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Abstract 34 

One way to address the current crisis in opioid use is to improve our understanding of the 35 

biological mechanisms of opioid use disorder (OUD). We completed a primary GWAS of 36 

electronic health record-defined OUD in European-ancestry participants in the Million Veteran 37 

Program (MVP) sample, which included 8,529 affected subjects and 71,200 opioid-exposed 38 

controls. In the MVP alone, there were no genome-wide significant (GWS) associations. We 39 

then subjected the MVP and additional OUD GWAS results from the Yale-Penn and SAGE 40 

samples to meta-analysis (in total, 10,544 OUD cases and 72,163 opioid-exposed controls). A 41 

functional coding variant (rs1799971, encoding Asn40Asp) in OPRM1 (mu opioid receptor gene, 42 

the main biological target for opioid drugs) reached GWS (p=1.51×10-8); then replicated in two 43 

independent samples (each at p<0.05). The final meta-analyzed p-value for this variant in all 44 

samples was 7.81×10-10. SNP-based heritability of OUD was 11.3%. OUD was genetically 45 

correlated with 83 traits, including multiple substance use traits, psychiatric illnesses, cognitive 46 

performance, and others. Mendelian Randomization revealed possible causal effects on OUD 47 

risk from tobacco smoking, major depression, neuroticism, and cognitive performance. Despite 48 

the inclusion of data from the MVP, discovery of a significant association depended on including 49 

other purpose-collected samples as well. Recruitment of additional opioid dependent subjects 50 

for future studies – especially of non-European ancestry – is a crucial next step. 51 
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Introduction 52 

Opioid abuse, addiction, and overdose are at epidemic levels in the United States. Opioids are 53 

the leading cause of overdose deaths, and their use has increased dramatically in recent 54 

decades [1]. A multifaceted approach is needed to address the opioid crisis, including improving 55 

our understanding of the biological mechanisms of opioid addiction. Opioids exert their 56 

biological effects primarily by binding (mainly in brain and peripheral nervous tissues) to the 57 

opioid receptors mu (μ), kappa (κ), and delta (δ), which are encoded by OPRM1, OPRK1, and 58 

OPRD1, respectively [2]. Numerous candidate-gene association studies of these genes 59 

(especially OPRM1) and those encoding related proteins have been conducted in the past two 60 

decades (reviewed in ref [3, 4]), but prior studies have failed consistently to demonstrate 61 

association (e.g., studies on OPRM1*rs1799971 are reviewed in ref [5]). However, a prior 62 

genome-wide association study (GWAS) of opioid dosing reported a genome-wide significant 63 

(GWS) association mapping upstream of the OPRM1 locus [6]. 64 

 Rs1799971 (A118G, encoding Asn40Asp) [5, 7], a functional variant, is one of the most 65 

studied candidate variants for substance use traits. While no consistent results were observed, 66 

this could reflect limited power and population heterogeneity of previous studies (allele 67 

frequency varies greatly in different populations [8, 9]). Several kinds of evidence support 68 

possible functional effects of this SNP: rs1799971 reportedly alters beta-endorphin binding and 69 

activity [7], may be associated with cortisol response to naloxone blockade [10], and may be 70 

associated with neurobehavioral functions in a mouse model [11, 12] and human induced 71 

pluripotent stem cell lines [13]. 72 

Several GWAS of DSM-IV opioid dependence [OD] yielded significant findings [14-16]; 73 

one included internal replication [16] but none reported clear external replication, probably due 74 

to the limited sample sizes available (the largest study so far included 2,015 OD cases [16]). 75 

The risk variants identified map to APBB2, PARVA, KCNC1, and KCNC2 [14] in African-76 
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American (AA) samples, and CNIH3 [15] and RGMA [16] in European ancestry samples. There 77 

have also been GWAS of related traits including therapeutic opioid dose (noted above) [6], and 78 

opioid overdose (which identified one variant near MCOLN1 in AAs) [17]. Of these, only the 79 

study on opioid dosing included an external validation. No GWAS yet has been sufficiently 80 

powered to estimate the SNP-based heritability (h2) of OD.  81 

We conducted GWAS on ICD (International Classification of Diseases)–9/10-diagnosed 82 

opioid use disorder (OUD) and opioid-exposed controls) in 79,729 European Americans (EAs) 83 

from the Million Veteran Program (MVP). Then we meta-analyzed for OUD combining MVP, 84 

