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Abstract 

Objectives 

To explore the efficacy of Machine Learning (ML) techniques in predicting under-five 

mortality in LMICs and to identify significant predictors of under-five mortality (U5M). 

Design 

This is a cross-sectional, proof-of-concept study. 

Settings and participants   

We analysed data from the Demographic and Health Survey (DHS). The data was drawn 

from 21 Low-and-Middle Income Countries (LMICs) countries (N = 1,048,575). Eligible 

mothers in each household were asked information about their children and the reproductive 

care they received during the pregnancy. 

Primary and secondary outcome measures 

The primary outcome measure was under-five mortality; secondary outcome was comparing 

the efficacy of deep learning algorithms: Deep Neural Network (DNN); Convolution Neural 

Network (CNN); Hybrid CNN-DNN with Logistic Regression (LR) for the prediction of 

child survival.  

Results 

We found that duration of breast feeding, household wealth index and the level of maternal 

education are the most important predictors of under-five mortality. We found that deep 

learning techniques are superior to LR for the classification of child survival: LR sensitivity = 

0.47, specificity = 0.53; DNN sensitivity = 0.69, specificity = 0.83; CNN sensitivity = 0.68, 

specificity = 0.83; CNN-DNN sensitivity = 0.71, specificity = 0.83. 

Conclusion 

Our findings provide an understanding of interventions that needs to be prioritized, in order 

to reduce levels of U5M in LMICs. It also demonstrates that deep learning models are more 

efficacious than a traditional analytical approach.  

Strengths and limitations of this study 

• The models were tested using a very large data sample, drawn from over 1 million 

households. 
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• The survey utilised a cluster sampling approach and are representative of each country 

included. 

• Socio-economic, political and cultural differences between the included countries may 

limit generalisability of the results.   

• The cross-sectional design of the study means we can only infer association and not 

causality. 

Introduction 

Recent global estimates showed that 5.4 million under-five deaths occurred in 2017; this is 

equivalent to 15,000 deaths every day and 39 deaths per 1000 live births (1). A majority of 

the children who die before their fifth birthday live in sub-Saharan Africa and South-east 

Asia; most of these deaths result from preventable and treatable causes (1,2). Although these 

estimates represent a significant improvement in under-five mortality levels when compared 

to the levels in the early 1990’s, ‘preventable death of one child is still too many’ (1,2).  

High levels of under-five mortality in LMICs is usually a syndromic feature of a weak health 

system (3), and U5MR is a key barometer of the state of a nation’s health system and an 

important impact measure that is reliant on health system input such as health financing, 

health workforce and infrastructure (3,4). These inputs in turn determine health service 

access, readiness, quality and safety and consequently influences coverage of interventions 

such as antenatal care coverage, postnatal care, demand for family planning satisfied, skilled 

birth attendance, care for childhood illnesses, nutritional supplementation etc (4,5).  

Studies have shown that improving child survival requires engaging intricately with a host 

determinants of child health, including biological, environmental and social-economic factors 

such as level of maternal education, household income, environmental sanitation and hygiene 

(5–7). The framework of distal and proximate social, environmental and biological 

determinants was first described by Mosley and colleagues (5). Unfortunately, many 

developing countries are constrained by limited finances and limited health budgets, and are 

unable to intervene on all of the determinants of child health at the same time (3). It is 

therefore increasingly important to identify the most important determinants to be prioritise 

and to determine the most pressing socio-economic issues that can serve as a starting point 

for government and policy makers to focus intervention strategy. 
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Furthermore, intervention measures need to be equity-oriented in order to be effective (9,10). 

Hence, disaggregated household level monitoring of coverage and impact indicators are 

crucial for informing policies and programmatic interventions in the sustainable development 

goal (SDG) era (9). It is important to understand the status of every child as against simply 

exploring global trends, in order to “leave no one behind” and to “reach the furthest behind 

first” (10). In light of the SDG pledge, monitoring changes at household or community level 

may require new ways of engaging with the ‘big data’, that continues to be generated through 

ongoing household surveys such as the Demographic Health Survey (DHS) and Multiple 

Indicator Cluster Survey (MICS) (11,12). A shift away from traditional analytical approach 

may be pertinent and key to effectively monitor health intervention coverage and impact. 

