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Abstract	
		
Background:		Progressive	supranuclear	palsy	(PSP),	a	neurodegenerative	conditions	
may	be	difficult	to	discriminate	clinically	from	idiopathic	Parkinson’s	disease	(PD).		It	
is	critical	that	we	are	able	to	do	this	accurately	and	as	early	as	possible	in	order	that	
future	disease	modifying	 therapies	 for	PSP	may	be	deployed	at	a	 stage	when	 they	
are	likely	to	have	maximal	benefit.	Analysis	of	gait	and	related	tasks	is	one	possible	
means	of	discrimination.		
	
Research	 Question:	 Here	 we	 investigate	 a	 wearable	 sensor	 array	 coupled	 with	
machine	learning	approaches	as	a	means	of	disease	classification.				
		
Methods:	21	participants	with	PSP,	20	with	PD,	and	39	healthy	control	(HC)	subjects	
performed	 a	 two	 minute	 walk,	 static	 sway	 test,	 and	 timed	 up-and-go	 task,	 while	
wearing	 an	 array	 of	 six	 inertial	 measurement	 units.		 The	 data	 were	 analysed	 to	
determine	what	features	discriminated	PSP	from	PD	and	PSP	from	HC.		Two	machine	
learning	algorithms	were	applied,	Logistic	Regression	(LR)	and	Random	Forest	(RF).	
		
Results:	17	 features	 were	 identified	 in	 the	 combined	 dataset	 that	 contained	
independent	 information.		 The	 RF	 classifier	 outperformed	 the	 LR	 classifier,	 and	
allowed	discrimination	of	PSP	from	PD	with	86%	sensitivity	and	90%	specificity,	and	
PSP	 from	HC	with	 90%	 sensitivity	 and	 97%	 specificity.		 Using	 data	 from	 the	 single	
lumbar	 sensor	 only	 resulted	 in	 only	 a	modest	 reduction	 in	 classification	 accuracy,	
which	could	be	restored	using	3	sensors	(lumbar,	right	arm	and	foot).		However	for	
maximum	specificity	the	full	six	sensor	array	was	needed.	
		
Significance:	A	wearable	 sensor	 array	 coupled	with	machine	 learning	methods	 can	
accurately	 discriminate	 PSP	 from	 PD.		 Choice	 of	 array	 complexity	 depends	 on	
context;	 for	 diagnostic	 purposes	 a	 high	 specificity	 is	 needed	 suggesting	 the	 more	
complete	 array	 is	 advantageous,	 while	 for	 subsequent	 disease	 tracking	 a	 simpler	
system	may	suffice.		
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Introduction	

	

Progressive	supranuclear	palsy	(PSP)	(1,	2)	 is	an	atypical	parkinsonian	disorder	that	

can	 sometimes	 be	 difficult	 to	 discriminate	 clinically	 from	 the	 much	 commoner	

Parkinson’s	 disease	 (3).	 It	 is	 characterized	 by	 vertical	 supranuclear	 gaze	 palsy,	

postural	 instability	 and	axial	 rigidity	as	well	 as	mild	 cognitive	 impairment	 (1)	 (4-6).	

Recently,	the	Movement	Disorders	Society	(MDS)	study	group	has	proposed	a	set	of	

diagnostic	criteria	for	PSP,	with	the	aim	of	improving	the	detection	of	the	disease	in	

clinical	practice	and	research	(7).	

	

Comparative	 studies	 using	 accelerometers	 (8)	 have	 shown	 many	 shared	 gait	

abnormalities	(9)	(10-12)		including	decreases	in	velocity,	step	length,	cadence,	and	

mean	acceleration.	Some	differences	have	also	been	found,	including	lower	vertical	

displacement	and	higher	acceleration	in	PSP.	In	this	paper	we	examine	the	ability	of	

a	 wearable	 array	 of	 inertial	 measurement	 units	 (IMUs),	 coupled	 with	 machine	

learning	algorithms,	 to	distinguish	PSP	patients	 from	PD	patients	and	 from	healthy	

controls.	

There	are	a	 large	and	growing	number	of	wearable	 technologies	 (13,	14)	available	

for	 characterizing	 and	 measuring	 the	 motor	 features	 of	 neurodegenerative	

diseases(15-17).		

When	 deciding	 what	measurement	 technology	 to	 use	 there	 are	 two	major	 issues	

that	must	 be	 considered.	 	 One	 is	 the	 setting	 for	 the	measurement,	 which	 can	 be	

broadly	divided	into	laboratory	measurements	or	ambulatory	measurements	outside	
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the	 laboratory	 (e.g.	 at	 home).	 	 The	 former	 will	 permit	 closely	 controlled	 and	

supervised	conditions	giving	the	best	chance	of	obtaining	a	high	quality	standardized	

dataset,	 and	 is	 well	 suited	 to	 tasks	 like	 detailed	 measurement	 of	 individual	

components	 of	 the	 gait	 cycle.	 	 However	 there	 is	 growing	 interest	 in	 longer	 term	

ambulatory	measurement	because	snapshot	 laboratory	recordings	may	not	give	an	

accurate	overall	picture,	due	to	many	factors	such	as	variability	of	symptoms	by	time	

of	day,	inconsistent	timing	of	medication,	or	the	stress	of	being	tested	in	a	hospital	

environment.	Laboratory	measurements	are	also	unlikely	to	capture	infrequent	but	

important	 features	 such	 as	 falls	 or	 near-falls,	 and	 a	 ‘real	world’	 environment	may	

possibly	better	elicit	features	that	are	of	direct	clinical	relevance	to	the	patient.	

