Scaffolding the ADHD Brain

Scaffolding the Attention-Deficit/Hyperactivity Disorder Brain Using Transcranial Direct Current and Random Noise Stimulation

Itai Berger1,2,*, Ornella Dakwar-Kawar3,#, Ephraim S. Grossman2, Mor Nahum3, & Roi Cohen Kadosh4,*

1 Faculty of Health Sciences, Ben-Gurion University of the Negev
2 Pediatric Neurology Unit, Hadassah-Hebrew University Medical Center
3 School of Occupational Therapy, Hebrew University of Jerusalem
4 Department of Experimental Psychology, University of Oxford
Equally contributed

*Correspondence to:
Dr. Itai Berger, MD
The Pediatric Neurology Service
Pediatric Division
Assuta Ashdod University Hospital
Faculty of Health Sciences, Ben-Gurion University of the Negev
7 Harefua St. Ashdod, Israel
Tel: +972 (0)25852300
Email address: dr.itai.berger@gmail.com

Prof. Roi Cohen Kadosh, PhD
Department of Experimental Psychology
University of Oxford
New Radcliffe House
Oxford, OX2 6GG
England
Tel: +44 (0)1865 271385
Email address: roi.cohenkadosh@psy.ox.ac.uk

Keywords: ADHD, tRNS, tDCS, intervention, neuroplasticity, prefrontal cortex

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Scaffolding the ADHD Brain

Abstract

Background: Various methods have been attempted to effectively ameliorate psychiatric and neurological conditions in children and adults. One of the attractive ideas is to develop interventions to create a lasting, rather than only an immediate, effect. Such a concept has important implications including increased independency of the patient, reducing the load on the caregiver and the health system, and the economic burden at the micro and macro level.

Methods: We used a randomized double-blind active-controlled crossover study of 19 unmedicated children with attention deficit hyperactivity disorder (ADHD), who completed five-day executive functions training while receiving either transcranial direct current stimulation (tDCS) or random noise stimulation (tRNS). Both stimulation protocols have previously shown potential for inducing lasting benefits in adults, while tDCS was examined in multiple ADHD studies and has been highlighted as a promising method for treating neuropsychological deficits.

Results: tRNS yielded a clinical improvement as indicated by the reduced ADHD rating scale (ADHD-RS) score from baseline, and in comparison to the changes observed in tDCS. Moreover, the effect of brain stimulation one week after completion of treatment yielded further improvement, suggesting a neuroplasticity-related effect. Finally, tRNS improved working memory compared to tDCS, and a larger tRNS effect on ADHD-RS was predicted for those patients who showed the greatest effect in working memory.

Conclusions: Our results provide a promising direction toward a novel intervention in ADHD, which is shown to have a lasting effect via the modulating of neuroplasticity, rather than a merely immediate effect like in current medical interventions.

Clinical trials registration
Registry name: ClinicalTrials.gov
URL: https://clinicaltrials.gov/ct2/show/NCT03104972
Registration number: NCT03104972.
Scaffolding the ADHD Brain

Introduction

Attention deficit hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder in childhood, with significant negative lifetime outcomes (1). Despite proven combinations of pharmacological and psychosocial interventions, there is still a need for improvement of cognitive dysfunction and behavioral symptoms that are only inadequately covered by current interventions (2). These factors highlight the pressing need for novel, efficacious interventions.

Transcranial electrical stimulation (tES) has been suggested as a possible noninvasive means to modify brain activity and steadily enhance behavioral and cognitive performance (3-5). Based on promising outcomes, one form of tES (namely, trigeminal nerve stimulation) has recently received FDA approval as a treatment for children diagnosed with ADHD who are not currently taking prescription ADHD medication (6).

tES involves the application of a weak current (mostly 1–2 mA) to the brain via skin-electrode interface, creating an electric field that modulates neuronal activity (7). In the present research we used two types of tES: transcranial direct current stimulation (tDSC) and transcranial random noise stimulation (tRNS) (3, 8, 9). tDSC is the most frequently used form of tES (3), and is used to modulate neuronal excitability in a subtle manner without depolarizing action potentials (8, 9). It has been suggested that the cortex beneath the anodal electrode typically becomes more excitable whereas the cathodal site has decreased excitability (10, 11). The delivery of tRNS uses the same equipment as tDSC to stimulate neuronal activity at intensities that do not lead to action potentials. However, the mechanisms by which tRNS influences brain activity are different (12, 13). In addition, in tRNS both electrodes can be used to increase cortical excitability, either in homologous locations bilaterally or at different regions simultaneously (14, 15). Previous studies have shown that when several sessions of tDSC or tRNS are applied during cognitive training, the effects can
Scaffolding the ADHD Brain

last from weeks to months (15-21). In children and adolescents, who show accelerated neural plasticity compared to adults (22), tES combined with behavioral intervention has been suggested as a useful tool to modulate neuroplasticity in those with atypical development to generate long-lasting effects (23, 24). The excellent safety profile of tES makes it an even more appealing treatment method for children and adolescents (25, 26).