Machine learning techniques may represent a novel analytical approach to unravel previously 

unseen trends; these techniques expand on existing statistical approaches and use methods 

that are not based on a priori assumptions about the distribution of the data” (13). 

In a report recently released by the USAID centre for innovation and impact, on the use of 

Artificial Intelligence (AI) in global health,  AI-Enabled population health was identified as 

one of AI use cases, that could have the greatest impact on improving health quality, cost and 

access in LMICs (14). AI-Enabled population health encompasses surveillance and 

prediction, population risk management, intervention selection and intervention targeting 

(14). In this current study, we explored the efficacy of deep learning as a technique for 

population health surveillance and intervention targeting. 

 There have been numerous empirical studies on the various applications of machine learning 

in hospital settings for prognostication (15,16), triage (17), and prediction of mortality in the 

hospital setting(18). However, application of machine learning is yet to be demonstrated in 

population health studies, where it may represent a potential transformative tool (13). The 

objective of our study is to fill the gap on application of machine learning in population 

health studies, and other previously highlighted gaps. One of the previously highlighted gaps 

concerns the need to identify the most important determinants of U5MR. To explore these 

determinants, we employed a data driven approach by using the random forest algorithm for 

feature selection, rather than utilising the traditional hierarchical approach for multivariate 

analysis, which tends to be highly user-driven and usually involving the development of 

conceptual frameworks that pre-judges the relevance of a limited set of determinants 

(independent variables) (19). Random Forest is an efficient classification and regression 

algorithm that combines several randomized decision trees and aggregates their predictions It 
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is especially useful when the number of variables is larger than the number of observations 

(20). 

 The RF approach allows an unlimited number of variables or determinants to be incorporated 

into the model. The algorithm automatically tests several hypothesis and selects features that 

best predicts the outcome, based on information gained from each variable (16). 

Another gap is the need for new ways to gain insights and to unravel previously unseen 

trends in the prediction of under-five mortality from disaggregated household level data. To 

fill this gap, we also compared the efficacy of deep learning algorithms: Deep Neural 

Network (DNN); Convolution Neural Network (CNN); Hybrid CNN-DNN with Logistic 

Regression (LR) for classifying child survival, and for predicting age of death. Deep learning 

“discovers intricate structure in large data sets by using backpropagation algorithm to indicate 

how a machine should change its internal parameter used to compute representation in each 

layer from the representation in the previous layer” (21). Deep learning algorithms have 

shown excellent performance in genomics, proteomics, drug discovery, speech recognition, 

visual recognition, object detection and several other domains (21).  

Finally, in this work, we make recommendations on machine learning implementation, and 

the new regulatory and ethical considerations for the use of novel ML techniques in public 

health (22).  

Methods 

Data source and analytical tools 

We conducted an analysis on DHS data from 21 low and middle-income countries. The DHS 

is a nationally-representative household survey developed by the United States Agency for 

International Development (USAID) in the 1980s (23). The survey provides data on fertility, 

family planning, maternal and child health, gender, HIV/AIDS, Malaria and nutrition (24). In 

total, over 350 surveys have been carried out in over 90 countries (23). The survey utilizes a 

two-stage cluster sampling design (24). Combined multi-country data for this study was 

obtained from the IPUMS-DHS portal (25). Permission to use data for all included countries 

was granted by the DHS Program.  Analysis was conducted using Python software Version 

3.7. The programming codes used for the various analysis are accessible on Github using the 

following link:  https://github.com/drulna/u5mr_predict      
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 Data pre-processing 

Any real-world dataset needs pre-processing to convert it into a representation that can be 

used to train a model. This can heavily affect the model’s performance. This dataset had 

several irrelevant features, such as IPUMS identifiers created to merge multi-country data. 

We excluded 14 such features and included 54 features in the final model. However, these 

records still had missing values. There exist multiple strategies that can be deployed to handle 

missing values (26). We used the “Forward Fill” strategy in which every missing value is 

replaced by next real values for each column. This clean and pre-processed data was used for 

the rest of the analysis (26). 