Yale-Penn, and the Study of Addiction: Genetics and Environment (SAGE) samples [18]. The 85 

latter two samples were included in our previous publication [16], but were reanalyzed here as a 86 

binary diagnostic trait rather than a criterion count for better congruence with available MVP 87 

information. Rs1799971 was the only variant that was GWS (p=1.51×10-8) in this meta-analysis. 88 

We then replicated the result in two independent samples. We estimated the h2 and detected 89 

genetic correlations between OUD and a variety of psychiatric traits. Causal effects of 90 

substance use, psychiatric diseases, and educational attainment on liability to OUD were also 91 

detected. 92 

 93 

Methods 94 

MVP datasets. The MVP is a cross-sectional mega-biobank supported by the U.S. Department 95 

of Veterans Affairs (VA). Enrollment in MVP began in 2011 and is ongoing. Phenotypic data 96 

were collected using the VA electronic health record (EHR), and blood samples were obtained 97 

for genetic studies [19]. Two phases of genotypic data have been released according to their 98 

genotyping epochs and were included in this study. MVP phase1 contains 353,948 subjects, of 99 

whom 209,020 were defined previously as EAs [20]. MVP phase2 contains 108,416 subjects. 100 
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We used the same process as in MVP phase1 for quality control and to define EAs (see 101 

Supplementary Methods) [20]; there were 67,268 EA subjects. 102 

Cases were participants with at least one inpatient or two outpatient ICD-9/10 codes for 103 

OUD (Supplementary Table 1) between 2000 and 2018. In MVP phase1, there were 6,367 OUD 104 

EAs (3.04% prevalence), and 2,162 OUD EAs (3.21% prevalence) in MVP phase2 were 105 

included in this study. Stringent criteria were applied to define incident opioid-exposed controls 106 

(see details in ref [21]). In short, we started with all MVP participants and excluded subjects with 107 

exposure to a prescription opioid <7 consecutive days, or with VA follow-up less than 6 months 108 

after baseline, or with cancer diagnosed before or after baseline, or with baseline opioid 109 

dosage >90 mg morphine equivalent daily dose (MEDD), or with OUD diagnosis or OUD 110 

treatment at baseline. For the remaining participants, a latent growth mixture model was applied 111 

to identify the major classes of opioid dose (measured by MEDD) trajectories that assigned 112 

each individual to the trajectory with the highest probability of membership. Four resultant 113 

MEDD trajectories were designated as low, moderate, escalating, and rapidly escalating. To 114 

minimize the potential rate of false negatives in the control group, subjects assigned to the low- 115 

dose trajectory without an incident OUD diagnosis during follow-up were defined as controls, 116 

yielding 55,429 and 15,771 EA controls in MVP phaes1 and MVP phase2, respectively. 117 

Genotyping in MVP was performed using a customized Affymetrix Biobank Array. 118 

Imputation and quality control metrics for MVP phase1 were as described previously [20]. 119 

Similar processes were used for MVP phase2 (see Supplementary Methods). GWAS was then 120 

performed on the MVP datasets. We used logistic regression implemented in PLINK v1.90b4.4 121 

[22] for the OUD GWAS correcting for age, sex, and the first 10 principal components (PCs). 122 

 123 

Ethics statement: The Central VA Institutional Review Board (IRB) and site-specific IRBs 124 
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approved the MVP study. All relevant ethical regulations for work with human subjects were 125 

followed in the conduct of the study, and written informed consent was obtained from all 126 

participants. 127 

 128 

Yale-Penn and SAGE datasets. GWAS for DSM-IV OD criterion counts were performed 129 

previously, including three phases of Yale-Penn data, and the SAGE cohort (dbGaP study id 130 

phs000092.v1.p1) [16]. We re-analyzed these data using OUD diagnosis. See Supplementary 131 

Methods. 132 

 133 

Meta-analyses. Sample-size-weighted meta-analyses were performed using METAL [23]. 134 

