, an element of this study that limits its impact is that the protocol was not pre-

registered. This limitation arise from the recommendations outlined by Müller and colleagues 

(2018). While we made every effort to conduct a transparent analysis, the study protocol was 

not previously registered. In the future, under different circumstances, any intended analysis 

should be pre-planned and registered, in line with gold standard recommendations. 

The future direction for this work may take many avenues. Importantly, we must 

reiterate, this work should not be viewed in the context of biomarkers. Rather, the present 

results should serve as the basis for future primary investigations. Predominantly though, the 

results of this study require retesting in a primary investigation. Moreover, this line of 

exploration will benefit from a large-scale cohort and, in the best case, individuals spanning 

different levels of symptoms to establish a dose-response relationship. From here, subsequent 

research can then aim to look for a causal factor underlying this pathology. At this stage, 

investigators may need to pursue genomic or proteomics. The ultimate objective of this 

approach is to develop psychological or pharmacological treatments that can restore the 

observable deficits. 

 

Conclusion 

The results of this meta-analysis, representing 240 individuals, support the conclusion 

that fractional anisotropic changes in the corpus callosum and fornix may contribute to the 

psychopathology of BorPD. This is a robust result that integrates with extant psychological 

and neurobiological literature. These results will now require primary investigation, in which 

what is presented in the paper can serve as the basis for future hypotheses. 
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