Feature selection 

We use random forest to check feature importance with respect to its predictive power. 

Figure 2 shows the feature importance (red bar) and variance of each tree in random forest 

(black vertical line). It can be observed that “Duration of breast feeding” has the most 

importance to predict a child’s death. However, there are some features that are of limited 

importance. We perform feature selection based on this information. We drop all features 

whose importance are less than 0.001, because we found that the accuracy of the classifier 

does not improve beyond this level, and adding the additional attributes only creates 

unnecessary additional computational overhead. In total, 34 features fell within our cut-off 

for feature importance and included in the final model. For comparing the utility of feature 

selection, we perform two experiments. One without feature selection (on all original 54 

features) and one with feature selection (on selected 34 features). 

 

Model Selection 

We selected multivariate logistic regression (LR) as an example of traditional model (16). 

Three deep learning techniques (DNN, CNN and DNN-CNN) were selected as modern 

machine learning approaches. For all the four models, we pose this problem as a multi-class 

problem, such that each value in the label is assigned an integer and then we binarize the 

output (i.e. one-hot encoding). All categorical attributes are also converted to numerical i.e 

dummy variables, by mapping each unique value to a number.  After careful consideration we 

concluded that the best ratio for training is 75% of the data, while the remaining 25% of the 

data is reserved for testing purposes. This choice is in line with literature and close to 80/20, 

which is quite a commonly utilized training/testing ratio, often referred to as the Pareto 
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principle. We compare the performance of logistic regression (LR) as a representative of 

traditional model, with three deep learning methods: deep network (DN), convolutional 

neural network (CNN), and hybrid CNN-DN network. 

 

Model Evaluation 

We evaluated the performance of each model using a ROC plot, we also derived the weighted 

precision, sensitivity (also known as recall), specificity, f1-score, and area under the curve 

(AUC) for each model. The formula for calculating the performance metrics are as follows: 

Precision = 
���� ���	
	���

���� ���	
	�������� ���	
	���
   ;  F1-score = 2 �

����	�	�� � ������

����	�	�� �������
 , �����  ��	
�� �

���� ���	
	���

���� ���	
	�������� ����
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  ; Specificity = 

���� ����
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���� ����
	��� � ���� ���	
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The models were evaluated before and after feature selection. Analysis was initially 

conducted using all pre-selected variables. We thereafter optimized the various models based 

on empirical results from the random forest analysis. As this is a multi-class problem, the 

ROC plots and performance metrics are all based on micro-averages.  

Results  

Characteristics of the study population 

A total population size of (N = 1, 048,575) was included in the study, the sample was drawn 

across 21 LMICs countries. The sample size in each of the included countries is shown in 

figure 1. The mean age of the total population is 1.89 (± 1.40). Majority (N = 1,100,211; 72.7 

%) resides in rural areas. Just under half (N = 636,882; 45.2 %) were in the lowest two wealth 

quintile (Q1 and Q2). Majority (N = 1,100,262; 73.2%) were uneducated or had only primary 

education (See Table 1.)   
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Figure 1: Total sample population per country 
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Table 1: Descriptive analysis of the study population 

Variables                                                 n (%)                   M(SD) 

    Age                                                                                       1.89(1.40) 

    Gender 

        Male                                                    775,957(51.0)                                            

        Female                                                744,061(49.0) 

    Residence 

        Urban                                                  413,705(27.3) 

        Rural                                                   1,100,211(72.7) 

    Wealth Quintile 

        Poorest                                                334,135(23.7) 

        Poorer                                                 302,747(21.5) 

        Middle                                                283,295(20.9) 

        Richer                                                 260049(18.4) 

        Richest                                                231,177(16.4) 

    Highest education level 

        No education                                      670,115(44.6) 

        Primary                                              430,147(28.6) 

        Secondary                                          342,889(22.8) 

        Higher                                                60,517(4) 
(N = 1,048, 575)     

 

Feature Importance 

We found that the most important determinants of U5MR are duration of Breast feeding, 

household wealth index and maternal education level. Other key determinants that were 

identified includes: the number of antenatal visits when the child was in-utero and content of 

antenatal care Tetanus immunization. (See Fig. 2) 

 

 

Figure 2: Feature Importance using Random Forest 
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Model Comparisons (Before Feature Selection) 

 

Comparison of the performance of the models before feature selection reveals that hybrid of 

CNN-DN performs the best in terms of all metrics (sensitivity = 0.68, specificity = 0.83), 

while LR performs the worst (sensitivity = 0.47, specificity = 0.53). (see Table 2). 