The	second	 issue	 is	 the	choice	of	device.	 	 In	particular,	 there	 is	a	conflict	between	

maximising	data	and	minimising	the	effort	involved	in	obtaining	it.		At	one	end	of	the	

spectrum,	 it	 is	 possible	 to	 have	 body	 worn	 arrays	 comprising	 numerous	 inertial	

measurement	 units	 attached	 to	 all	 four	 limbs	 and	 the	 trunk,	 streaming	 tens	 of	

megabytes	per	minute.	 	At	 the	opposite	extreme,	 some	 investigators	 are	 trying	 to	

develop	 systems	 based	 on	 single	 sensors,	 even	 those	 built	 into	 consumer	

smartphones,	so	that	all	that	is	required	is	an	app	running	in	the	background.		There	

is	 no	 doubt	 that	 the	 complex	 systems	 will	 generate	 much	 more	 complete	

information;	the	question	is	can	the	simpler	systems	answer	the	same	diagnostic	and	

measurement	 questions	 acceptably	 well,	 despite	 having	 a	 comparatively	 meagre	

dataset?		

The	two	issues	are	clearly	linked.		Applying	a	complex	system	in	a	laboratory	setting	

is	 straightforward	 and	 is	 logical	 given	 the	 intent	 of	 obtaining	 detailed	 data	 in	 a	

concentrated	period	of	 time.	 	Using	a	 complex	 system	at	home	 is	another	matter:	
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donning	and	doffing	may	not	be	easy,	and	the	multiple	sensors	may	get	in	the	way	of	

everyday	activities.		There	is	a	premium	on	using	as	simple	a	system	as	is	compatible	

with	obtaining	sufficient	data	to	be	useful.	

Our	 aim	 in	 this	 study	 is	 to	 answer	 two	 questions.	 	 Firstly,	 we	 will	 use	 a	 complex	

laboratory	 system	with	 sensors	on	each	 limb	and	 the	 trunk,	 to	 record	data	during	

commonly	 applied	 gait-related	 tasks.	 	 We	 will	 explore	 how	 well	 the	 data	 can	

distinguish	PSP	patients	from	PD	patients	and	from	healthy	control	(HC)	participants,	

and	 what	 the	 most	 essential	 distinguishing	 features	 within	 the	 dataset	 are.		

Secondly,	we	will	analyse	which	sensors/body	locations	are	necessary	to	acquire	this	

data.	The	aim	is	to	determine	how	far	the	sensor	array	can	be	simplified	while	still	

yielding	satisfactory	results.		It	is	hoped	that	this	will	help	maximise	compliance	with	

future	 study	 protocols	 while	 avoiding	 collecting	 an	 inadequate	 dataset	 due	 to	

oversimplification.	

	

Materials	&	Methods	

Participants	

The	 participants	 in	 this	 study	 were	 recruited	 as	 part	 of	 the	 Oxford	 study	 of	

Quantification	 in	 Parkinsonism	 (OxQUIP);	 a	 large	 clinical	 observational	 study	 being	

conducted	at	the	John	Radcliffe	Hospital,	Oxford.	We	recruited	20	participants	with	

PD,	21	participants	with	PSP,	and	39	healthy	control	participants.	All	healthy	control	

participants	were	 spouses	of	 the	PD	or	 PSP	participants.	 The	demographics	 of	 the	

participants	are	summarised	in	Table	1.	
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Sensor	array	and	software	

Participants	wore	a	system	consisting	of	six	synchronized	inertial	measurement	units	

(IMUs)	 (OpalTM,	APDM,	Portland,	USA)	that	wirelessly	 transmitted	data	to	software	

(Mobility	LabTM,	APDM)	running	on	a	nearby	laptop.	The	IMUs	were	positioned	over	

the	 lumbar	spine,	sternum,	 left	and	right	wrists,	and	 left	and	right	feet.	All	sensors	

provided	 tri-axial	 accelerometer,	 tri-axial	 gyroscope,	 and	 tri-axial	 magnetometer	

signals	 at	 a	 frequency	 of	 100Hz.	 Participants	 performed	 three	 tasks:	 two	 minute	

walk,	sway	test,	and	timed	up-and-go	(TUG).	Using	the	waveforms	from	all	sensors,	

the	Mobility	Lab	software	automatically	extracts	a	range	of	clinical	features	specific	

to	 the	 three	 tasks.	A	 full	 list	of	 the	 task	 features	are	provided	 in	 figure	2.	 	The	 full	

feature	set	included	109	parameters	from	analysis	of	the	gait	task,	33	from	the	sway	

test,	and	14	from	the	TUG.	

Any	participants	taking	medication	were	recorded	in	the	‘ON	medication’	state.	

Tasks	

All	participants	completed	a	two	minute	walk	on	the	same	straight	and	level	surface	

to	record	their	gait.	Next,	to	measure	sway,	participants	were	asked	to	stand	upright	

and	as	still	as	possible	for	thirty	seconds	with	their	eyes	closed	on	a	firm	surface.	A	

wooden	template	was	placed	on	the	floor	so	as	to	ensure	all	participants’	feet	were	

the	same	distance	apart	for	the	test.	The	TUG	was	then	repeated	three	times.	Each	

repetition	 entailed	 the	 participant	 starting	 in	 a	 sitting	 position	 for	 three	 seconds,	

followed	by	 standing	up	when	 instructed,	walking	 forward	3	metres,	 performing	a	

180	degree	turn,	walking	back	to	the	chair	and	sitting	back	down.		
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Hypothesis	Testing	

The	 first	 aspect	 of	 this	 analysis	 aims	 to	 identify	 features	 that	 demonstrate	

statistically	significant	differences	between	the	disease	groups.	Specifically,	we	aim	

to	determine	whether	the	PSP	group	shows	a	difference	to	HC	and	PD	participants	in	

a	 feature.	Each	participant	contributes	one	 instance	 in	each	of	 the	three	tasks.	For	

each	 task	 type	 (gait,	 sway,	 and	 TUG),	 independent	 t-tests	 are	 used	 to	 inspect	 for	

statistical	 significance	 between	 the	 three	 disease	 groups	 for	 all	 features	 using	 a	

significance	level	of	0.05.		

Disease	Classification		

In	order	 to	assess	 to	what	extent	PSP	 can	be	automatically	discriminated	 from	PD	

and	 HC	 subjects	 based	 on	 the	 measured	 features,	 we	 performed	 automated	

classification	 with	 a	 machine-learning	 algorithm.	 For	 each	 test,	 repeated	 10-fold	

cross	validation	is	performed	based	on	the	full	feature	set	from	each	test	separately.	

