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Abstract 
 
INTRODUCTION: Machine learning (ML) may harbor the potential to capture 
the metabolic complexity in Alzheimer’s Disease (AD). Here we set out to test 
the performance of metabolites in blood to categorise AD when compared to 
CSF biomarkers. 
 
METHODS: This study analysed samples from 242 cognitively normal (CN) 
people and 115 with AD-type dementia utilizing plasma metabolites (n=883). 
Deep Learning (DL), Extreme Gradient Boosting (XGBoost) and Random 
Forest (RF) were used to differentiate AD from CN. These models were 
internally validated using Nested Cross Validation (NCV). 
 
RESULTS: On the test data, DL produced the AUC of 0.85 (0.80-0.89), 
XGBoost produced 0.88 (0.86-0.89) and RF produced 0.85 (0.83-0.87). By 
comparison, CSF measures of amyloid, p-tau and t-tau (together with age and 
gender) produced with XGBoost the AUC values of 0.78, 0.83 and 0.87, 
respectively. 
 
DISCUSSION: This study showed that plasma metabolites have the potential 
to match the AUC of well-established AD CSF biomarkers in a relatively small 
cohort. Further studies in independent cohorts are needed to validate whether 
this specific panel of blood metabolites can separate AD from controls, and how 
specific it is for AD as compared with other neurodegenerative disorders 
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1. Introduction 

 

At present, the diagnosis of Alzheimer’s disease–type dementia (AD) is based 

on protein biomarkers in cerebrospinal fluid (CSF) and brain imaging together 

with a battery of cognition tests. Diagnostic tools based on CSF collection are 

invasive while brain-imaging tools are still costly, and therefore, there is a need 

to identify non-invasive tools for early detection as well as for measuring 

disease progression. 

 

In recent years, an increasing number of studies have examined blood 

metabolites as potential AD biomarkers [1-4]. The advantages of looking at 

blood metabolites are that they are easily accessible but also that they 

represent an essential aspect of the phenotype of an organism and hence might 

act as a molecular fingerprint of disease progression [5, 6]. Therefore, blood 

AD markers could potentially aid early diagnosis and recruitment for trials. 

 

Here we utilised data generated as part of the European Medical Information 

Framework for AD Multimodal Biomarker Discovery (EMIF-AD) previously 

reported in full in Kim et al [8]. As discussed in that paper, metabolite levels 

were measured using liquid chromatography–mass spectroscopy (LC-MS) to 

cover ca. 800 metabolites and these metabolites related to CSF biomarkers of 

AD commonly used in clinical research including trials, and increasingly in 

clinical practice, as part of the diagnostic work up. Here we explore the potential 

of different machine Learning (ML) algorithms to identify those individuals with 

AD from dataset and to compare the effectiveness of blood based metabolites 

as an indicator of clinical diagnosis to that of CSF markers. In this study we 

employed two state of the art ML algorithms - Deep Learning (DL) and Extreme 

Gradient Boosting (XGBoost) - and compared these to the more commonly 

utilized Random Forest (RF) algorithm. 	  
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2. Methods 
 
This study accessed data previously generated from 242 samples from 

cognitively normal (CN) individuals and 115 from people with AD-type dementia 

(AD) samples in which diagnosis was based on clinical diagnosis. Details on 

the subjects, clinical and cognitive data as well as measurements of AD 

pathological markers have been described elsewhere [7, 8]. The metabolomics 

data employed here was accessed in the EMIF-AD portal and the acquisition 

and processing details can be found via open access in [8]. In short, the EMIF-

AD cohort is a collated cohort making use of existing data and samples 

collected in 11 different studies across Europe, with the aim to discover novel 

diagnostic and prognostic markers for predementia AD.  

 

In the current study, the main objective was to use state of the art ML 

classification algorithms to build CN vs AD predictive models using blood 

metabolites. For this purpose, we employed DL and XGBoost. Additionally we 

also employed the more popularly used RF) algorithm. These models were 

compared in terms of binary classifiers with Area Under the Curve (AUC) in 

Receiver Operating Characteristic (ROC) curves. 