 

  

Table 2: Performance Comparison: (Without Feature Selection) 

Performance metrics LR DN CNN  CNN-DN 

Sensitivity 0.47 0.67 0.66  0.68 

Specificity 0.53 0.84 0.83  0.83 

Precision 0.35 0.58 0.57  0.62 

F1-score 0. 38 0.62 0.60  0.63 

AUC 0.93 0.97 0.97  0.97 

 

Figure 3 shows the ROC curves for all the classifiers. It shows that hybrid CNN-DN model 

outperforms all other models. 
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Figure 3: Micro Average ROC Curve (Before Feature Selection) 

 

 

 

Model Comparisons (After Feature Selection) 

We found that feature selection does not improve the performance of logistic regression. 

However, for all deep learning-based models, feature selection results in performance gain. 

The most performance gain is shown by CNN-DN, (sensitivity = 0.71, specificity = 0.83). 

CNN-DN model performs the best out of all classifiers in both settings i.e. before feature 

selection and after feature selection. (see Table 3) 

 

Table 3: Metrics comparison after feature selection 
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In figure 4, we present ROC curves for all the classifiers. It shows that hybrid CNN-DN 

model remains the top performer of all the models. 

 

Figure 4: Micro Average ROC after Feature Selection 

Performance metrics  LR DN CNN CNN-DN 

Sensitivity 0.47 0.69 0.68 0.71 

Specificity 0.53 0.83 0.83 0.83 

Precision 0.35 0.62 0.62 0.67 

F1-score 0.38 0.63 0.62 0.67 

AUC 0.93 0.97 0.97 0.97 
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Discussion 

We found that the most important determinants of U5M are duration of breast feeding, 

household wealth index and maternal education level. Previous studies corroborate our 

findings. It has been shown that children breastfed for a longer duration have lower infectious 

disease morbidity and mortality, and better chance of survival than those who are breastfed 

for shorter periods, or not breastfed at all (27). Multiple studies have also shown that early 

initiation of breast feeding, and exclusive breast feeding reduces both neonatal and early 

infant mortality (27,28). It has been estimated that scaling up breast feeding can help prevent 

an estimated 823,000 child deaths across 75 high-mortality LMICs (27). However, just over a 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted September 25, 2019. ; https://doi.org/10.1101/19007583doi: medRxiv preprint 

https://doi.org/10.1101/19007583
http://creativecommons.org/licenses/by/4.0/


third of the total children population in low- and middle-income countries are breastfed; these 

levels are even lower in industrialized nations (27). Effective approach to scaling up breast 

feeding practices have been discussed in past literature For example, the Alive and Thrive 

initiative in rural Burkina Faso involved the utilisation of a multidimensional approach, 

which combines interpersonal communication and community mobilisation activities to 

improve breast feeding knowledge, beliefs and skills; this invariably improved breast feeding 

outcomes (29). A similar approach may be adopted and tailored to the needs in other 

countries, to scale up breast feeding practices globally. In addition to breast feeding, 

household wealth index and level of maternal education was also identified as important 

determinants of child survival in our study. We found that the household wealth index was a 

slightly more important determinant compared to level of education. This finding however 

contradicts the work of Fuchs and colleagues, where they argued that mother’s education is 

the fundamental determinant of child mortality and is relatively more important than income 

level. They argued that education impacts the child’s health through better maternal health, 

increased health-specific knowledge, avoidance of traditional, harmful behaviours, greater 

economic resource as a consequence of education and general female empowerment (29). 