One of the most influential theories of the neural basis of ADHD suggests that deficient inhibitory control mechanisms give rise to executive dysfunction, which is likely genetically influenced (27, 28). The neuroanatomic substrate of inhibitory control has been imputed to the basal ganglia-thalamo-cortical circuits (29-31). Specifically, this network links the prefrontal cortex to the dorsal neo-striatum via excitatory glutaminergic cells, the basal ganglia to the dorsomedial thalamus via inhibitory projections, and the thalamus back to the prefrontal cortex via excitatory projections (32). Inhibitory control is processed during the maturation of this circuit. Previous studies have shown that ADHD is associated with structural and functional abnormalities within this circuit (32). Indeed, several studies have successfully used anodal tDCS over the left dorsolateral prefrontal cortex (dLPFC) in children with ADHD (33-37) (for reviews see (38, 39)). An updated meta-analysis suggests that anodal tDCS over the left dLPFC can yield a small-to-medium effect size (a cumulative effect size of (Ē)=0.255–0.681) on neuropsychological deficits, such as inhibition and working memory, in ADHD (40).

To the best of our knowledge, tRNS has not yet been used in the case of ADHD, as it is a more novel form of brain stimulation (3, 8). However, tRNS in healthy adults successfully improved high-level cognitive functions including attentional control, with stronger effects shown for individuals with a phenotype that indicates poorer attentional control (41). In a small sample (n=6 per group, between-subject design) of atypically developing children with dyscalculia, tRNS over bilateral dLPFC during numerical training...
Scaffolding the ADHD Brain

has shown positive effects on numerical training compared to sham (placebo) stimulation (42). This preliminary result is in line with the idea that random noise can have beneficial effects on behavior, and it is supported by earlier animal research that suggest that random noise can allow greater opportunity for neuroplasticity (43).

The goal of our study was to compare the beneficial effects of tRNS and tDCS when combined with executive function (EF) training in ameliorating symptoms and EF in unmedicated school-age children with ADHD. We conducted a double-blind randomized controlled trial with a crossover design, in which each tES method was applied for 5 consecutive days. Endurance of effects was measured one week after the end of the intervention protocol. We used tDCS with a montage that has been deemed to be the most successful so far, i.e., an anodal electrode over the left dlPFC and a cathodal electrode over the contralateral supraorbital (40). With tRNS, we used a montage that placed the electrodes above the left dlPFC and the right IFG, due both to the advantage of this neurostimulation polarity-independent method and to its ability to yield excitatory stimulation without parallel inhibitory effects (14). If tES combined with EF training is effective in alleviating ADHD symptoms, it may offer many advantages as a relatively inexpensive, noninvasive therapeutic option for school-age children with ADHD.
Methods and Materials

Study Design

We conducted a randomized double-blind active-controlled crossover study of children diagnosed with ADHD. Twenty-one children were recruited for the study, and 19 participants completed it. Two participants were excluded from the study: one of them due to complaints of an uncomfortable topical sensation and headaches during the tDCS protocol. The second participant was excluded as the parents reported in the third session behavior that might meet one of the exclusion criteria (the expression of self-harm thoughts), which was present already two months before study participation but was not reported at screening.

The study design scheme is shown in Figure 1. A power analysis revealed that with the obtained sample size with power=.8 and α=.05 the obtained effect size is .68, which allows for more power to detect an effect compared to previous studies, including a recent trial that used a between-subject design (n=32 in one group and n=30 in another) and led to FDA approval of its use in brain stimulation to treat ADHD (6, 44). Following screening, eligible participants were assessed at baseline and then randomized into receiving either tDCS or tRNS first, along with computerized EF training. Each group received either tDCS or tRNS treatment for 5 consecutive days (one treatment session each day). After a one-week break, there was a crossover between the groups: those who received tDCS in the first week received tRNS in the third week, while those who received tRNS in the first week received tDCS in the third week. This allowed us to compare the different treatment in a within-subject design, as well as to examine one-week post-treatment effects to assess lasting effects. The assessment battery was repeated at the end of each week. The total duration of subject participation in the study was 4 weeks. All study-related activities were conducted in a research lab at the School of Occupational Therapy of the Hebrew University of Jerusalem.
Scaffolding the ADHD Brain

Figure 1. Study Design. Eligible participants with ADHD were randomized into one of two treatment groups. Participants in both groups received 5 daily treatment sessions in Week 1, no treatment in Week 2, 5 daily treatment sessions in Week 3, and no treatment in Week 4. Group 1 participants received tDCS + EF training in Week 1 and tRNS + EF training in Week 3, while Group 2 participants received the opposite. Assessments for each treatment were conducted at baseline (t0), immediately after the first treatment (t1), and one week later (t2). T2 served as the new baseline for the second round of treatments, with an evaluation immediately after the second treatment (t3) and one week later (t4).