Given the unbalanced ratios of cases to controls in MVP samples, effective sample sizes were 135 

calculated as follow: 136 

4
1 1effective

case control

n

n n

=
+

. 137 

The calculated effective sample sizes in MVP were used in meta-analyses and all downstream 138 

analyses. Only variants present at least in MVP phase1, which is the largest sample (~75% of 139 

the total), and with heterogeneity test p-value >5×10-8 were retained, leaving 5.7 M variants. 140 

 141 

Replication in independent samples. In Yale-Penn, 4,817 subjects were recently added and 142 

not included in any prior analysis. We genotyped them using the Illumina Multi-Ethnic 143 

Genotyping Array (San Diego, CA) which includes ~1.7 M SNPs. Subjects with mismatched 144 

genotypic and phenotypic sex were removed, as were subjects with excessive heterozygosity. 145 

Duplicate subjects with respect to the Yale-Penn discovery samples were removed. The 146 
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remaining subjects were classified into population groups as for MVP. Among the 2,041 147 

genetically classified EAs, 508 were diagnosed as DSM-IV OD cases, and 206 were opioid 148 

exposed controls. GEMMA was used for an association test only for rs1799971 (i.e., no other 149 

markers were evaluated) and corrected for age, sex, and the first 10 PCs. 150 

In the UK Biobank (UKB), we looked up the association between rs1799971 (only this 151 

marker, as for the other replication sample) and buprenorphine treatment (mostly used to treat 152 

OUD; treatment/medication code: 20003_1140871732) in the UKB. We examined GWAS 153 

summary data released by the Neale lab (information available at http://www.nealelab.is/uk-154 

biobank) for 240 cases and 360,901 controls differentiated based on buprenorphine treatment. 155 

 156 

SNP-based h2. LD Score Regression (LDSC) [24] was used to estimate the SNP-based h2 157 

using 1000 Genomes Project Europeans [8] as the LD reference panel. The major 158 

histocompatibility complex (MHC) region (chr6: 26–34Mb) was excluded. Effective sample size 159 

was used in LDSC. 160 

 161 

Genetic correlation. We estimated the genetic correlation (rg) between OUD and 715 publicly 162 

available traits from LD Hub [25] or other resources using LDSC (Supplementary Table 2) [26]. 163 

Among the tested traits, 232 were published previously, and 483 from the UKB were 164 

unpublished, but integrated in LD Hub. Bonferroni correction was applied and correlation was 165 

considered significant at a p-value threshold of 6.99×10-5. 166 

 167 

Mendelian Randomization. We used Mendelian randomization (MR) to investigate whether 168 

exposures (based on 18 published traits that were significantly correlated with OUD [rg 169 
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p<6.99×10-5]) have causal effects on the liability to OUD. For instrumental variants missing in 170 

the OUD summary data, we used the results of the best proxy variant in highest LD (r2>0.8) with 171 

the missing variant. If the MAF of the missing variant was <0.01, or none of the variants within 172 

200 kb had LD r2>0.8, we removed the instrumental variant from the analysis. Palindromic 173 

SNPs (A/T or G/C alleles) with MAF [0.4, 0.5] in the OUD summary data were also removed or 174 

replaced with the best proxy variant. For robust causal effect inference, we limited the traits 175 

studied to those with >30 available instruments. Accordingly, 12 exposures were analyzed. We 176 

used weighted median [27], inverse-variance weighted (IVW, random-effects model) [28], and 177 

MR-Egger [29], implemented in the R package “MendelianRandomization v0.3.0” [30] for MR 178 

inference. Evidence of pleiotropic effects was examined by the MR-Egger intercept test, where 179 

a non-zero intercept (p<0.05) indicates directional pleiotropy [29]. Whereas MR analyses 180 

require the beta (effect size) and standard error, we calculated these using Z-scores (z), allele 181 

frequency (p) and sample size (n) from the OUD meta-analyses [31]: 182 

2

2

2 (1 )( )
1

2 (1 )( )

zbeta
p p n z

SE
p p n z

=
− +

=
− +

. 183 

 184 

Results 185 

Association results for opioid use disorder (OUD) 186 

In MVP phase1, 6,367 subjects were diagnosed as OUD cases, and 55,429 subjects were 187 

defined as controls. 2,162 cases and 15,771 controls were included from MVP phase2 (Table 188 