 

The metabolites with more than 45% missing values were discarded. The 

remaining missing values were handled with imputation methods based on the 

k-nearest neighbour (RF and DL), or internally by the classification algorithm 

(XGBoost). Models were built and evaluated using a Nested Cross Validation 

(NCV) which used 9/10 data folds for model training and optimisation in an inner 

cross validation, and 1/10 data folds for model testing in an outer cross 

validation. The process was repeated 10 times, for each of the test data folds. 

 

The analysis was further extended by assessing the stability of the AUC 

performance with Monte Carlo (MC) simulations consisting of 50 repeated 

similar NCV experiments. As such, multiple models were built on multiple 

samples in the NCV and MC, using metabolite predictors selected on the basis 

of their capability to discriminate CN vs AD as measured by the Relief algorithm 

[9] applied on training data in combination with 500 permutations of the 
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outcome variable’s values. This method computes the predictors’ importance 

defined as the standardised Relief score, according to Measuring Predictor 

Importance chapter of [10]. Part of the prediction modelling methodology in this 

study was adapted after [11], with different algorithms, and followed 

recommendations from [10, 12]. The analysis was carried out using R software 

[13]. Pathway analysis was performed on the top 20 ranked metabolites using 

MetaboAnalyst 4.0 [14]. The algorithms were run on four servers with 6-core 

Xeon CPUs and 336 GB RAM. 

	  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 27, 2019. ; https://doi.org/10.1101/19007146doi: medRxiv preprint 

https://doi.org/10.1101/19007146


	

	

3. Results 

 

In this study, we analysed metabolite data derived from blood samples from 

358 participants (CN n=242, AD n=115) previously reported in Kim et al [8]. 

Demographic and clinical data can be found in [8]; in short, there was no 

difference in gender while AD participants were older when compared with CN 

participants.  

 

On the test data, the DL model produced a Receiver Operating Characteristic 

(ROC) Area Under the Curve (AUC) value of 0.85 with its 95% confidence 

interval (CI) ranging between [0.8038, 0.8895].  The XGBoost model produced 

the AUC value of 0.88 (95% CI [0.8619, 0.8903]). When the classifier model RF 

was employed, the resulting AUC was 0.85 (95%CI  [0.8323, 0.8659]). Fig. 1 

illustrates ROC curves obtained from the three ML models. 

 

The MC simulation conducted with XGBoost which was the superior predictive 

model in our analysis, led to a Gaussian distribution of the AUC values 

according to [11] and as confirmed by Shapiro-Wilk test (p-value=0.6819). The 

50 AUC values obtained in MC had a minimum of 0.8614, a maximum of 

0.8923, a mean of 0.8761, a median of 0.8766, and a standard deviation of 

0.0072. The t-test showed that the true mean of AUC for XGBoost applied on 

plasma metabolites was not lower than 0.87 (p-value=1.265X10-07). 

  

For comparison, we also investigated the levels of amyloid, p-tau and t-tau, to 

which we added also age and gender, and their prediction for clinical AD vs 

CN. XGBoost models were built in the same manner as for metabolite 

predictors. Together with age and gender, amyloid led to AUC 0.78 (95%CI 

[0.7626, 0.8013]); p-tau led to AUC 0.83 (95%CI [0.8188, 0.8470]); and t-tau 

led to AUC 0.87 (95%CI [0.8583, 0.8854]). From the mean AUC for metabolites 

and for amyloid, p-tau and t-tau calculated individually, the t-tests showed 

superior values for metabolites (p-value<2.2X10-16, p-value<2.2X10-16, and p-

value=0.005921, respectively).  
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Figure 1. Shows the AUC values for the XGBoost, RF and DL models. 
XGBoost performed best with metabolite predictors in the EMIF cohort. 