This	means	that	the	full	dataset	is	split	in	randomly	into	10	subsets,	where	9	subsets	

are	used	for	training	the	machine	learning	model	and	the	remaining	subset	is	used	as	

an	 independent	 validation	 set.	 	 This	 training	 and	 validation	 is	 repeated	 10	 times	

where	each	time	a	different	independent	validation	set	is	used.	Within	each	repeat	

of	 cross	 validation,	 the	 cross	 sectional	 baseline	 subset	 undergoes	 minority	 class	

balancing	 prior	 to	 being	 assigned	 to	 a	 fold.	 Within	 each	 fold,	 the	 training	 and	

validation	 sets	undergo	 zero-mean	unit-variance	normalisation	with	 respect	 to	 the	

mean	and	standard	deviation	of	the	training	set.	Due	to	the	likelihood	that	many	of	

the	 features	 within	 each	 test	 are	 correlated	 (e.g.	 Gait	 Speed	 Left	 and	 Gait	 Speed	

Right),	feature	selection	(Least	Absolute	Shrinkage	and	Selection	Operator,	LASSO)	is	

performed	 on	 each	 training	 set,	 with	 the	 selected	 features	 subsequently	 being	
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extracted	 from	the	validation	set.	Two	classifiers	were	used.	 	A	Logistic	Regression	

(LR)	 classifier	was	used	due	 to	 its	 popularity	 in	 the	 clinical	 field.	A	Random	Forest	

(RF)	classifier	was	also	used,	without	feature	reduction	as	Random	Forest	classifiers	

are	known	to	deal	well	with	a	high	dimensional	feature	set.	We	report	the	accuracy,	

sensitivity,	and	specificity	for	each	task	separately	and	all	tasks	combined.			

Reduced	sensor	set	

In	 order	 to	 assess	 the	 necessity	 or	 not	 of	 using	 a	 large	 sensor	 set,	 we	 took	 the	

features	selected	by	LASSO	for	all	 tasks	combined	and	assessed	from	which	sensor	

those	features	are	computed.		We	then	repeated	the	classification	procedure	using	

only	 those	 features	 extracted	 from	 the	 lumbar	 sensor,	 because	 this	 sensor	 alone	

accounted	for	a	majority	of	the	features	identified	by	LASSO.		We	further	repeated	

the	 classification	using	data	obtainable	 from	 the	 lumbar	 sensor	plus	 the	 right	 arm	

and	right	leg	sensors,	and	reported	the	same	performance	metrics.	
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Results	

Participants	

The	demographics,	clinical	characteristics,	and	rating	scale	scores	of	the	participants	

for	each	group	are	shown	in	table	1.		

Figure	1	 shows	 the	distributions	of	 some	of	 the	 feature	 values	extracted	 from	 the	

three	 tasks	 that	were	 found	 to	differ	 significantly	between	PSP	and	 the	 two	other	

groups.	The	box	plots	 show	the	 range	of	values	 for	each	of	 these	 features	 in	each	

participant	 group,	 with	 individual	 data	 points	 overlaid	 in	 grey.	 Note	 that	 there	 is	

considerable	 redundancy	 amongst	 the	 large	 number	 of	 features,	 and	 not	 all	

measurements	 that	 were	 found	 to	 be	 significant	 individually	 emerged	 from	 the	

LASSO	as	independent	predictors.		For	example	in	the	sway	test,	mean	coronal	sway	

velocity	was	individually	significant,	but	this	did	not	feature	in	the	LASSO	result.		

Table	2	shows	the	disease	classification	accuracy	under	a	number	of	conditions.		The	

upper	 three	 rows	 of	 the	 table	 show	 the	 accuracy,	 sensitivity,	 and	 specificity	 of	

discrimination	between	PSP	and	PD	and	between	PSP	and	HC,	for	each	of	the	three	

tasks	 separately	 as	 indicated	 in	 the	 left	 column.	 	 It	 can	 be	 seen	 that	 of	 the	 three	

tasks,	sway	is	much	less	effective	than	the	other	two	at	discriminating	between	PSP	

and	PD.	The	fourth	row	of	table	2	gives	the	results	of	analysing	the	combined	feature	

set	from	all	three	tasks;	this	performs	better	than	any	of	the	3	tasks	individually.			

It	is	clear	that	the	RF	classifier	performs	better	than	the	LR	classifier	overall.		When	

distinguishing	PSP	from	PD	the	sensitivity,	specificity,	and	accuracy	of	RF	was	as	good	

as	or	better	than	LR	in	every	condition	in	the	table.			The	greatest	difference	was	15	
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percentage	 points	 in	 specificity	 using	 the	 combined	 tasks	 and	 full	 sensor	 set	 (75%	

with	LR	versus	90%	with	RF).			

Table	 3	 lists	 the	 features	 that	 emerged	 from	 the	 LASSO	 analysis	 of	 the	 combined	

tasks	 as	 the	 most	 important	 discriminators	 between	 the	 groups,	 with	 their	

weightings	and	which	sensor	 in	the	array	the	data	are	obtained	from	in	each	case.		

Notably,	 the	 lumbar	 sensor	provides	 the	data	 for	 ten	of	 the	 seventeen	 features	 in	

this	list,	compared	to	just	one	feature	that	is	dependent	on	the	sternal	sensor.		This	

prompts	one	to	ask	what	the	results	would	be	if	the	lumbar	sensor	were	used	alone.		

The	 answer	 (table	 2	 row	 5)	 is	 that	 using	 only	 one	 sensor	 in	 the	 lumbar	 position	

reduces	the	accuracy	of	both	classifiers	modestly,	from	80%	to	78%	with	LR	and	from	

88%	to	85%	with	RF.		

We	 then	explored	 the	effect	of	 adding	one	arm	and	one	 leg	 sensor	 to	 the	 lumbar	

sensor,	 making	 a	 three	 sensor	 array	 including	 lumbar,	 right	 arm	 and	 right	 foot.		