1). We meta-analyzed the 8,529 OUD cases and 71,200 controls within MVP (totaling 79,729 189 

individuals, Table 1), and no variant reached GWS (p<5×10-8, Supplementary Figure 1). The 190 

variant with the smallest p-value was rs1799971 in the OPRM1 gene (p=5.90×10-8, 191 
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neffective=30,443; the minor G allele is protective with beta=-0.142 and se=0.026). 192 

 193 

Table 1. Demographics – discovery sample. 194 

Samples # Cases # Controls Age (mean+SD) %female 

MVP phase1 6,367 55,429 61.2 (13.0) 9.3 

MVP phase2 2,162 15,771 61.2 (13.7) 9.7 

Sub-total 8,529 71,200 61.2 (13.2) 9.4 

Yale-Penn 1 1,043 294 36.9 (10.3) 40.5 

Yale-Penn 2 724 243 36.4 (11.4) 33.0 

Yale-Penn 3 54 44 33.6 (11.6) 41.8 

SAGE 194 382 35.8 (9.1) 33.9 

Sub-total 2,015 963 36.4 (10.5) 36.8 

Total 10,544 72,163   

 195 

 196 

 We then meta-analyzed the MVP samples with Yale-Penn (three tranches) and SAGE 197 

samples, bringing the total sample size to 82,707 (10,544 cases and 72,163 opioid-exposed 198 

controls, Table 1). This represents a 24% increase in the number of cases. The OD cases in 199 

Yale-Penn and SAGE were diagnosed using DSM-IV, and the controls were opioid exposed 200 

(this differs from our previously published GWAS [16], which defined phenotype based on DSM-201 

IV OD criterion count). From the meta-analysis, SNP-based heritability (h2) was 0.113 202 

(se=0.018) estimated by LD Score Regression (LDSC). The association of rs1799971 with OUD 203 

was GWS (beta=-0.066, se=0.012, p=1.51×10-8, neffective=33,421, Figure 1, Supplementary 204 

Figure 2). The effects were all in the same direction except for SAGE, which might be due to 205 
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limited sample size. There were no significant results from gene-based association and gene-206 

set analyses. 207 

 208 

Figure 1. Associations between rs1799971*G and OUD. aLogistic regression was applied on 209 
unrelated case/control samples in MVP, log(OR) is presented; ba linear mixed model was 210 
applied on complex family-based samples, beta is presented; ceffective sample size weighted 211 
meta-analysis was applied, and beta is presented. 212 

 213 

Replication in independent samples 214 

In total, 714 EAs (508 OD cases and 206 opioid-exposed controls) were analyzed in the new 215 

Yale-Penn samples, and rs1799971*G was associated with reduced OD risk (i.e., in the same 216 

direction as the discovery meta-analysis) (beta=-0.074, se=-0.038, p=0.049). In the UKB, 217 

rs1799971*G was negatively associated with buprenorphine treatment status (240 cases and 218 

360,901 controls, beta=-1.90×10-4, se=9.13×10-5, p=0.038), also consistent with the direction of 219 

effect in the discovery sample. Meta-analysis of discovery and replication cohorts for this variant 220 

yielded a p-value of 7.81×10-10. 221 

 222 

Genetic correlations with other traits 223 

We estimated the genetic correlations (rg) between OUD and 715 traits with publicly available 224 

summary statistics using LDSC. Among those traits, 232 were published, and 483 were 225 
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unpublished and derived from UKB data. OUD was significantly correlated with 83 of these traits 226 

(Supplementary Table 2). Figure 1 depicts 18 correlated traits from published literature 227 

(Supplementary Methods). Among the correlated substance use-related traits, “ever smoked 228 

regularly” showed the highest correlation with OUD (rg=0.51, se=0.06, p=3.37×10-19), followed 229 

by “opioid medication use” in UKB (rg=0.48, se=0.07, p=1.61×10-11). Both “problematic alcohol 230 

use” (measured by alcohol dependence and AUDIT-P [Alcohol Use Disorders Identification 231 

Test–Problems] score) and “alcohol use quantity” (measured by drinks per week) showed high 232 

genetic correlations with OUD. “Unable to stop smoking” (current vs. former smoker), and 233 

“earlier age of smoking initiation” were also correlated with OUD. However, correlations with 234 