Study Population

The study included children aged 7–12 years old. Participants were recruited among children referred to the ADHD clinic by pediatricians, general practitioners, teachers, psychologists, or parents. All participants agreed to participate in the study (verbal assent) and their parents gave written informed consent to the study, approved by the Helsinki Committee (IRB) of the Hebrew University Hadassah Medical Center (Jerusalem, Israel).

The local IRB approved a total number of 100 participants for this study. For safety reasons we were asked to summarise the data of the first 20 participants in order to assess safety and tolerability. Upon clinical review by the study team and the IRB - if all safety criteria are met, the study will proceed to recruit another 80 participants. That is the reason we chose to include all 20 participants in the tDCS-tRNS arm, so safety and tolerability, as well as
Scaffolding the ADHD Brain

efficacy, will be assessed for both methods and will allow us to revise accordingly the testing plans for the future participants. The study is registered at ClinicalTrials.gov (identifier NCT03104972).

Inclusion criteria: Each child met the criteria for ADHD according to DSM–5 (45), using the “gold standard” procedure as described by the American Academy of Pediatrics, and including a semi-structured interview of the patient and parents by a specialist in pediatric neurology and child development, a neurological examination, and ADHD-RS (15) diagnostic questionnaires (46, 47). Each child scored above the standard clinical cutoff values for ADHD symptoms on ADHD DSM–5 scales (45-47). All children were newly diagnosed and drug naïve.

Exclusion criteria: Children were excluded from the study if they had one of the following: a chronic neurological disease, epilepsy in the participant or in a first-degree relative, intellectual disability, other chronic conditions, chronic use of medications, or other primary psychiatric diagnosis (e.g., depression, anxiety, psychosis). The Hebrew translation of the Kiddie-SADS-Lifetime Version (K-SADS-PL) (48) was used to assess axis-I disorders in participants according to DSM–5 criteria (48).

Prospective resting-state electroencephalography (EEG) was performed at screening in order to rule out an unknown existence of epileptiform activity. EEG records were standardized and recorded with gTech’s g.Recorder software67, using a 64-channel wireless EEG cap system (g.Nautilus) with gel-based electrodes.

Outcome Measures

The primary outcome measure of the study is the total score of the ADHD-RS diagnostic questionnaire completed by the parents (46, 47). These scales are of well-accepted validity and reliability, regarded as standards in ADHD diagnosis and treatment effect (15). The
ADHD-RS-5 contains 18 items based on the wording used to describe those items in the DSM–5. The 18 items are presented in the context of a two-factor structure beginning with the nine inattention (IN) symptoms followed by the nine hyperactive-impulsive (HI) symptoms. Parents rate each of these items on a 4-point Likert frequency scale that can be scored 0 (never or rarely), 1 (sometimes), 2 (often), or 3 (very often). IN and HI total symptom severity scores categorically generate IN and HI symptom counts. The symptom count for IN is determined by summing the number of IN items receiving ratings of 2 (often) or 3 (very often). The symptom count for HI is calculated in a similar fashion. Thus, for both IN and HI, symptom counts range from 0 to 9 in accordance with DSM–5 criteria and 18 is the maximal possible scoring (49).

Secondary outcome measures included:

1. **CGI-S** (Clinical Global Impression – Severity) scale: a 3-item observer-rated scale that measures illness severity, as assessed by the treating clinician (50). Scoring the CGI-S is rated on a 7-point scale, with the severity of illness scale ranging from 1 (normal) to 7 (severely ill).

3. **Digit Span**: a subtest of the Wechsler Intelligence Scale for Children – Fourth edition (WISC-IV)) that measures short-term auditory memory and attention (52).

Study Interventions

Participants completed computerized EF training along with either tDCS or tRNS brain stimulation. Below we detail the various EF components.
Scaffolding the ADHD Brain

Computerized EF Training: Participants completed training using the ACTIVATE™ training program on tablets (53). This gamified EF training includes different tasks that target different EF components such as working memory, cognitive flexibility, response inhibition, and sustained attention (53). Each training session included 4 mini-games, each lasting for 5 minutes, for a total duration of 20 minutes of gameplay per session, which coincided with the tES protocol. As our study focused on comparing the efficacy of two tES methods, rather than on EF training per se, a detailed description of the EF training protocol is beyond the scope of this paper, but can be found elsewhere (see (53)).