Where	 LASSO	 had	 identified	 left	 sided	 parameter	 we	 substituted	 the	 equivalent	

parameter	 from	 the	 opposite	 side,	 making	 the	 assumption	 that,	 for	 example,	

cadence	 measured	 from	 either	 leg	 would	 report	 a	 similar	 value.	 Using	 this	

intermediate	size	network,	the	accuracy	with	both	classifiers	was	the	same	as	for	the	

full	six	sensor	network	(table	2	row	6).		Notably	however,	the	high	specificity	(90%)	

observed	with	 the	 6	 sensor	 network	was	 reduced	 to	 85%	with	 the	 lumbar	 sensor	

alone,	and	this	was	not	recovered	using	3	sensors.	
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Discussion	

We	have	shown	that	it	is	possible	with	a	body-worn	IMU	array	and	machine	learning	

methods	to	differentiate	PSP	from	PD	and	PSP	from	control,	with	a	high	degree	of	

accuracy.	 	 In	 order	 to	 ensure	 the	 robustness	 of	 these	 findings	 we	 used	 separate	

training	and	validation	datasets	 for	the	analysis,	and	to	provide	validation	we	used	

two	 different	 classification	 algorithms.	 Overall,	 the	 Random	 Forest	 classifier	

performed	 better	 than	 the	 Logistic	 Regression	 classifier.	 LR	 is	 probably	 the	 most	

commonly	 used	 classifier	 in	 biomedical	 research	 and	 therefore	 the	 apparent	

superiority	of	RF	is	an	important	finding.	

A	recent	review	found	78	published	studies	of	IMU	based	gait	analysis,	but	only	16%	

of	these	used	more	than	one	sensor	(18).	We	found	just	two	previous	studies	looking	

at	gait	in	PSP.		One	of	these	used	a	single	IMU	in	the	lumbar	region	(8),	and	detected	

only	 a	 difference	 in	 vertical	 displacement	 during	 gait	 between	 PSP	 and	 PD.	 	 The	

other	 used	 two	 sensors,	 one	 attached	 to	 each	 foot	 (19),	 and	 identified	 significant	

differences	in	gait	speed	and	cadence.	In	both	cases	the	information	obtained	is	far	

less	detailed	than	that	obtained	from	multiple	sensors	in	the	present	study.	

As	expected	there	 is	a	high	degree	of	 redundancy	 in	 the	measured	features	within	

and	across	the	three	tasks	used.	This	is	well	illustrated	by	the	fact	that,	for	example,	

the	 mean	 velocity	 of	 postural	 sway	 in	 the	 coronal	 plane	 was	 significantly	 and	

substantially	 different	between	PSP	 and	 the	other	 groups,	 yet	 did	not	occur	 as	 an	

independent	predictor	in	the	feature	set	selected	by	the	LASSO	analysis.		Indeed	only	

one	sway	variable	was	found	to	contain	independent	information.	
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From	 the	 point	 of	 view	 of	 overall	 classification	 accuracy,	 it	 may	 be	 possible	 to	

simplify	the	sensor	array.		Of	the	17	key	parameters	identified	by	the	LASSO	analysis,	

10	could	be	obtained	 from	 just	 the	 lumbar	 sensor.	 	 In	distinguishing	PSP	 from	HC,	

the	accuracy,	sensitivity,	and	specificity	using	just	this	sensor	was	virtually	 identical	

to	that	obtained	using	the	full	sensor	array.	Using	just	the	lumbar	sensor	did	degrade	

performance	 in	 terms	of	 test	 accuracy	when	differentiating	PSP	 from	PD,	but	only	

modestly	 (for	 the	 RF	 classifier	 there	 was	 a	 test	 accuracy	 of	 88%	 with	 six	 sensors	

versus	 85%	 with	 the	 lumbar	 sensor	 only).	 	 Using	 an	 intermediate	 3	 sensor	 array	

(lumbar,	 right	 arm,	 right	 foot)	 gave	 a	 test	 accuracy	 as	 good	 as	 the	 full	 six	 sensor	

array.	

In	 some	 respects	 however	 the	most	 important	 parameter	 is	 specificity,	 because	 a	

higher	 specificity	 increases	 positive	 predictive	 value	 (PPV),	 which	 is	 critical	 if	 PSP	

specific	 treatments	 are	 to	be	 initiated	based	on	 the	 result.	 	 The	 specificity	of	 90%	

using	the	6	sensor	array	and	the	RF	classifier	is	remarkably	good.	Previous	biomarker	

studies	using	diverse	approaches	have	not	yielded	specificities	as	high	as	 this.	 	 For	

example,	MRI	morphometry	of	the	brainstem	gave	a	specificity	of	85%(20),	while	a	

meta-analysis	 of	 studies	 of	 probably	 the	 most	 promising	 CSF	 biomarker,	

neurofilament	 light	 chain,	 gave	 a	 specificity	 of	 81%(21).	 	 Because	 of	 the	 low	

prevalence	of	PSP	amongst	patients	presenting	with	parkinsonism,	even	the	higher	

85%	figure	translated	into	a	PPV	of	just	57%	(20).		The	improvement	in	PPV	between	

a	test	with	85%	and	90%	specificity	is	substantial.		In	moving	from	the	full	6	sensors	

to	 just	 the	 lumbar	 sensor,	 the	 90%	 specificity	 of	 our	 RF	 classifier	 fell	 to	 85%,	 an	

important	 reduction	 in	 efficacy.	 	 Performance	 was	 not	 restored	 by	 adding	 in	 two	

more	sensors.	
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It	should	be	noted	that	the	job	that	the	classifiers	were	asked	to	do	in	this	study	is	

considerably	 easier	 than	 the	 applications	 to	 which	 we	 hope	 the	 approach	 will	

ultimately	extend.	 	 It	 is	no	surprise	to	see	classification	accuracies	in	excess	of	90%	

when	 discriminating	 PSP	 patients	 from	 controls.	 	 The	 fact	 that	 the	 classification	

accuracy	 between	 PSP	 and	 PD	 was	 not	 far	 behind	 (88%	 with	 RF)	 may	 seem	

impressive,	but	we	began	with	groups	of	clear-cut	PSP	and	PD,	who	would	be	readily	

distinguishable	clinically	by	an	experienced	movement	disorders	neurologist.		For	the	

technique	 to	 be	 most	 useful,	 it	 must	 do	 something	 that	 such	 a	 person	 finds	

challenging.	 The	 performance	 differential	 between	 more	 complete	 and	 simpler	

sensor	 sets	 may	 well	 widen	 with	 more	 difficult	 questions	 and	 will	 need	 to	 be	

carefully	evaluated	in	each	situation.		