AUDIT-C (Alcohol Use Disorders Identification Test–Consumption), total AUDIT, cigarettes per 235 

day, and lifetime cannabis use were not significant after Bonferroni correction. Several 236 

psychiatric traits were correlated with OUD, including attention deficit hyperactivity disorder 237 

(ADHD, rg=0.36, se=0.07, p=6.78×10-7), major depressive disorder (MDD, rg=0.35, se=0.06, 238 

p=1.62×10-10), schizophrenia (rg=0.29, se=0.05, p=1.93×10-8), neuroticism (rg=0.27, se=0.05, 239 

p=8.65×10-8), and neuroticism subclusters. OUD was positively correlated with risk-taking 240 

behavior and insomnia, and negatively correlated with cognitive traits and age of first birth. 241 

These finding are consistent with the known adverse medical, psychiatric, and social 242 

consequences of OUD. 243 
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 244 

Figure 2. Genetic correlations between OUD and published traits. Listed are the 18 245 
published traits significantly correlated with OUD. N02A: Opioid: self-reported medication-use of 246 
opioid drugs (Anatomical Therapeutic Chemical [ATC] Classification code: N02A) in UK 247 
Biobank; PGC: Psychiatric Genomics Consortium; AUDIT-P: the Alcohol Use Disorders 248 
Identification Test–Problems; ADHD: attention deficit hyperactivity disorder, MDD: major 249 
depressive disorder; Depressed affect subcluster: depressed affect neuroticism subcluster; 250 
Worry subcluster: worry neuroticism subcluster.  251 

 252 

Mendelian Randomization 253 

Using MR, we explored possible causal effects of exposures on OUD (Table 2). Among the 12 254 

tested exposures, five supported a possible causal effect on liability to OUD by at least one 255 

method and without evidence of horizontal pleiotropy (MR-Egger intercept p>0.05): positively 256 

with ever smoked regularly, MDD, neuroticism and worry neuroticism subcluster, and negatively 257 

with educational attainment. There was weak evidence of a causal effect of drinks per week on 258 

OUD risk by the IVW method, but the estimate could be biased due to horizontal pleiotropy. 259 

 260 
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Table 2. Causal effects on OUD by MR. 261 

Exposure (#instruments) IVW  Weighted median  MR-Egger  MR-Egger 

intercept p β (se) p β (se) p β (se) p 

Ever smoked regularly (197) 0.33 (0.04) 1.88×10-19 0.28 (0.05) 4.79×10-8 0.18 (0.14) 0.206 0.264 

Drinks per week (63) 0.31 (0.10) 1.31×10-3 0.23 (0.13) 0.078 -0.04 (0.16) 0.820 8.77×10-3 

MDD (78) 0.18 (0.05) 6.21×10-4 0.17 (0.06) 4.28×10-3 -0.25 (0.34) 0.468 0.202 

Schizophrenia (108) 0.03 (0.01) 0.020 0.03 (0.02) 0.097 -0.01 (0.07) 0.825 0.439 

Neuroticism (131) 0.22 (0.06) 4.07×10-4 0.16 (0.08) 0.050 0.19 (0.27) 0.468 0.934 

Depressed affect subcluster (55) 0.32 (0.10) 2.12×10-3 0.34 (0.12) 4.01×10-3 -0.35 (0.50) 0.482 0.173 

Worry subcluster (61) 0.28 (0.09) 1.32×10-3 0.15 (0.11) 0.157 0.24 (0.40) 0.545 0.919 

Number of sexual partners (64) 0.27 (0.09) 1.77×10-3 0.18 (0.10) 0.083 0.43 (0.40) 0.283 0.689 

General risk tolerance (64) 0.16 (0.13) 0.212 0.18 (0.16) 0.257 0.45 (0.58) 0.438 0.608 

Insomnia (158) 0.06 (0.02) 3.45×10-3 0.03 (0.03) 0.226 -0.03 (0.09) 0.731 0.275 

Educational attainment (564) -0.32 (0.04) 2.34×10-16 -0.33 (0.05) 4.09×10-10 -0.18 (0.15) 0.222 0.311 

Cognitive performance (133) -0.12 (0.05) 9.72×10-3 -0.11 (0.06) 0.061 0.03 (0.22) 0.894 0.477 