![Figure 2. A treatment session of tES combined with EF training. Participants completed 20 minutes of EF training while tRNS or tDCS was delivered to them during this period.](image)

Transcranial Electrical Stimulation

Both tDCS and tRNS were applied using semi-dry 5X5 cm electrodes using the NovoStim device (Tech InnoSphere Eng. Ltd., Haifa). The NovoStim device is a research and investigational device, pending FDA and medical CE approval. Stimulation was delivered for
Scaffolding the ADHD Brain

20 minutes each session, while participants completed the cognitive training (Figure 2). The total stimulation time for each tES protocol was 100 minutes (5 sessions of 20 min each).

tDCS. The current was set to 0.75mA based on previous computational modelling of tDCS in children and is estimated to equal that of approximately 1.5mA in adults (54). Ramp-up and ramp-down durations were 30 seconds each. These durations were chosen after considering the parameters that would influence current distribution and density at the site of stimulation, such as thinner scalp, less cerebrospinal fluid, and smaller head size of the pediatric population (54). A similar dosage of tDCS was well tolerated by the children and was not associated with adverse effects (26). The anodal electrode was positioned above the left dlPFC (F3 based on the International 10-20 system), while the cathodal electrode was placed over the right supraorbital (Fp2).

tRNS. Stimulation was applied at an amplitude of 0.75mA of tRNS over the left dlPFC and the right inferior frontal gyrus (IFG), attached under designated electrode positions (F3-F8 based on the International 10-20 system) of the tES cap. These stimulation locations were chosen based on their involvement in executive control and inhibition processes (29, 30, 32). Ramp-up and ramp-down durations were the same as in the tDCS condition.

Data Analysis

To examine treatment effects, we used linear mixed effects (LME) models, which account for within-subject correlations more optimally compared to Analysis of Variance (ANOVA) and automatically handle missing values, allowing maximum use of available data (55). We used the R-package `nlme` (56) to perform the LME analysis with maximized log-likelihood on the outcome measures. We examined outcomes immediately post-treatment and one week later for each stimulation type, and included stimulation type (tDCS, tRNS) and time (immediately after treatment and one week post-treatment) as predictors. We included baseline
Scaffolding the ADHD Brain

performance in our model as a covariate, rather than use a subtraction score (i.e., post-treatment minus baseline), as the former allows for a better adjustment for minor differences in the pre-treatment means, while the latter contains measurement error from both the baseline performance and the post-treatment score and is also negatively correlated with baseline performance because of the measurement error (57, 58). We verified that the residuals were normally distributed using a q-q plot and the Shapiro–Wilk normality test. The only exception was the MOXO-CPT residuals, which were not normally distributed; we therefore applied the Tukey ladder of powers transformation, which is recommended in this case (59).

We also tested for the inclusion of an interaction term in our analysis. In our primary outcome, ADHD-RS, the interaction between stimulation type and time was not significant (β=0.14, SE=0.18, t(35)= 0.78, p=0.44). A model comparison showed no benefit from a more complex model, favoring the more parsimonious model, which included the main effects of stimulation and time (chi-squared test=0.66, p=0.41). We therefore report this parsimonious model also for the secondary outcome measures. However, as with the other measures, the inclusion of the interaction term between stimulation and time was not significant.
Results

Side Effects and Safety Issues

There were 61 records of side effects reported, none of which were considered clinically significant. Table 1 summarizes these findings as a function of brain stimulation. As can be seen, tRNS yielded fewer reports of side effects. This finding is in line with the relevant literature on adults that highlights tRNS as a more comfortable neurostimulation method in comparison to tDCS (60, 61).

Table 1. Spontaneously Reported or Observed Adverse Events during tDCS and tRNS. The table indicates the number of participants (N) and the percentage of sessions endorsing side effects at some point during the intervention.