They however highlighted that other social scientists have often considered education and 

income as generally highly correlated and tend to be regarded as interchangeable indicators 

of socioeconomic status (29). Other key determinants that we identified are the number of 

antenatal visits when the child was in-utero and content of antenatal care (Tetanus 

immunization), post-natal care, place of residence (urban-rural status), family planning, 

desirability of the child and sex of the child. These determinants are congruent with the 

multivariate model of proximal and distal determinants of U5M that have been previously 

described in literature (5).   

Our findings regarding the superiority of machine learning over traditional approaches such 

as logistic regression in predictive analysis are also in line with findings elsewhere (16,30).  

This study however has some limitations. Firstly, this is proof of a concept cross sectional 

study; hence, we can only draw inference on associations, and not on causality. Secondly, we 

did not measure change over time. Future studies should consider incorporating temporal data 

points, in order to draw inference on changes over time, and possibly causality. Finally, we 

did not explore individual country, regional and subgroup level variations and cannot 

conclude that the degree of association is the same across different countries and sub-groups, 

due to differences in socio-economic, geographical, cultural and political realities. Hence, 
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future studies should consider disaggregating with stratifiers such as income, education, and 

place of residence, in order to explore sub-group differences.  

Recommendations for ML Implementation, governance and ethics  

Our recommendations regarding the implementation and regulation of machine learning are 

in four folds. Firstly, there is a burgeoning risk that the adoption and benefits of ML may be 

imbalanced (31). High income countries are beginning to increasingly adopt and benefit from 

deploying some of these novel technologies; therefore, there is the risk of extending the 

disparity between poor and rich countries even further. To achieve equity in the 

implementation of this technology, there is a need for capacity building across board and 

collaborative use of technological resources between low- and high-income countries.  

Secondly, regarding AI research governance and ethics (regulation), the capabilities of AI 

application in public health are not yet fully understood, and its application is still evolving. 

This implies that any regulatory attempt will effectively require understanding the 

capabilities of AI as a tool in public health and medicine. Similar to other medical research 

endeavours, the regulatory framework and ethical guidelines will have to evolve, as our 

understanding of the application of AI evolves. As such, we posit that there is a concordance 

between regulation, governance, research and development of AI technology. In the light of 

this, we suggest collaboration between research institutions, academic stakeholders, policy 

makers, and regulatory authorities. There is a need to engage with all stakeholders across the 

spectrum of AI research, development and ethics.  

Thirdly, we believe that existing medical research ethical guidelines are highly applicable and 

cover several aspects of ML research. However, there is a need to strengthen regulatory 

aspects pertaining to data security and protection. The growth in the adoption of ML 

analytical techniques will usher an increase in the level of data transactions and with this, 

comes the potential risk of breaches to health data privacy. There are existing capabilities to 

re-identify anonymised data, using a few parameters within the data. Hence, regulatory 

efforts need to focus on data security, especially reducing the risks of data re-identification.  

Fourthly, as knowledge and application of AI continues to grow in leaps and bounds, and 

while regulatory efforts are still rudimentary and trying to catch up, we envisage a vacuum in 

governance, that will have to be filled. As such, there may be a need for the development and 

ratification of regulatory framework, which may be possible through the collaboration of 

multiple stakeholders. 
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Conclusions 

This study demonstrates the superiority of machine learning as a tool for understanding 

previously unseen insights in large global health data. We have shown that machine learning 

algorithms such as random forest, may be more insightful than the user dependent traditional 

hierarchical approach of testing a limited set of determinants for outcome prediction in 

multivariate analysis. Using random forest, we found that duration of breast feeding, 

household wealth index, and level of maternal education are the most important determinants 

of U5MR. In addition, we also show that deep learning algorithms are more sensitive and 

specific for the prediction of U5MR and this finding may be applicable to other multivariate 

models, for data-rich population studies. 

Going forward, the most important implication of this study is that if  deep learning 

algorithms such as the one we describe in this study, are deployed in production in 

combination with spatial data, it is possible to identify and flag children who are most at risk 

and not likely to survive until the age of five, such that necessary interventions can be 

targeted to communities where those children live. To the best of our knowledge, there are no 

existing studies that have investigated under five mortality, using a similar analytical 

approach.          
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