P-values in bold are significant after multiple testing correction (significant threshold, 0.05/36=1.39×10-3). Traits labeled in bold are 262 
those having a causal effect on OUD by at least one method without evidencing horizontal pleiotropy (MR-Egger intercept p>0.05). 263 
IVW: inverse-variance weighted (IVW) linear regression. MDD: major depressive disorder. Depressed affect subcluster: depressed 264 
affect subcluster of neuroticism. Worry subcluster: worry subcluster of neuroticism. 265 
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Discussion 266 

Opioid use is at epidemic levels in the United States and is a major cause of death and disability 267 

worldwide. Understanding the genetic architecture of OUD might provide clinically useful clues 268 

about its biology. However, only a few risk variants have been identified by GWAS so far, and 269 

none has had clear external replication. Several factors contribute to this situation: 1). OUD is a 270 

complex psychiatric disease with relatively low heritability, and there is no single variant with 271 

large effect size that can be detected in small cohorts (contrary to, for example, alcohol 272 

dependence [32] with ADH1B, and nicotine dependence with the chromosome 15 nicotine 273 

receptor cluster [33]); 2). Previous OUD GWAS were relatively small compared to those for 274 

legal substance use disorders (e.g., the number of alcohol use disorder cases reached 57,564 275 

in a large meta-analysis [34]); 3). In published work relevant to opioid use, there was 276 

considerable phenotypic heterogeneity across samples. The ascertainment of OUD cases (e.g., 277 

ICD-diagnosed OUD in the EHR, DSM-IV-assessed OD, patients receiving opioid substitution 278 

therapy, and daily injectors of illicit opioids) and controls (e.g., opioid exposed, or random 279 

population with unknown opioid exposure status) differ by study. One way to reach a better 280 

understanding of OUD genetics is increasing the sample size in a homogeneous cohort. 281 

 We conducted GWAS of OUD in a large cohort, the MVP, comprising 8,529 cases and 282 

71,200 opioid-exposed controls of European ancestry. Most previously reported variants 283 

associated with a wide range of opioid-related traits were not significant in MVP (cf. summary 284 

statistics). For some, this reflects lack of marker information or LD proxies in the MVP, or the 285 

lack of non-European populations in this analysis; some associations were previously reported 286 

in African-ancestry populations only [14]; others were reported in EAs, but relevant variants are 287 

missing in the MVP data (e.g., rs12442183 near RGMA reported by Cheng et al. [16] was 288 

filtered by low genotype call rate in imputation). No variant reached GWS in this largest-ever 289 

cohort individually; OPRM1*rs1799971 was nominally significantly associated with OUD 290 
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(p=5.90×10-8). We meta-analyzed MVP samples with Yale-Penn and SAGE (re-analyzed here 291 

as case/control rather than the quantitative criterion count traits reported originally, to match the 292 

available phenotype from the MVP more closely), increasing total sample size to 82,707 (10,544 293 

cases and 72,163 opioid-exposed controls). By adding four samples from Yale-Penn and 294 

SAGE, rs1799971 reached GWS. The final meta-analyzed p-value for this marker is 1.51×10-8 295 

(excluding independent replications). 296 

 Rs1799971 (A118G) maps to exon 1 of the mu opioid receptor (OPRM1) gene, causing 297 

an amino acid change from asparagine to aspartic acid. Extensive candidate studies of this 298 

variant with a wide range of addictive and other behavioral traits have been conducted over two 299 

decades. Associations between rs1799971 and opioid-related traits have not been consistent 300 

[5]. We conducted hypothesis-free, genome-wide analyses for OUD and detected association at 301 

rs1799971 by almost quintupling the number of cases compared to any previous studies [5, 16]. 302 

Our increment in exposed controls, which have often been even more limiting than affected 303 

OUD subjects in previous studies, is even greater. Since many individuals exposed to opioids 304 

become dependent, an unassessed control group is not an ideal alternative to an opioid-305 

exposed control group even if greater numbers of subjects can be achieved – because the 306 

former group is more correctly “diagnosis unknown” and inevitably contains many subjects 307 

genetically predisposed to OUD who would express that phenotype had they been exposed. We 308 

sought replication in two independent samples. One included newly genotyped Yale-Penn 309 

subjects, and the other, a proxy-phenotype buprenorphine treatment sample from the UKB. The 310 

association was replicated in each of these samples.  311 

 Although we still encounter a relative lack of power overall as indicated by no additional 312 

variant detected beyond rs1799971, a lack of any significant gene associated in gene-based 313 

analysis, and no gene-set enrichment, there is reasonable power for genetic correlation. 314 