<table>
<thead>
<tr>
<th></th>
<th>tDCS (n=19)</th>
<th></th>
<th>tRNS (n=19)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>% Sessions</td>
<td>N</td>
<td>% Sessions</td>
</tr>
<tr>
<td>Headache</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Tingling</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Itching</td>
<td>6</td>
<td>13</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Local redness</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Discomfort</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Changes in ADHD Symptoms

For the primary outcome, we predicted the ADHD-RS total score post-treatment immediately after the intervention (tRNS/tDCS) and one week later, while covarying for the baseline score. The analysis revealed a main effect of stimulation type, indicating greater improvement for tRNS than for tDCS (β=−.42 (SE=.18), B=−1.98 (SE=.87), t(35)=−2.28, p=.028, Table 2). The main effect of time, i.e., immediately after the end of the intervention to one week later, showed a further improvement one week after the end of the treatment (β=−.19 (SE=.09), B=−1.78 (SE=.86), t(35)=−2.07, p=.045). In terms of improvement from baseline, tRNS yielded a mean improvement of 3.65 points [95% CI (1.79, 5.51)], while tDCS yielded a mean improvement of 1.52 points [95% CI (.3, 3.35)].

Table 2. Beta Weights (Standardized) of the Regression Model with Post-treatment ADHD-RS Score as the Outcome Measure. The results indicate a significant effect for stimulation
due to greater reduction in the ADHD-RS score for tRNS in comparison to tDCS, and greater improvement, as opposed to deterioration, as time passed following the treatment (one week later).

<table>
<thead>
<tr>
<th></th>
<th>β</th>
<th>Std Error</th>
<th>DF</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.08</td>
<td>0.173</td>
<td>35</td>
<td>-0.484</td>
<td>0.631</td>
</tr>
<tr>
<td>ADHD-RS (baseline)</td>
<td>0.228</td>
<td>0.105</td>
<td>35</td>
<td>2.166</td>
<td>0.037</td>
</tr>
<tr>
<td>Stimulation</td>
<td>-0.422</td>
<td>0.185</td>
<td>35</td>
<td>-2.285</td>
<td>0.028</td>
</tr>
<tr>
<td>Time</td>
<td>-0.192</td>
<td>0.092</td>
<td>35</td>
<td>-2.075</td>
<td>0.045</td>
</tr>
</tbody>
</table>

Changes in Attentional Performance

The results for the MOXO-CPT subscales and CGI-S (see Tables S1–S5) did not show a significant post-treatment effect of stimulation type (all ps>0.44), aside from the MOXO timing index, which showed larger changes following tRNS compared with those seen following tDCS (B=1.92 (SE=.91), t(47)=2.11, p=.04). However, as a transformation was applied to the outcome score due to the distribution of the residuals (see the Methods section), this result should be interpreted with caution, although the effect of stimulation was significant also without data transformation (β=.25 (SE=.12), B=0.52 (SE=.25), t(47)=2.07, p=.044).

Changes in Working Memory and Short-Term Memory

Performance on the digit span subscale of the WISC (total score of forward and backward span) after the intervention showed similar results to those of the primary outcome (ADHD-RS), with a significant effect of stimulation, favoring tRNS over tDCS (β=.34 (SE=.14), B=1.07 (SE=.44), t(50)=2.44, p=.018). While the effect of time was not significant, descriptively it showed a positive, rather than a negative, slope, indicating that a deterioration due to the time elapsed from the end of the intervention did not occur (β=.04 (SE=.068), B=.27 (SE=.43), t(50)=.64, p=.53).

We further examined whether the improvement in the post-treatment digit span test reflects a modification in working memory or in short-term memory, as assessed by a
Scaffolding the ADHD Brain

backward and a forward digit span, respectively. Our results indicate that tRNS led to a significantly better performance in the backward digit span only, compared to tDCS (Table 3, backward digit span: \(\beta = 0.33 \) (SE = 0.16), \(B = 0.63 \) (SE = 0.3), \(t(51) = 2.12, p = 0.038 \); forward digit span: \(\beta = 0.04 \) (SE = 0.16), \(B = 0.058 \) (SE = 0.24), \(t(51) = 0.24, p = 0.81 \), Table S6).

Table 3. Beta Weights (Standardized) of the Regression Model with Post-treatment Backward Digit Span Score. The results indicate a significant effect for stimulation due to greater increase in the backward digit span score for tRNS in comparison to tDCS.

<table>
<thead>
<tr>
<th></th>
<th>(\beta)</th>
<th>Std Error</th>
<th>DF</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.197</td>
<td>0.108</td>
<td>51</td>
<td>-1.811</td>
<td>0.076</td>
</tr>
<tr>
<td>Stimulation</td>
<td>0.331</td>
<td>0.156</td>
<td>51</td>
<td>2.123</td>
<td>0.038</td>
</tr>
<tr>
<td>Backward digit span</td>
<td>0.84</td>
<td>0.077</td>
<td>51</td>
<td>10.928</td>
<td><0.001</td>
</tr>
<tr>
<td>Time</td>
<td>0.052</td>
<td>0.077</td>
<td>51</td>
<td>0.673</td>
<td>0.504</td>
</tr>
</tbody>
</table>