The	 most	 obvious	 next	 step	 in	 testing	 this	 approach	 would	 be	 to	 evaluate	 its	

effectiveness	 in	 the	 differential	 diagnosis	 of	 these	 conditions	 at	 an	 earlier	 stage,	

when	 there	 is	 still	 substantial	 clinical	 diagnostic	 uncertainty.	 	 This	will	 require	 the	

capture	of	a	large	incident	cohort	of	parkinsonian	patients,	in	order	that	it	turns	out	

eventually	to	contain	sufficient	numbers	of	cases	that	manifest	as	PSP,	rather	than	

the	far	commoner	PD.	The	other	task	that	could	benefit	from	the	machine	learning	

approach	 is	 the	 related	 one	 of	 disease	 severity	 quantification	 and	 progression	

tracking.	 This	 is	 an	 area	 of	 great	 interest	 because	 objective	 numerical	 biomarkers	

capable	of	doing	this	in	PSP	(and	PD)	are	lacking,	yet	very	much	needed	for	trials	of	

potential	disease	modifying	drugs.		

In	 conclusion,	 the	 answer	 to	 the	 question	 of	 whether	 the	 sensor	 network	 can	 be	

simplified	depends	on	context	and	the	exact	parameters	we	are	interested	in.	It	may	

be	 that	 the	more	 complex	 sensor	 array	 is	 better	 suited	 to	 the	 diagnostic	 setting,	
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where	 specificity	 is	 paramount,	 but	 then	 a	 simpler	 arrangement	 can	 be	 used	 for	

quantification	and	tracking	once	the	diagnosis	is	secure.			
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Figure	1:	Examples	of	gait	parameters	that	distinguish	PSP	from	PD	and	HC.		A:	Gait	
cadence;	B:	Mean	postural	sway	velocity	in	the	coronal	plane	during	the	sway	test;	
C:	Mean	time	taken	to	sit	from	standing	during	the	timed	up-and-go	(TUG)	task;	D:	
Mean	time	taken	to	turn	during	the	gait	task;	E:	Mean	time	taken	to	turn	during	the	
TUG	task;	F:	Standard	deviation	of	time	taken	to	turn	during	the	gait	task.		Note	that	
the	 large	 number	 of	 parameters	 generated	 by	 the	 three	 tasks	 have	 considerable	
redundancy	 so	 that	 some	 parameters	 that	 are	 significantly	 different	 between	 the	
conditions	individually	are	not	in	the	LASSO	output.		
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List of features that are quantified for each task 
 
Gait: 
 