 

The top 20 ranked predictors out of the 347 selected by the method presented 

in the previous section, are shown in Fig. 2.   

 

 

Figure 2.  The x-axis shows the top 20 ranked predictors,  and the y-axis 
shows the predictors’ importance computed as the standardised Relief score 
according to Measuring Predictor Importance chapter of [10]. 
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Pathway analyses revealed that the Nitrogen pathway was overrepresented 

(qFDR=0.004) within the panel. Molecules that were captured as the 20 top 

ranking predictors are discussed in the next section. 
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4. Discussion 

 

Machine Learning applied to healthcare is increasingly enabled by the advent 

of high-performance computing and the development of complex algorithms. In 

this study, we employed two state of the art algorithms, DL and XGBoost, and 

a more conventional algorithm, RF, to obtain high accuracy models to predict 

AD vs CN with metabolites as predictors. Our study showed that the best model 

was based on XGBoost [15] which is an enhanced form of Gradient Boosting 

Machines methods based on decision trees [12]. In our study RF and DL 

achieved comparable AUC. DL algorithms are known to often take advantage 

of large and/or unstructured data (such as images) to produce more accurate 

category discrimination/ prediction. In a study using the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) data for AD prediction, XGBoost demonstrated 

superior results (AUC= 0.97 (0.01)) when including imaging parameters (MRI 

and PET) as predictors and when compared to RF, Support Vector Machines, 

Gaussian Processes and Stochastic Gradient Boosting [16]. In other study 

where cognition and MRI were used as predictors, Kernel Ridge Regression 

performed to R2=0.87 (0.025) when cognition and MRI predictors were included 

[17]. 

 

Pathway analyses using the top 20 AD predicting metabolites derived from the 

Relief method showed that the Nitrogen pathway was overrepresented. Some 

of the molecules selected have been reported in metabolomics studies and 

have been implicated in neurodegeneration: Dodecanate, which is a C12 fatty 

acid, was found correlated to longitudinal measures of cognition in the ADNI 

cohort [3] and so was the bile acid glycolithocholate which was associated to 

both AD and cognition measures (ADAS-Cog13) in one of the biggest cross-

sectional studies on cognition, AD and the microbiome [18]. Plasmalogens 

were also found in decreased levels in our cohort in agreement with an earlier 

report [19]. The amide form of vitamin B3, nicotamide, has been implicated in 

both neuroprotection and neuronal death [20]. 

 

New metabolites that could be of interest and have not been previously reported 

as related to AD were phytanate and furoylglycine. The former is a known 
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neurotoxin which impairs mitochondrial function and transcription [21]. 

Furoylglycine is a metabolite which, as lithocholic acid, is mainly synthesized 

by the microbiome and has been reported as a biomarker of coffee 

consumption [22]. 

 

A limitation of our study is that it does not include an external validation due to 

the size of the cohort. However, we implemented a NCV procedure repeated 

50 times in a MC simulation that led to an extended internal validation with 

prediction accuracy of cases. Further studies will assess the performance of 

ratios/combinations of CSF markers and metabolites, life-style factors and 

disorders commonly found in the elderly, together with testing the specificity for 

this specific panel in other neurodegenerative (e.g. PD, FTD), neurological (e.g. 

stroke) and psychiatric (e.g. depression) disorders associated with aging. 

 

The intent of this paper was to compare the performance of different ML 

algorithms to identify people with AD from cognitively unimpaired individuals. 

Here we show first that all three approaches used demonstrate good 

discriminatory power, second that XGBoost is somewhat more effective in this 

particular dataset than RF and DL and third, that this accuracy for clinical 

diagnosis is broadly similar to that achieved by CSF markers of AD pathology. 

The lack of a replication and validation dataset limits the interpretation of this 

finding but nonetheless the strong prediction of diagnostic category from a 

blood based metabolite biomarker set is further evidence of the potential of 

such approaches to complement other biomarkers in identification of people 

with likely AD 
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