Examining the Link between Clinical and Cognitive Changes by Brain Stimulation

Next, we examined whether the improvement in the ADHD-RS score under the tRNS protocol depends on the changes in WM performance (the backward digit span score). To do so, we ran a moderation analysis and predicted the post-treatment ADHD-RS score by stimulation type and the post-treatment backward digit span score, while controlling for the ADHD-RS and backward digit span scores at baseline. This analysis revealed a trend toward a significant interaction between stimulation type and the post-treatment backward digit span score (\(\beta = -0.41 \) (SE = 0.23), \(B = -1.01 \) (SE = 0.56), \(t(53) = -1.81, p = 0.075 \), Table 4). A simple slopes analysis revealed that this trend stemmed from a significant improvement in ADHD-RS for tRNS vs. tDCS in those who had showed the largest improvement in the backward digit span test (\(\beta = -0.62 \) (SE = 0.29), \(B = -2.91 \) (SE = 1.36), \(t(53) = -2.14, p = 0.037 \).

Table 4. Moderation Analysis Predicting Post-treatment ADHD-RS Score. The results revealed a trend toward significant interaction between stimulation type and post-treatment (post) backward digit span in predicting the post-treatment ADHD-RS score.

<table>
<thead>
<tr>
<th></th>
<th>(\beta)</th>
<th>Std Error</th>
<th>DF</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.044</td>
<td>0.149</td>
<td>53</td>
<td>0.294</td>
<td>0.769</td>
</tr>
<tr>
<td>ADHD-RS (baseline)</td>
<td>0.638</td>
<td>0.117</td>
<td>53</td>
<td>5.456</td>
<td><0.001</td>
</tr>
<tr>
<td>Stimulation</td>
<td>-0.208</td>
<td>0.205</td>
<td>53</td>
<td>-1.018</td>
<td>0.313</td>
</tr>
</tbody>
</table>
Scaffolding the ADHD Brain

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Backward Digit Span</td>
<td>0.209</td>
<td>0.241</td>
<td>53</td>
<td>0.868</td>
<td>0.389</td>
</tr>
<tr>
<td>(post)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backward Digit Span</td>
<td>0.008</td>
<td>0.192</td>
<td>53</td>
<td>0.042</td>
<td>0.966</td>
</tr>
<tr>
<td>(baseline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stimulation*Backward</td>
<td>-0.412</td>
<td>0.227</td>
<td>53</td>
<td>-1.813</td>
<td>0.0754</td>
</tr>
<tr>
<td>Digit Span (post)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stimulation * Backward Digit Span (post)
Discussion

In this study we examined the effect of tRNS and tDCS on the clinical and cognitive outcomes of children with ADHD during 5 days of executive function training. The most notable results in our study are the ADHD-RS improvement of tRNS relative to baseline and tDCS. These promising results on the tRNS protocol support those of several studies in healthy young adults (33-37), including a recent meta-analysis (40). Importantly, the results showed a further significant improvement 7 days after the end of the treatment, mirroring a similar lasting tRNS effect in previous studies on healthy adults (15, 16, 19, 20, 62). We suggest that the observed effects in the present study reflect our approach not to use brain stimulation alone, but to combine it with cognitive training in order to induce changes in the associated neural system via neuroplasticity (24). This approach differs from other attempts to treat individuals with ADHD using drugs or brain stimulation alone.

The success of our approach is further supported by a tRNS effect on the MOXO timing index score, which reflects cognitive processing speed, i.e., the speed at which a person is able to perceive and react to stimuli in the environment (63). More importantly, we observed a tRNS effect on the backward digit span test, which measures WM capacity. This last effect was expected given that our cognitive training targeted WM as one of the executive functions that have been shown to be impaired in children with ADHD (64). Notably, the effect of tRNS vs. tDCS was restricted to WM and did not extend to the forward digit span test, which does not measure WM. Moreover, a greater improvement of tRNS in ADHD-RS was predicted by a greater improvement in the backward digit span test from baseline, while the interaction between brain stimulation and WM in predicting ADHD-RS was marginally significant.

There are a few differences that are worth emphasizing when comparing our approach to transcranial electrical stimulation to that of McGough et al. (44), whose recent promising
findings on trigeminal nerve stimulation as a treatment for ADHD has received FDA approval (6). Our results are based on lower stimulation intensity (.75mA vs. 2–4mA) and shorter treatment duration (100min vs. 13,440min in total), and they show persistent and even increasing improvement after treatment, indicating plasticity-related effects. This is in contrast to the short-lived immediate improvement and significant deterioration one week after the end of the treatment associated with the form of tES reported in (44). Moreover, the estimated effect size in our study on ADHD-RS is higher than the one reported in (44) (estimated Cohen’s d=.95 on an 18 points scale, and .73 on a 54 points scale vs .51). This difference is less likely to be due to an inflated effect size due to an underpowered design (65) as the experimental design in our study was even more suitable for detecting the observed effect size (Cohen’s d=.67 in the present design vs. Cohen’s d=.72 in (44)).