Multiple substance use-related traits including smoking, alcohol, and opioid use and psychiatric 315 
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traits were among the top correlates. Several smoking traits were positively correlated with 316 

OUD, consistent with the strong correlation between nicotine use and opioid use disorder [35, 317 

36]. MR analysis provided evidence (considered weak, as it is not supported by all the three 318 

tested methods) that the genetic liability to substance use related traits has causal effects on 319 

susceptibility to OUD. Medical opioid use is correlated with OUD, as expected. And problematic 320 

alcohol use (measured by AD and AUDIT-P score) and drinking quantity are also genetically 321 

correlated with OUD. Thus, it may be feasible for prevention or treatment efforts directed at 322 

legal substance use to reduce the burden of consequent opioid dependence. Psychiatric traits 323 

including ADHD, MDD, schizophrenia, and neuroticism are genetically correlated with OUD, 324 

consistent with phenotypic evidence [37, 38]. Weak evidence from MR analyses also indicated 325 

possible causal effects on OUD risk of MDD and neuroticism. 326 

 We note limitations of this study. First, the sample size, though a major improvement, is 327 

still not as large as what can be obtained for legal substance use-related traits, and this limited 328 

power to detect more GWS signals and to obtain insight into OUD biological mechanisms. Legal 329 

substance use traits are more common, and data pertinent to these traits is collected more 330 

commonly than for illegal traits in biobanks and EHRs. Second, the phenotypes in the samples 331 

we studied were not identical. The MVP used ICD 9/10-diagnosed OUD. We expect false 332 

negatives in a sample like the MVP, owing to stigma and insufficient vigilance on the part of 333 

treatment teams concentrating mostly on medical illness, but few false positives. Overall, we 334 

believe these diagnoses to be quite useful, as false positives would be more of a problem than 335 

false negatives. Third, the only GWS variant, rs1799971, has a very small effect size (beta=-336 

0.066). The association was close to GWS in MVP alone, and improved by meta-analysis. High 337 

quality genotype data and replication in an independent sample were required. Rs1799971 was 338 

genotyped directly (was not imputed) in all samples, discovery and replication. Fourth, the 339 

replication samples are small (508 OD cases in the new Yale-Penn sample and 240 340 
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buprenorphine treatment cases in UKB), and the associations only nominally significant 341 

(p~0.05). We examined only this one marker in the replication samples, so nominal significance 342 

should be a sufficient test of replication (and arguably a 1-tailed test could have been applied 343 

rather than the more stringent 2-tailed test applied here). The phenotype in UKB is a proxy 344 

phenotype–buprenorphine treatment. Although buprenorphine is a first-line drug for OUD 345 

treatment, it could have been used for other purposes in the UKB population, including pain 346 

management; but if this is true to any considerable extent, it should reduce our power to detect 347 

an association due to added noise, rather than lead to a false positive finding. Fifth, we only 348 

studied samples with European ancestry. There has been a lack of recruitment for non-349 

European populations globally, e.g., only a few GWASs have been conducted in AAs [6, 14] in 350 

smaller cohorts. 351 

 In summary, we report here the largest GWAS and the largest meta-analysis for OUD so 352 

far. This finding may not have direct implications for personalized medicine – because the 353 

relevant gene is already the main physiological target of all opioids, illegal and therapeutic; 354 

providing, at least, a “proof of principle” of relevance of the finding. OUD is genetically correlated 355 

with substance use traits, other psychiatric traits, insomnia, and cognitive performance. Among 356 

these, ever smoked regularly, MDD, neuroticism, and cognitive performance have potential 357 

causal or protective effects on the liability of OUD, which provides clues for future prevention 358 

efforts. Recruitment of additional OUD subjects – especially of non-European ancestry – is a 359 

crucial next step. Considering the general lack of private foundation funding for study of 360 

substance use disorders, it is likely that government-supported funding agencies will be required 361 

to accomplish this goal. 362 

 363 
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