'Anticipatory	Postural	Adjustment	-	APA	Duration	(s)'	
'Anticipatory	Postural	Adjustment	-	First	Step	Duration	(s)'	
'Anticipatory	Postural	Adjustment	-	First	Step	Range	of	Motion	(degrees)'	
'Anticipatory	Postural	Adjustment	-	Forward	APA	Peak	(m/s^2)'	
'Anticipatory	Postural	Adjustment	-	Lateral	APA	Peak	(m/s^2)'	
'Duration	(s)'	
'Gait	-	Lower	Limb	-	Cadence	L	(steps/min)'	
'Gait	-	Lower	Limb	-	Cadence	R	(steps/min)'	
'Gait	-	Lower	Limb	-	Double	Support	L	(%GCT)'	
'Gait	-	Lower	Limb	-	Double	Support	R	(%GCT)'	
'Gait	-	Lower	Limb	-	Elevation	at	Midswing	L	(cm)'	
'Gait	-	Lower	Limb	-	Elevation	at	Midswing	R	(cm)'	
'Gait	-	Lower	Limb	-	Gait	Cycle	Duration	L	(s)'	
'Gait	-	Lower	Limb	-	Gait	Cycle	Duration	R	(s)'	
'Gait	-	Lower	Limb	-	Gait	Speed	L	(m/s)'	
'Gait	-	Lower	Limb	-	Gait	Speed	R	(m/s)'	
'Gait	-	Lower	Limb	-	Lateral	Step	Variability	L	(cm)'	
'Gait	-	Lower	Limb	-	Lateral	Step	Variability	R	(cm)'	
'Gait	-	Lower	Limb	-	Circumduction	L	(cm)'	
'Gait	-	Lower	Limb	-	Circumduction	R	(cm)'	
'Gait	-	Lower	Limb	-	N	(#)'	
'Gait	-	Lower	Limb	-	Foot	Strike	Angle	L	(degrees)'	
'Gait	-	Lower	Limb	-	Foot	Strike	Angle	R	(degrees)'	
'Gait	-	Lower	Limb	-	Toe	Off	Angle	L	(degrees)'	
'Gait	-	Lower	Limb	-	Toe	Off	Angle	R	(degrees)'	
'Gait	-	Lower	Limb	-	Single	Limb	Support	L	(%GCT)'	
'Gait	-	Lower	Limb	-	Single	Limb	Support	R	(%GCT)'	
'Gait	-	Lower	Limb	-	Stance	L	(%GCT)'	
'Gait	-	Lower	Limb	-	Stance	R	(%GCT)'	
'Gait	-	Lower	Limb	-	Step	Duration	L	(s)'	
'Gait	-	Lower	Limb	-	Step	Duration	R	(s)'	
'Gait	-	Lower	Limb	-	Stride	Length	L	(m)'	
'Gait	-	Lower	Limb	-	Stride	Length	R	(m)'	
'Gait	-	Lower	Limb	-	Swing	L	(%GCT)'	
'Gait	-	Lower	Limb	-	Swing	R	(%GCT)'	
'Gait	-	Lower	Limb	-	Terminal	Double	Support	L	(%GCT)'	
'Gait	-	Lower	Limb	-	Terminal	Double	Support	R	(%GCT)'	
'Gait	-	Lower	Limb	-	Toe	Out	Angle	L	(degrees)'	
'Gait	-	Lower	Limb	-	Toe	Out	Angle	R	(degrees)'	
'Gait	-	Lumbar	-	Coronal	Range	of	Motion	(degrees)'	
'Gait	-	Lumbar	-	Sagittal	Range	of	Motion	(degrees)'	
'Gait	-	Lumbar	-	Transverse	Range	of	Motion	(degrees)'	
'Gait	-	Trunk	-	Coronal	Range	of	Motion	(degrees)'	
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'Gait	-	Trunk	-	Sagittal	Range	of	Motion	(degrees)'	
'Gait	-	Trunk	-	Transverse	Range	of	Motion	(degrees)'	
'Gait	-	Upper	Limb	-	Arm	Swing	Velocity	L	(degrees/s)'	
'Gait	-	Upper	Limb	-	Arm	Swing	Velocity	R	(degrees/s)'	
'Gait	-	Upper	Limb	-	Arm	Range	of	Motion	L	(degrees)'	
'Gait	-	Upper	Limb	-	Arm	Range	of	Motion	R	(degrees)'	
'Turns	-	Angle	(degrees)'	
'Turns	-	Duration	(s)'	
'Turns	-	N	(#)'	
'Turns	-	Turn	Velocity	(degrees/s)'	
'Turns	-	Steps	in	Turn	(#)'	
'Anticipatory	Postural	Adjustment	-	APA	Duration	(s)	STD'	
'Anticipatory	Postural	Adjustment	-	First	Step	Duration	(s)	STD'	
'Anticipatory	Postural	Adjustment	-	First	Step	Range	of	Motion	(degrees)	STD'	
'Anticipatory	Postural	Adjustment	-	Forward	APA	Peak	(m/s^2)	STD'	
'Anticipatory	Postural	Adjustment	-	Lateral	APA	Peak	(m/s^2)	STD'	
'Duration	(s)	STD'	
'Gait	-	Lower	Limb	-	Cadence	L	(steps/min)	STD'	
'Gait	-	Lower	Limb	-	Cadence	R	(steps/min)	STD'	
'Gait	-	Lower	Limb	-	Double	Support	L	(%GCT)	STD'	
'Gait	-	Lower	Limb	-	Double	Support	R	(%GCT)	STD'	
'Gait	-	Lower	Limb	-	Elevation	at	Midswing	L	(cm)	STD'	
'Gait	-	Lower	Limb	-	Elevation	at	Midswing	R	(cm)	STD'	
'Gait	-	Lower	Limb	-	Gait	Cycle	Duration	L	(s)	STD'	
'Gait	-	Lower	Limb	-	Gait	Cycle	Duration	R	(s)	STD'	
'Gait	-	Lower	Limb	-	Gait	Speed	L	(m/s)	STD'	
'Gait	-	Lower	Limb	-	Gait	Speed	R	(m/s)	STD'	
'Gait	-	Lower	Limb	-	Lateral	Step	Variability	L	(cm)	STD'	
'Gait	-	Lower	Limb	-	Lateral	Step	Variability	R	(cm)	STD'	
'Gait	-	Lower	Limb	-	Circumduction	L	(cm)	STD'	
'Gait	-	Lower	Limb	-	Circumduction	R	(cm)	STD'	
'Gait	-	Lower	Limb	-	N	(#)	STD'	
'Gait	-	Lower	Limb	-	Foot	Strike	Angle	L	(degrees)	STD'	
'Gait	-	Lower	Limb	-	Foot	Strike	Angle	R	(degrees)	STD'	
'Gait	-	Lower	Limb	-	Toe	Off	Angle	L	(degrees)	STD'	
'Gait	-	Lower	Limb	-	Toe	Off	Angle	R	(degrees)	STD'	
'Gait	-	Lower	Limb	-	Single	Limb	Support	L	(%GCT)	STD'	
'Gait	-	Lower	Limb	-	Single	Limb	Support	R	(%GCT)	STD'	
'Gait	-	Lower	Limb	-	Stance	L	(%GCT)	STD'	
'Gait	-	Lower	Limb	-	Stance	R	(%GCT)	STD'	
'Gait	-	Lower	Limb	-	Step	Duration	L	(s)	STD'	
'Gait	-	Lower	Limb	-	Step	Duration	R	(s)	STD'	
'Gait	-	Lower	Limb	-	Stride	Length	L	(m)	STD'	
'Gait	-	Lower	Limb	-	Stride	Length	R	(m)	STD'	
'Gait	-	Lower	Limb	-	Swing	L	(%GCT)	STD'	
'Gait	-	Lower	Limb	-	Swing	R	(%GCT)	STD'	

All rights reserved. No reuse allowed without permission. 
was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (whichthis version posted November 6, 2019. ; https://doi.org/10.1101/19006866doi: medRxiv preprint 