However, two additional differences are noteworthy. First, given that the effect of tRNS alone does not yield a lasting behavioral effect (16, 66), our approach is likely to require that brain stimulation be combined with cognitive training in order to induce lasting effects. By contrast, the approach in (44) is based on brain stimulation during sleep. The requirement of active cognitive engagement vs. passive involvement of the patient is important, and caregivers/clinics will have to consider these options given the length of the treatment and the commitment constraints of the caregiver.

In addition, in the present study we chose to compare the effect of tRNS vs. tDCS, rather than vs. sham stimulation. In our view such an approach is more rigorous as it compares the effect of two stimulation protocols that at the theoretical and the empirical level had an a priori likelihood of leading to successful treatment. Therefore, the obtained results are expected to be stronger when compared to sham stimulation. However, we would like to acknowledge a potential criticism that tDCS, in contrast to sham stimulation, might yield impairment, rather than improvement. While a future study that includes a sham group is
Scaffolding the ADHD Brain

needed to exclude this possibility with great confidence, the criticism is likely unfounded
given the accumulated evidence that suggests a beneficial effect of tDCS on ADHD
neuropsychological deficits under the montage we used (33-37). Future research that
compares different approaches to intervention, and the mechanisms these interventions are
acting on, will advance our understanding of and decision-making on the most promising
approaches to ADHD treatment.

In this regard, a recent study in mice that aimed to advance the understanding of the
effect of tRNS on the developing brain has revealed that delivery of identical tRNS current
density and duration per day over multiple sessions (in this case 9 sessions, twice a week) to
the prefrontal cortex reduces GAD 65/67 but not vesicular glutamate transporter 1. This
effect was maximal in the location immediately beneath the electrode but not in a deeper
location (67). Such findings support our suggestion that tRNS impacts neuroplastic
mechanisms and, at least in mice, involves the GABAergic system. Further work in humans
and animals could shed further light on the mechanisms involved, and on how tRNS can
ameliorate ADHD symptoms and potentially other clinical conditions.
Scaffolding the ADHD Brain

Acknowledgements. This research was funded by a grant from the Israel Innovation Authority to Tech Innosphere Engineering Ltd. ODK has been partially supported by a Golda Meir award of the Israeli Ministry of Science and Technology, granted to advanced graduate and postgraduate students in science and technology. The manuscript has been posted on a preprint server (medRxiv). We thank Prof. Katya Rubia for initiating the idea to use the ACTIVATE™ training program with brain stimulation. We also thank Snir Barzilay, Noam Galon, Yehudit Fox, Romy Goldfus and Noa Ariely for their help with data collection, organization and psychological evaluations.
Disclosures. IB serves on the advisory board of Tech InnoSphere Engineering Ltd. RCK serves on the scientific advisory boards of Neuroelectrics Inc. and Tech InnoSphere Engineering Ltd. All the other authors reported no biomedical financial interests or potential conflicts of interest.
Scaffolding the ADHD Brain

References

Scaffolding the ADHD Brain

Scaffolding the ADHD Brain

Supplemental Information

Table S1. Beta Weights (Standardized) of the Regression Model with Post-treatment MOXO Attention Score as the Outcome Measure.

<table>
<thead>
<tr>
<th></th>
<th>β</th>
<th>Std.Error</th>
<th>DF</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.1335</td>
<td>0.0917</td>
<td>51</td>
<td>-1.4563</td>
<td>0.1514</td>
</tr>
<tr>
<td>MOXO Attention (Baseline)</td>
<td>0.0903</td>
<td>0.0381</td>
<td>51</td>
<td>2.3684</td>
<td>0.0217</td>
</tr>
<tr>
<td>Stimulation</td>
<td>-0.0088</td>
<td>0.0258</td>
<td>51</td>
<td>-0.3431</td>
<td>0.7329</td>
</tr>
<tr>
<td>Time</td>
<td>0.0344</td>
<td>0.0257</td>
<td>51</td>
<td>1.3357</td>
<td>0.1875</td>
</tr>
</tbody>
</table>

Table S2. Beta Weights (Standardized) of the Regression Model with Post-treatment MOXO Impulsivity Score as the Outcome Measure.

<table>
<thead>
<tr>
<th></th>
<th>β</th>
<th>Std.Error</th>
<th>DF</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.8218</td>
<td>0.0305</td>
<td>51</td>
<td>-26.936</td>
<td><0.0001</td>
</tr>
<tr>
<td>MOXO Impulsivity (Baseline)</td>
<td>-0.0631</td>
<td>0.0273</td>
<td>51</td>
<td>-2.306</td>
<td>0.0252</td>
</tr>
<tr>
<td>Stimulation</td>
<td>-0.0075</td>
<td>0.0241</td>
<td>51</td>
<td>-0.3136</td>
<td>0.7551</td>
</tr>
<tr>
<td>Time</td>
<td>-0.0043</td>
<td>0.0238</td>
<td>51</td>
<td>-0.1833</td>
<td>0.8553</td>
</tr>
</tbody>
</table>

Table S3. Beta Weights (Standardized) of the Regression Model with Post-treatment MOXO Hyperactivity Score as the Outcome Measure.

<table>
<thead>
<tr>
<th></th>
<th>β</th>
<th>Std.Error</th>
<th>DF</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.1453</td>
<td>0.0393</td>
<td>51</td>
<td>-3.692</td>
<td>0.0005</td>
</tr>
<tr>
<td>MOXO Hyperactivity (Baseline)</td>
<td>-0.1414</td>
<td>0.0337</td>
<td>51</td>
<td>-4.194</td>
<td>0.0001</td>
</tr>
<tr>
<td>Stimulation</td>
<td>-0.0217</td>
<td>0.0279</td>
<td>51</td>
<td>-0.777</td>
<td>0.4404</td>
</tr>
<tr>
<td>Time</td>
<td>0.0154</td>
<td>0.0281</td>
<td>51</td>
<td>0.549</td>
<td>0.5852</td>
</tr>
</tbody>
</table>

Table S4. Beta Weights (Standardized) of the Regression Model with Post-treatment MOXO Timing Score as the Outcome Measure.

<table>
<thead>
<tr>
<th></th>
<th>β</th>
<th>Std.Error</th>
<th>DF</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.235</td>
<td>0.256</td>
<td>47</td>
<td>-0.915</td>
<td>0.364</td>
</tr>
<tr>
<td>MOXO Timing (Baseline)</td>
<td>-0.115</td>
<td>0.105</td>
<td>47</td>
<td>-1.095</td>
<td>0.279</td>
</tr>
<tr>
<td>Stimulation</td>
<td>0.249</td>
<td>0.12</td>
<td>47</td>
<td>2.068</td>
<td>0.044</td>
</tr>
<tr>
<td>Time</td>
<td>-0.065</td>
<td>0.06</td>
<td>47</td>
<td>-1.073</td>
<td>0.289</td>
</tr>
</tbody>
</table>

Table S5. Beta Weights (Standardized) of the Regression Model with Post-treatment CGI-S Score as the Outcome Measure.

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>Std.Error</th>
<th>DF</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.333</td>
<td>0.113</td>
<td>53</td>
<td>-2.955</td>
<td>0.005</td>
</tr>
<tr>
<td>Stimulation</td>
<td>-0.067</td>
<td>0.09</td>
<td>53</td>
<td>-0.753</td>
<td>0.455</td>
</tr>
<tr>
<td>CGI-S (Baseline)</td>
<td>0.082</td>
<td>0.093</td>
<td>53</td>
<td>0.881</td>
<td>0.383</td>
</tr>
<tr>
<td>Time</td>
<td>-0.052</td>
<td>0.089</td>
<td>53</td>
<td>-0.588</td>
<td>0.559</td>
</tr>
</tbody>
</table>

Table S6. Beta Weights (Standardized) of the Regression Model with Post-treatment Forward Digit Span Score as the Outcome Measure.

<table>
<thead>
<tr>
<th></th>
<th>β</th>
<th>Std.Error</th>
<th>DF</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.038</td>
<td>0.167</td>
<td>51</td>
<td>-0.225</td>
<td>0.823</td>
</tr>
<tr>
<td>Stimulation</td>
<td>0.039</td>
<td>0.159</td>
<td>51</td>
<td>0.242</td>
<td>0.81</td>
</tr>
<tr>
<td>Forward digit span (Baseline)</td>
<td>0.381</td>
<td>0.114</td>
<td>51</td>
<td>3.328</td>
<td>0.002</td>
</tr>
<tr>
<td>Time</td>
<td>0.006</td>
<td>0.079</td>
<td>51</td>
<td>0.698</td>
<td>0.945</td>
</tr>
</tbody>
</table>