https://doi.org/10.1101/19006866


 20 

'Gait	-	Lower	Limb	-	Terminal	Double	Support	L	(%GCT)	STD'	
'Gait	-	Lower	Limb	-	Terminal	Double	Support	R	(%GCT)	STD'	
'Gait	-	Lower	Limb	-	Toe	Out	Angle	L	(degrees)	STD'	
'Gait	-	Lower	Limb	-	Toe	Out	Angle	R	(degrees)	STD'	
'Gait	-	Lumbar	-	Coronal	Range	of	Motion	(degrees)	STD'	
'Gait	-	Lumbar	-	Sagittal	Range	of	Motion	(degrees)	STD'	
'Gait	-	Lumbar	-	Transverse	Range	of	Motion	(degrees)	STD'	
'Gait	-	Trunk	-	Coronal	Range	of	Motion	(degrees)	STD'	
'Gait	-	Trunk	-	Sagittal	Range	of	Motion	(degrees)	STD'	
'Gait	-	Trunk	-	Transverse	Range	of	Motion	(degrees)	STD'	
'Gait	-	Upper	Limb	-	Arm	Swing	Velocity	L	(degrees/s)	STD'	
'Gait	-	Upper	Limb	-	Arm	Swing	Velocity	R	(degrees/s)	STD'	
'Gait	-	Upper	Limb	-	Arm	Range	of	Motion	L	(degrees)	STD'	
'Gait	-	Upper	Limb	-	Arm	Range	of	Motion	R	(degrees)	STD'	
'Turns	-	Angle	(degrees)	STD'	
'Turns	-	Duration	(s)	STD'	
'Turns	-	N	(#)	STD'	
'Turns	-	Turn	Velocity	(degrees/s)	STD'	
'Turns	-	Steps	in	Turn	(#)	STD'	
	

Sway: 
'Postural	Sway	-	Acc	-	95%	Ellipse	Axis	1	Radius	(m/s^2)'	
'Postural	Sway	-	Acc	-	95%	Ellipse	Axis	2	Radius	(m/s^2)'	
'Postural	Sway	-	Acc	-	95%	Ellipse	Rotation	(m/s^2)'	
'Postural	Sway	-	Acc	-	95%	Ellipse	Sway	Area	(m^2/s^4)'	
'Postural	Sway	-	Acc	-	Centroidal	Frequency	(Hz)'	
'Postural	Sway	-	Acc	-	Centroidal	Frequency	(Coronal)	(Hz)'	
'Postural	Sway	-	Acc	-	Centroidal	Frequency	(Sagittal)	(Hz)'	
'Postural	Sway	-	Acc	-	Frequency	Dispersion	(AD)'	
'Postural	Sway	-	Acc	-	Frequency	Dispersion	(Coronal)	(AD)'	
'Postural	Sway	-	Acc	-	Frequency	Dispersion	(Sagittal)	(AD)'	
'Postural	Sway	-	Acc	-	Jerk	(m^2/s^5)'	
'Postural	Sway	-	Acc	-	Jerk	(Coronal)	(m^2/s^5)'	
'Postural	Sway	-	Acc	-	Jerk	(Sagittal)	(m^2/s^5)'	
'Postural	Sway	-	Acc	-	Mean	Velocity	(m/s)'	
'Postural	Sway	-	Acc	-	Mean	Velocity	(Coronal)	(m/s)'	
'Postural	Sway	-	Acc	-	Mean	Velocity	(Sagittal)	(m/s)'	
'Postural	Sway	-	Acc	-	Path	Length	(m/s^2)'	
'Postural	Sway	-	Acc	-	Path	Length	(Coronal)	(m/s^2)'	
'Postural	Sway	-	Acc	-	Path	Length	(Sagittal)	(m/s^2)'	
'Postural	Sway	-	Acc	-	RMS	Sway	(m/s^2)'	
'Postural	Sway	-	Acc	-	RMS	Sway	(Coronal)	(m/s^2)'	
'Postural	Sway	-	Acc	-	RMS	Sway	(Sagittal)	(m/s^2)'	
'Postural	Sway	-	Acc	-	Range	(m/s^2)'	
'Postural	Sway	-	Acc	-	Range	(Coronal)	(m/s^2)'	
'Postural	Sway	-	Acc	-	Range	(Sagittal)	(m/s^2)'	
'Postural	Sway	-	Angles	-	Sway	Area	Radius	(Coronal)	(degrees)'	
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'Postural	Sway	-	Angles	-	95%	Ellipse	Axis	2	Radius	(degrees)'	
'Postural	Sway	-	Angles	-	Sway	Area	Rotation	(degrees)'	
'Postural	Sway	-	Angles	-	Sway	Area	(degrees^2)'	
'Postural	Sway	-	Angles	-	Duration	(s)'	
'Postural	Sway	-	Angles	-	RMS	Sway	(degrees)'	
'Postural	Sway	-	Angles	-	RMS	Sway	(Coronal)	(degrees)'	
'Postural	Sway	-	Angles	-	RMS	Sway	(Sagittal)	(degrees)'	

 
TUG: 
'Duration	(s)'	
'Sit	to	Stand	-	Duration	(s)'	
'Sit	to	Stand	-	Lean	Angle	(degrees)'	
'Sit	to	Stand	-	N	(#)'	
'Stand	to	Sit	-	Duration	(s)'	
'Stand	to	Sit	-	Lean	Angle	(degrees)'	
'Stand	to	Sit	-	N	(#)'	
'Turns	-	Angle	(degrees)'	
'Turns	-	Duration	(s)'	
'Turns	-	N	(#)'	
'Turns	-	Turn	Velocity	(degrees/s)'	
'Turns	-	Angle	(degrees)	STD'	
'Turns	-	Duration	(s)	STD'	
'Turns	-	Turn	Velocity	(degrees/s)	STD'	

 
Figure	2.	A	full	list	of	task	features.	
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	 PD	(n=20)	

Mean	(range)	

PSP	(n=21)	

Mean	(range)	

HC	(n=39)	

Mean	(range)	

	 	 	 	

Age,	yrs		 66.4	(50-79)	 71	(63-89)	 67.1	(51-82)	

Gender,	Male/Female	 11:9	 12:9	 19:20	

Disease	duration	(yrs)	 11.4	 2.0	 NA	

UPDRS	motor	score	(Part	III)	 27.9	(9-52)	 44.6	(21-72)	 3.1	(0-12)	

MMSE		 26.6	(25-29)	 25.8	(20-30)	 27.6	(26-30)	

MOCA		 26.6	(24-30)	 22.0	(12-29)	 28.5	(27-30)	

	
Table	 1.	 Demographics,	 clinical	 characteristics	 and	 cognitive	 scores	 in	 the	 3	 groups.	 PD	 =	

Parkinson’s	disease,	HC	=	healthy	controls	and	PSP	=	Progressive	Supranuclear	Palsy.	UPDRS	=	

Unified	Parkinson’s	Disease	Rating	Scale,	MMSE	=	Mini	Mental	state	examination. 
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Task	 Sensors	used	 Comparison	
Logistic	Regression	 Random	Forest	

Acc	(%)	 Sens	(%)	 Spec	(%)	 Acc	(%)	
Sens	
(%)	 Spec	(%)	

	 	 	 	 	 	 	 	 	

Gait	
Lumbar,	sternal,	both	

arms,	both	feet	
PSP	vs	HC	 87	 86	 87	 91	 85	 94	

PSP	vs	PD	 80	 81	 75	 83	 81	 85	

	 	 	 	 	
	 	 	 	

Sway	 Lumbar,	sternal,	both	
arms,	both	feet	

PSP	vs	HC	 68	 52	 77	 82	 67	 90	

PSP	vs	PD	 63	 66	 60	 63	 67	 60	

	 	 	 	 	 	 	 	 	

TUG	
Lumbar,	sternal,	both	

arms,	both	feet	
PSP	vs	HC	 90	 81	 97	 92	 86	 95	

PSP	vs	PD	 70	 71	 70	 83	 86	 80	

	 	 	 	 	
	 	 	 	

Combined	 Lumbar,	sternal,	both	
arms,	both	feet	

PSP	vs	HC	 93	 86	 97	 95	 90	 97	

PSP	vs	PD	 80	 85	 75	 88	 86	 90	

	 	 	 	 	 	 	 	 	

Combined	 Lumbar	only	
PSP	vs	HC	 93	 85	 97	 95	 90	 97	

PSP	vs	PD	 78	 76	 80	 85	 86	 85	

	 	 	 	 	
	 	 	 	

Combined	 Lumbar,	right	arm,	right	
foot	

PSP	vs	HC	 93	 89	 96	 93	 90	 97	

PSP	vs	PD	 80	 85	 75	 88	 90	 85	

	

	

Table	 2.	 Classification	 results	 when	 automatically	 classifying	 different	 patients	 based	 on	 their	 gait,	

sway,	and	TUG	signatures	using	the	entire	six-sensor	array	(first	three	rows	of	table).			Sway	is	the	least	

informative	 test.	 	 Classification	 accuracy	 is	 improved	when	 the	 feature	 sets	 from	all	 three	 tasks	 are	

merged	 (fourth	 row).	 	 The	Random	Forest	 (RF)	 classifier	 performs	better	 than	 the	 logistic	 regression	

(LR)	classifier.	Using	data	from	the	lumbar	sensor	alone	(row	5)	reduces	accuracy	modestly,	but	this	can	

be	recovered	by	adding	back	in	arm	and	foot	sensors	from	one	side	of	the	body	(last	row	of	table).	The	

high	 specificity	of	PSP	versus	PD	classification	obtained	with	RF	 (90%)	 is	only	 seen	when	using	 the	6	

sensor	array. 
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Activity	 Feature	 Weighting	 Sensor	
All	

sensors	
Lumbar	
only	

Lumbar,	
arm,	leg	

TUG	 'Turns	-	Duration	(s)'	 0.11328	 Lumbar	 X	 X	 							X	

XX	 'Gait	-	Lower	Limb	-	Cadence	L	(steps/min)	STD'	 0.09398	 Left	Leg	 X	
	

X	

TUG	 'Turns	-	Angle	(degrees)	STD'	 0.06248	 Lumbar	 X	 X	 X	

TUG	 'Sit	to	Stand	-	Duration	(s)'	 0.04518	 Lumbar	 X	 X	 X	

Gait	 'Gait	-	Trunk	-	Sagittal	Range	of	Motion	(degrees)	STD'	 -0.03971	 Trunk	 X	
	 	

Gait	 'Gait	-	Lower	Limb	-	Toe	Off	Angle	R	(degrees)	STD'	 0.03182	 Right	Leg	 X	
	

X	

TUG	 'Turns	-	Duration	(s)	STD'	 0.03071	 Lumbar	 X	 X	 X	

TUG	 'Stand	to	Sit	-	Lean	Angle	(degrees)'	 -0.03009	 Lumbar	 X	 X	 X	

TUG	 'Turns	-	Angle	(degrees)'	 -0.02602	 Lumbar	 X	 X	 X	

TUG	 'Duration	(s)'	 0.01957	 Lumbar	 X	 X	 X	

Gait	 'Gait	-	Upper	Limb	-	Arm	Swing	Velocity	R	(degrees/s)'	 -0.01876	 Right	Arm	 X	
	

X	

Gait	 'Gait	-	Upper	Limb	-	Arm	Range	of	Motion	R	(degrees)'	 -0.01631	 Right	Arm	 X	
	

X	

Gait	 'Turns	-	Steps	in	Turn	(#)	STD'	 0.01618	 Lumbar	 X	 X	 X	

Sway	 'Postural	Sway	-	Acc	-	Frequency	Dispersion	(AD)'	 0.01395	 Lumbar	 X	 X	 X	

Gait	 'Gait	-	Upper	Limb	-	Arm	Range	of	Motion	L	(degrees)'	 -0.00735	 Left	Arm	 X	
	

X	

Gait	 'Gait	-	Lower	Limb	-	Toe	Out	Angle	L	(degrees)'	 0.00101	 Left	Leg	 X	
	

X	

Gait	 'Turns	-	Duration	(s)'	 0.00025	 Lumbar	 X	 X	 X	
	

	

Table	 3.	 Key	 parameters	 emerging	 from	 LASSO	 analysis	 discriminating	 PSP	 from	 PD	 and	 HC	 subjects,	

together	with	their	relative	importance	(as	reflected	by	the	weights).		The	‘sensor’	column	explains	which	

of	the	sensors	in	the	array	is	responsible	for	collecting	the	data	described,	and	the	activity	column	on	the	

left	shows	during	which	test	 the	 feature	has	been	collected.	The	three	columns	on	the	right	show	how	

much	of	the	feature	set	is	available	depending	on	the	extent	of	sensor	array	used.	
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